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Abstract. We address two questions related to the semiampleness of line bundles arising from Hodge

theory. First, we prove there is a functorial compactification of the image of a period map of a polarizable
integral pure variation of Hodge structures for which the Griffiths bundle extends amply. In particular the

Griffiths bundle is semiample. We prove more generally that the Hodge bundle of a Calabi–Yau variation

of Hodge structures is semiample subject to some extra conditions, and as our second result deduce the b-
semiampleness conjecture of Prokhorov–Shokurov. The semiampleness results (and the construction of the

Baily–Borel compactifications) crucially use o-minimal GAGA, and the deduction of the b-semiampleness

conjecture uses work of Ambro and results of Kollár on the geometry of minimal lc centers to verify the
extra conditions.
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1. Introduction

1.1. Baily–Borel compactifications of images of period map. Let (X,D) be a log-smooth algebraic
space, such that X\D supports a polarizable integral pure variation of Hodge structures V = (VZ, F

•VO).
Letting D be the associated period domain and Γ an arithmetic group containing the monodromy of VZ, we
obtain a period map ϕ : (X\D)an → Γ\D.

In general, the space Γ\D cannot be equipped with an algebraic structure [GRT14]. Nonetheless, Griffiths
conjectured [Gri70b, p.259] that the closure of the image of a period map is naturally a quasiprojective
variety, which was proven by Griffiths assuming the image is proper, Sommese [Som75] in the case of

isolated singularities, and in general in [BBT23a, Theorem 1.1]. We call ϕ((X\D)an) a period image. One
may therefore intrinsically define period images as closed Griffiths transverse algebraic subvarieties of Γ\D.
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In the classical case of Shimura varieties such as the moduli space of principally polarized abelian varieties
Ag, the space Γ\D itself has an algebraic structure, and is therefore a universal period image. The celebrated
work of Baily–Borel [BB66] provides a canonical projective compactification. It is therefore natural to ask
whether there is an analogue of the Baily–Borel compactification for arbitrary period images.

Our first main result is to construct such a compactification (see Theorem 5.2 for the precise statement).
As in the classical case, it satisfies the following extension property:

Theorem 1.1. Let Y be a period image. Then there exists a functorial projective compactification Y BB such
that for any log smooth algebraic space (Z,DZ), any morphism Z\DZ → Y for which the resulting morphism
(Z\DZ)

an → Γ\D is locally liftable1 extends to a morphism Z → Y BB.

It is easy to see this property uniquely determines Y BB up to normalization. In fact, a stronger extension
property holds with respect to analytic maps from punctured polydisks—see Theorem 1.9 below—which was
proven in the classical case by Borel [Bor72].

1.1.1. Griffiths bundle. Returning to the variation on X\D, there is a natural line bundle which descends
to a polarization on Y and clarifies the statement of Theorem 1.1. It is provided by the Griffiths bundle:

LX\D =
⊗
p

∧rkFpVOF pVO.

Importantly, this can be realized as the deepest piece of the Hodge filtration of the variation Griff(V ) :=⊗
p

∧
rkFpVOV .

Each power LnX\D of the Griffiths bundle has a natural extension via the nilpotent orbit theorem of

Schmid [Sch73] to a line bundle (LnX\D)X on all of X which is nef (and compatible with tensor power)

if the local monodromy is unipotent and big if the period map is in addition generically immersive. It is
essentially conjectured in [GGLR17] that LX is semiample if the local monodromy is unipotent. We prove
this conjecture, and use it to give an intrinsic characterization of Y BB as follows.

It is easy to show [BBT23a, Lem 6.12] that a power of LmX\D descends to a line bundle L
(m)
Y . We define a

section of L
(mk)
Y to have moderate growth if its pullback to X\D for some (hence any) (X,D) extends to a

section of LmkX . Finally, we define the ring of moderate growth sections BY :=
⊕

kH
0
mg(Y, L

(mk)
Y ). We prove

in Theorem 5.2 the following more precise statement:

Theorem 1.2 (Theorem 5.2). Let Y be a period image. Then

(1) The ring BY is finitely generated, Y BB := ProjBY is a projective compactification of Y such that
Theorem 1.1 holds, and the ample bundle OY BB(n) (for sufficiently divisible n) naturally restricts to

L
(n)
Y .

(2) Under the extension Z → Y BB from Theorem 1.1, OY BB(n) (for sufficiently divisible n) pulls back
to (LnZ\DZ

)Z .

Corollary 1.3. Let (X,D) be a log smooth algebraic space and V a polarizable integral pure variation of
Hodge structures on X\D with unipotent local monodromy. Then the Griffiths bundle LX of V is semiample.

As in the classical case, it follows from the construction that Y BB is stratified by locally closed subvarieties
equipped with polarizable variations of Hodge structures with quasifinite period maps.2

1The local liftability is equivalent to the condition that (Z\DZ)an → Γ\D be the period map of a variation. In fact, by the

definability of period maps [BKT20, Theorem 1.3] and the definable Chow theorem of Peterzil–Starchenko [PS03, Corollary

4.5], such a morphism is equivalent to a variation on Z\DZ whose period map factors through Y an. If Γ is torsion-free the
local liftability condition is automatic.

2This stratification and the associated variations are more complicated than those described in [GGLR17]. The stratification
of Y BB is not clearly canonical, and the variations mentioned above which descend from boundary strata in X will only be
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1.1.2. Past work. Satake [Sat56] first constructed compactifications of Siegel modular varieties as ringed
spaces, and suggested that they should in fact be analytic spaces. This was confirmed by Baily [Bai58], who
moreover proved the compactifications were projective varieties, given as Proj of a finitely generated ring of
automorphic forms. Baily–Borel [BB66] then constructed the analogous projective compactification of any
Shimura variety, building on further work of Satake [Sat60b,Sat60a].

Shortly thereafter, Griffiths [Gri70b, §9] realized a full compactification of Γ\D in the non-classical case is
too much to hope for, and conjectured the existence of a partial compactification of Γ\D with an extension
property with respect to Griffiths transverse morphisms from log smooth sources as in Theorem 1.1. This
idea provided motivation for the development of the theory of degenerations of Hodge structures (e.g. [Sch73,
Ste75,Kas85,CKS86]) filling out a conjectural picture originally due to Deligne. Attempts have been made to
construct such a partial compactification in some special cases, for example in the weight two case by Cattani–
Kaplan [CK77], where the extension property was demonstrated for one-parameter period maps. A different
perspective was proposed by Kato–Usui [KU09], who described a conjectural partial compactification of
Γ\D in the category of logarithmic manifolds, with the property that the closure of the image of any period
map would be a proper algebraic space [Usu06] more closely analogous to the toroidal compactifications
of [AMRT10]. This line of inquiry has been taken up recently by Deng [Den21,Den25] and Deng–Robles
[DR23].

Griffiths [Gri70b, (10.7) Remark] also explicitly suggested an alternative generalization of the work of
Baily–Borel (focusing on its relation to automorphic forms) would be to show that the ring of moderate
growth sections of the Griffiths bundle on Y is finitely generated, and that its Proj provides a compactification
of the period image. Theorem 1.2 confirms this expectation. The closely-related question of the semi-
positivity of vector bundles of Hodge-theoretic origin has been considered by various authors starting with
Griffiths [Gri70a] and continuing with, for example, Fujita, Zucker, and Kawamata [Fuj78, Zuc82,Kaw83])
(see also the references below regarding the canonical bundle formula).

The question of the semiampleness of the Griffiths bundle has been revived recently by Green, Griffiths,
Laza, and Robles in [GGLR17], where Baily–Borel type compactifications and their the connection to other
compactifications arising from moduli theory are discussed. Their work, together with subsequent work
of Green–Griffiths–Robles [GGR25], has had an important influence on this one. Most notably, Green–
Griffiths–Robles establish the torsion combinatorial monodromy of the Griffiths bundle in [GGR25, Thm
5.21] (see Theorem 2.22), which is a crucial ingredient. Implicit in their work is also the idea that the
Griffiths bundle LX is flat (with no residues) with respect to the natural logarithmic connection of the
Deligne extension along any subvariety Z of X on which LX is numerically trivial (see Remark 2.15). For
us, this is ultimately upgraded to the existence of the local period maps described in (3) of the proof outline
below. Finally, the dimX = 2 case of Corollary 1.3 is proven in [GGLR17] and [GGR25]; the one-dimensional
cases of Theorem 1.1 and Theorem 1.2 are easy.

1.1.3. Applications. As a corollary, we obtain a Baily–Borel compactification of any moduli space of polarized
varieties with a local Torelli theorem.

Corollary 1.4 (of Theorem 5.2). Let Y be a reduced separated Deligne–Mumford stack equipped with a

quasifinite period map. Then the coarse space Y has a compactification Y BB for which some power L
(n)
Y of

the Griffiths bundle extends to an ample bundle OY BB(n) and such that for any morphism g : Z\DZ → Y
for a log smooth algebraic space (Z,DZ), the map on coarse spaces extends to g : Z → Y BB with the property
that g∗OY BB(n) pulls back to (LnZ\DZ

)Z .

pieces of a certain tensor operation applied to the limit mixed Hodge structure. This is ultimately due to the lack of a canonical

graded polarization on the limit mixed Hodge structure.
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Corollary 1.4 for instance applies to any moduli stack of polarized varieties with an infinitesimal Torelli
theorem, such as Calabi–Yau manifolds and most hypersurfaces (see [BBT23a]).

1.2. b-semiampleness conjecture. Let (Y,∆) be a pair with log canonical singularities and f : Y → X a
projective morphism with connected fibers to a normal variety such that KY + ∆ ∼Q f∗L for a Q-Cartier
divisor L on X. Such a morphism is an example of an lc-trivial fibration (Definition 6.10); the condition
essentially means the fibers are log Calabi–Yau pairs.

The canonical bundle formula, proven in increasing generality in [Kod66, Kod68, Fuj86, Kaw98, FM00,
Amb04,Amb05,FG14b], implies that for an lc-trivial fibration, we can write

KY +∆ ∼Q f
∗(KX +BX +MX)

where:

• BX is the boundary divisor, which is a Q-divisor encoding the singularities of the degenerate fibers
of f in codimension 1; and

• MX is the moduli part, which is a Q-b-divisor which is b-nef and encodes the variation of the generic
fiber of the family.

Recall that a b-divisor is essentially an assignment of a divisor to any sufficiently high birational model of
X. In particular, there is a modification π : X ′ → X and an lc-trivial fibration model f ′ : Y ′ → X ′ of the
base-change of f for which MX′ is a nef Q-divisor such that for any further modification π′ : X ′′ → X ′ the
moduli part pulls back, MX′′ = π′∗MX′ . Such a model is called an Ambro model.

Our second main result is to prove the b-semiampleness conjecture by Prokhorov and Shokurov [PS09,
Conj. 7.13.1]:

Theorem 1.5 (b-semiampleness). Let f : (Y,∆) → X be an lc-trivial fibration from a pair (Y,∆) such that
∆ is effective over the generic point of X. Then the moduli part M is b-semiample.

Equivalently, MX′ is semiample for any Ambro model f ′ : Y ′ → X ′ of f . Note that the algebricity
of Y and X can be dropped. Indeed, in Theorem 7.3, we show the b-semiampleness of the moduli part
for projective morphisms of complex analytic spaces. Some immediate applications of the b-semiampleness
conjecture are discussed in §7.2.

On a suitably chosen alteration of X, the moduli part coincides with the Schmid extension of the lowest
Hodge filtration piece of the variation of Hodge structures on middle cohomology of the generic part of the
family; see §6.3.3 Thus, after some reductions, Theorem 1.5 is deduced from the following purely Hodge-
theoretic result. By a CY variation of Hodge structures, we mean a variation of Hodge structures whose
deepest nonzero Hodge filtration piece has rank one. We refer to this deepest piece (or its Schmid extension)
as the Hodge bundle.

Theorem 1.6 (Theorem 4.1). Let (X,D) be a proper log smooth algebraic space, V a polarizable integral
pure CY variation of Hodge structures on X\D with unipotent local monodromy, and MX the Hodge bundle
on X. If MX is integrable with torsion combinatorial monodromy, then it is semiample.

The integrability condition (see Definition 2.17) means that for any subvariety Z ⊂ X for which the Hodge
bundle is not big, there is some piece (defined over Q) of the limit mixed Hodge structure variation on Z
which contains the Hodge bundle and whose period map is not generically finite. The torsion combinatorial
monodromy condition (see Definition 2.21) means that for any nodal curve g : C → X for which g∗MX is
numerically trivial (hence torsion on each component), it is in fact torsion. Both conditions are needed in the
statement of Theorem 1.6—see Example 4.6 and Example 4.7—and therefore the proof that the conditions
are satisfied in the case of Theorem 1.5 relies on the geometry of log Calabi–Yau pairs.

3A more algebraic characterization of the moduli part can be given as canonical moduli part of adjunction; see [Sho13, p.4].
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1.2.1. Past work. Kodaira first studied the canonical bundle formula in the context of the classification of
surfaces. In particular, the first instance of the formula is Kodaira’s formula for the canonical bundle of a
smooth minimal elliptic surface S → C [Kod66,Kod68]. Famously, in this case MC = 1

12j
∗OP1(1), where j

denotes the j-map j : C → P1. Later, Fujita extended the formula to smooth varieties admitting an elliptic
fibration [Fuj86]. In the case of elliptic fibrations over higher-dimensional bases, the j-map is not necessarily
a morphism; thus, since Fujita’s work, it became clear that to ensure positivity properties of the Hodge
bundle, one must pass to a suitable higher birational model of the base.

In [Mor87, Rmk. 5.15.9.(ii)], Mori suggested the connection between the Hodge bundle of a family of
Calabi–Yau varieties whose moduli are parametrized by a quotient of a Hermitian symmetric space. Fujino
explored this direction in [Fuj03] and showed that the moduli divisor of an abelian- or K3-fibration is b-
semiample. Fujino’s work has then been extended by Kim to the case of primitive symplectic varieties
[Kim25].

So far, the progress on the b-semiampleness conjecture has been limited. Prokhorov and Shokurov settled
the general case in relative dimension 1 by leveraging knowledge of M0,n [PS09]. Then, the works [Fil20,
ABB+23] settled the conjecture in relative dimension 2, complementing Fujino’s work.

Works of Fujino–Mori and Ambro explored more general lc-trivial fibrations and settled weaker positivity
properties of the moduli divisor; see [FM00, Amb04, Amb05]. While these earlier results only hold for
fibrations with generically klt singularities, Fujino and Gongyo extended these results to fibrations with lc
singularities [FG14b]. The idea of this latter work is to relate the Hodge bundle of the original fibration to
the Hodge bundle of the fibration induced by the source of lc singularities. This is a key idea in the proof of
Theorem 1.5.

In recent years, there has also been progress in the study of lc-trivial fibrations when the general fiber
is not normal; see [Fuj22, FFL22]. In our work, we circumvent this problem by reducing to the fibration
corresponding to minimal lc centers, which are necessarily normal.

Another important idea in this work is the study of the Hodge bundle along the subvarieties where it
fails to be big. This direction has been originally explored in [FL19, Flo23]. In particular, in [Flo23], the
author pursues similar ideas as in this work in considering the gluing of various period morphisms along snc
configurations of subvarieties.

The relation between Baily–Borel compactifications of period images and the b-semiampleness conjecture
has been clear to the experts, including, e.g., Ambro, Birkar, Fujino, Kollár, Mori, Prokhorov, and Shokurov.
In the last decade, these ideas have been popularized by Laza in particular.

1.2.2. Applications. We also prove the existence of a Baily–Borel compactification as in Theorem 1.2 for the
Hodge bundle, but subject to a normality condition.

Theorem 1.7 (Theorem 5.3). Let Y be a reduced separated normal Deligne–Mumford stack with a polarizable
integral pure CY variation V . Assume that the Hodge bundle MY is strictly nef, integrable, and has torsion

combinatorial monodromy. Let Y be the coarse space of Y and M
(m)
Y the descent of some power of MY .

Then

(1) The ring CY :=
⊕

kH
0
mg(Y,M

(mk)
Y ) is finitely generated, and Y BBH := ProjCY is a normal projective

compactification of Y for which the ample bundle OY BBH(n) (for sufficiently divisible n) restricts to

M
(n)
Y .

(2) For a log smooth algebraic space (Z,DZ) and any morphism g : Z\DZ → Y, the morphism on coarse
spaces extends to g : Z → Y BBH and g∗OY BB(n) is identified with the Schmid extension (Mn

Z\DZ
)Z .

Moreover, Y BBH is the unique normal compactification of Y for which some power of the Hodge

bundle M
(n)
Y extends to an ample line bundle and satisfies this property.
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Experts, including Kollár and Shokurov, conjectured that the moduli part of an lc-trivial fibration should
be the pullback of an ample Q-divisor along a rational map to a compactified moduli space of the general
fibers, as in the case of elliptic fibrations; see, e.g. [Kol07, §8.3.8] and [Sho13]. The compactification Y BBH

accomplishes it from a Hodge-theoretic viewpoint.
As a corollary, we prove the existence of a Hodge-theoretic compactification of the moduli space of

smooth Calabi–Yau varieties on which the Hodge line bundle extends amply, which was conjectured by
several authors, including, e.g., Odaka, Laza and Shokurov.

Corollary 1.8 (see Corollary 7.8). Let Y be a moduli stack of polarized smooth Calabi–Yau varieties. Then

the coarse space Y has a unique normal compactification Y BBH for which some power M
(n)
Y of the Hodge

bundle of the variation of Hodge structures on middle cohomology extends to an ample bundle OY BBH(n) and
such that for any family g : Z\DZ → Y for a log smooth algebraic space (Z,DZ), the map on coarse spaces
extends to g : Z → Y BBH with the property that g∗OY BBH(n) pulls back to (Mn

Z\DZ
)Z .

As in Theorem 1.2, the compactifications from Theorem 1.7 and Corollary 1.8 are stratified by varieties
which are naturally equipped with CY variations with quasifinite period maps, so their codimension can
be estimated from the numerics of the limit mixed Hodge structure—see Section 7.3.1. In fact, along
codimension one strata, these variations are the transcendental part of the middle cohomology of the minimal
lc center, or source; in general, they are obtained by iterating this procedure. In [Sho13, p.5], Shokurov
predicted that the image of this compactified moduli map can be described in terms of the equivalence
relation determined by having crepant birational sources; this seems plausible for Y BBH, albeit only up to
finite ambiguity, but we do not pursue this here. More on the Hodge theory of sources will appear in [Laz25].
The smoothness assumption in Corollary 1.8 may be dropped at the expense of taking the normalization of
the coarse space Y—see Corollary 7.8. It would be interesting to compare the compactification Y BBH with
the conjectural compactification in [Oda22, Conj. B.1].

Note that in the classical case where Y is a Shimura variety, we may form both Y BB and Y BBH, and
there is no difference between them. Indeed, for any level ≤ 2 polarizable variation of Hodge structures V
with Hodge bundle FmVO, the Griffiths bundle of V is a power of the Hodge bundle of

∧
rkFmVOV , since

FmVO ∼= (grm−2
F VO)

∨ implies detFmVO ∼= detFm−1VO as Fm−2VO = VO has trivial determinant. This also
applies to the variation on middle cohomology for a family of surfaces. In general, for instance, for many
moduli spaces of higher-dimensional Calabi–Yau varieties as in Corollary 7.8, they can be different—see
Section 7.3.2. There is however always a morphism Y BB → Y BBH.

We deduce a version of the Borel extension theorem for both Y BB and Y BBH:

Theorem 1.9 (Theorem 5.5). Let Y be as in Theorem 1.2 (resp. Theorem 1.7), and Y BB (resp. Y BBH)
its Baily–Borel compactification with respect to the Griffiths (resp. Hodge) bundle. Then any analytic
morphism (∆∗)k → Y an for which (∆∗)k → Γ\D is locally liftable extends to a morphism ∆k → Y BB,an

(resp. ∆k → Y BBH,an).

A version of Borel extension showing that any holomorphic map (∆∗)k → Y an to a period image4 satisfying
the local liftability extends meromorphically with respect to any compactification was proven by Deng [Den23]
and also follows directly from the definability of the period map [BKT20] (see the proof of Theorem 5.5).

Lastly, Theorem 1.5 has applications to foundational statements in the MMP. Among others, it allows
one to descend lc singularities along lc-trivial fibrations and to formulate adjunction and inversion thereof
for arbitrary lc centers. For the precise statements, we refer the reader to §7.2.

4In fact, to a variety admitting a complex variation of Hodge structure with period map with discrete fibers.
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1.3. Proof outline. In the classical case, Baily–Borel’s proof [BB66] first builds the quotient space Y BB

set-theoretically as a union of Shimura varieties, then endows it with a sheaf of analytic functions provided
by certain modular forms, and upgrades this to an algebraic structure using GAGA. In this more general
setting, a quotient space Y BB which is stratified by period images may be constructed5, and each stratum
is algebraic by [BBT23a]. On the one hand, there are algebraic sections of the Griffiths bundle on strata
which separate points but are not “Hodge-theoretic” since they ultimately come from algebraic geometry
rather than universally on Γ\D, so it is not clear how to lift them to a neighborhood of a stratum. On the
other hand, analytic “Hodge-theoretic” sections may be constructed locally in Y BB around any particular
stratum, but their behavior off of that stratum is unclear. In particular, it is not clear there are enough such
sections locally at a point of a stratum to separate points in a larger stratum specializing to it.

We blend these two perspectives and work inductively, adding strata one at a time, starting with the
highest-dimensional stratum, showing (i) that the resulting space is a definable analytic space, and (ii)
using definable GAGA [BBT23a] to algebraize it. Furthermore, we show this procedure can be carried out
in general for a CY variation V given the hypotheses in Theorem 1.6, so the proofs of Theorem 1.2 and
Theorem 1.6 are intertwined. Step (i) is achieved by the methods of [BBT23a, Theorem 5.4] combined with
the construction of “Hodge-theoretic” sections which exist definably locally on the stratum using a certain
part of the period map of the stratum which lifts to a neighborhood.

A more precise summary is as follows:

(1) We start with a proper log smooth algebraic space (X,D) equipped with a variation of Hodge struc-
tures V on X\D. The algebraic space X comes equipped with a natural locally closed stratification
{XΣ}. We also form an auxiliary CY variation E on X\D with Hodge bundle MX :

(Thm 1.2) We take E = SymN Griff(V ) for an appropriate N , so MX is the Nth power of the
Griffiths bundle of V .

(Thm 1.6) We take E = V .

(2) We define a proper algebraic equivalence relation R on X and show that we may modify (X,D) so
as to make R as nice as possible. This allows us to construct a quotient space Z as a (definable)
topological space with an induced stratification {ZT }.

(Thm 1.2) Let Y be the image of the period map associated to V . The closure of the equivalence
relation on X\D defining the map X\D → Y , together with the relation of being
connected by curves of degree 0 with respect toMX , generates an equivalence relation
R on X.

(Thm 1.6) We take R to be the relation of being connected by curves of degree 0 with respect
to MX .

Both of these relations must be proven to be algebraic.

(3) Each stratum XΣ of X is naturally equipped with a variation of mixed Hodge structures EΣ coming
from the part of the limit mixed Hodge structure which is invariant under local monodromy. There
is a smallest subquotient Etr

Σ containingMX , which is a pure variation, and a smallest quotient Emin
Σ

containing MX , which is a mixed variation. We naturally have Etr
Σ ⊂ Emin

Σ , and the underlying local
systems Etr

Σ,Q, E
min
Σ,Q extend to a tubular neighborhood XΣ ⊂ TX(Σ) ⊂ X.

The full period map X̃Σ → DΣ of Etr
Σ , where X̃Σ is the minimal cover on which Etr

Σ is trivialized,

factors through some Z̃T but does not lift to T̃X(Σ). We show that the map X̃Σ → P(Emin
Σ,C,x)

obtained by only remembering MX ⊂ Emin
Σ will: (i) have the same fibers along X̃Σ, and (ii) lift

5Although there are some subtleties—see Lemma 3.4, where we must use Lemma 2.20.
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to T̃X(Σ). This construction provides the definable analytic “Hodge-theoretic” sections described
above definably locally on Z and crucially uses the fact that we are working with a CY variation,
which is why even in the case of Theorem 1.2 it is important to consider the auxiliary CY variation
E. It is also in this step that, in the case of Theorem 1.6, we use the integrability to ensure (i) and

the torsion combinatorial monodromy condition to ensure that X̃Σ → P(Emin
Σ,C,x) has compact fibers.

(4) Proceeding inductively, we algebraize larger and larger unions of strata. Suppose U ⊂ Z is an
open union of strata and ZT ⊂ U a stratum which is closed in U such that U ′ := U\ZT has been
algebraized. To algebraize U , we first use [BBT23a, Theorem 5.4] to produce global sections of a
power of MX which separate fibers of X → Z over U ′. Combining these with the sections of MX

coming from (3) which exist definably locally on ZT and separate points on ZT , we obtain a definable
analytic projective embedding definably locally on U (using the compactness of the fibers of the map
in (3)), and the definable analytic structures of the images glue to give a definable analytic structure
on U . This then gives an algebraic structure on U by [BBT23a, Theorem 1.3] to which a power ofMX

descends to a line bundle M
(m)
U by definable GAGA which is moreover ample by [BBT23a, Theorem

5.4] again. By induction, the quotient map X → Z is algebraic and a power of MX descends to an

ample bundle M
(m)
Z on Z.

(5) This completes the proof of Theorem 1.6, and Theorem 1.7 easily follows since in this case the
algebraic structure on Z may be taken to be normal. In the case of Theorem 1.2, having equipped
Z with some algebraic structure compactifying Y and such that (a power of) the Griffiths bundle
LY extends to an ample bundle which pulls back to LX , it is now an easy noetherianity argument
to show that BY is finitely generated and its Proj gives a compactification satisfying the properties
in Theorem 1.2.

Theorem 1.7 is easier than the corresponding parts of Theorem 1.2 because of the normality assumption.
Indeed, in this case, the quotient map X → Z may be assumed to have connected fibers, so it admits a
preferred algebraization for which the morphism is a fibration, and this algebraic structure is determined by
the underlying topology. In reality, we first prove Theorem 1.7, deduce Theorem 1.2 for the normalization
of Y from it, and then prove Theorem 1.2 for Y itself, as it simplifies the argument. The descent along the
normalization is delicate and critically uses the fact that E comes from V via the Griff(−) construction.

Finally, the b-semiampleness conjecture (Theorem 1.5) follows from Theorem 1.6, provided we verify
that a “geometric” Hodge bundle, i.e., coming from an lc-trivial fibration f : (Y,∆) → X, is automatically
integrable with torsion combinatorial monodromy. To this end, we explore the geometric significance of these
two conditions.

(6) The key geometric input is the notion of source of an lc-trivial fibration, roughly the smallest stratum
of (Y,∆) dominating the base; see Definition 6.9 for the formal definition, and cf. also [Kol13, §4.5].
We study how the moduli part of f : (Y,∆) → X restricts to a prime divisor DX ⊂ X. Up to an
alteration of the base, we identify the restriction to DX of the moduli part of f with the moduli part
of the source (S,∆S) → DX of the restricted lc-trivial fibration (Y,∆)×DX

X → DX .
(7) The integrability of the Hodge bundle follows from the fact that the variation of the source is maximal

if and only if its Hodge bundle is big; cf. [Amb05].
(8) The torsion combinatorial monodromy is a consequence of the isotriviality of lc-trivial fibrations with

torsion moduli part (over a normal base) due to [Amb05], and the finiteness of b-representations,
proved in increasing level of generality by [NU73,Fuj00,Gon13,HX16,FG14a]. The latter gives that
the group Bir(F,∆F ) of crepant birational automorphisms of the general fiber (F,∆F ) of (S,∆S) →
DX acts finitely on H0(F, ω

[m]
F (m∆F )) for m≫ 1. Now, to check torsion combinatorial monodromy,
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consider a testing nodal curve C → X such that the moduli part vanishes on each irreducible
component of C. Up to some technical reductions, the sources of the pullback family YC → C are
isotrivial families along each irreducible of C, connected by crepant birational automorphisms of their
fibers over the nodes of the C by Kollár’s theory of P1-linking [Kol13, §4.4]. Hence, the monodromies
of multiples of the Hodge bundle factor through the finite b-representations of Bir(F,∆F ), which
entails the torsion of the combinatorial monodromy.

1.4. Paper outline. The paper is organized as follows.

(§2) We recall the variations of (monodromy invariant) limiting mixed Hodge structures one obtains from
a variation V on each stratum of a log smooth space (X,D), and introduce their transcendental
and CY-minimal quotient pieces. We define the integrability and torsion combinatorial monodromy
conditions and explain why both conditions are satisfied in the case of the Griffiths bundle. The
latter is a result of [GGR25].

(§3) We discuss the algebraicity of equivalence relations of Hodge-theoretic nature as in (2) of the proof
outline. We also prove some lemmas regarding refinement of log smooth spaces with respect to these

data. Finally, we construct the maps X̃Σ → P(Emin
Σ,C,x) from (3) of the proof outline.

(§4) We prove the semiampleness statement in Theorem 1.2 (i.e. Corollary 1.3) and Theorem 1.6 as in
(4) of the proof outline.

(§5) We deduce Theorem 1.7 and prove Theorem 1.2 as in (4) and (5) of the proof outline. We also prove
the Borel extension result Theorem 1.9.

(§6) We recall the notion of moduli part and source of an lc-trivial fibration. We compare the variation
of Hodge structures associated to them, and we make some preliminary reductions for the proof of
Theorem 1.5.

(§7) Using the preparations from §6, we verify the integrability and torsion combinatorial monodromy
conditions for the moduli part to deduce Theorem 1.5. Then we discuss applications of the b-
semiampleness conjecture in birational geometry (§7.2) and for the moduli theory of log Calabi–Yau
pairs (§7.3).

Notation.

• Throughout, analytic spaces, definable analytic spaces, and algebraic spaces are always taken over
C and to be separated. Algebraic spaces are always of finite type over C.

• By a log smooth algebraic space or snc pair (X,D) we mean the datum of a smooth algebraic space
X together with a divisor D ⊂ X with simple normal crossings.

• Throughout by a fibration we mean a proper morphism f : X → Y between normal spaces such that

the pullback map OY

∼=−→ f∗OX is an isomorphism.
• CY variations play the central role in the paper, so we refer to them by the letter V in §2-4,6 and
typically use the letter L for the Hodge bundle. In the case of Theorem 1.2 where the relevant CY
variation is obtained by the Griff(−) construction, we refer to the original variation as origV , so
V = Griff(origV ). Most of §5 is devoted to the Griffiths case, so we once again reserve L for the
Griffiths bundle and use M for the Hodge bundle.

Acknowledgements. We would like to thank Harold Blum, Yohan Brunebarbe, Philip Engel, Christo-
pher D. Hacon, Giovanni Inchiostro, Radu Laza, Yuji Odaka, Colleen Robles, Vyacheslav V. Shokurov, and
Roberto Svaldi for useful mathematical discussions. We thank Oberwolfach Research Institute for Math-
ematics (MFO), the Hausdorff Institute for Mathematics in Bonn (HIM), and the American Institute of
Mathematics (AIM) for providing a supportive research environment.
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2. Hodge-theoretic preliminaries

2.1. Definable analytic spaces. We shall use the notion of definable analytic spaces from [BBT23a] freely.
As in the majority of that paper, we shall only ever work with the o-minimal structure Ran,exp. For the
convenience of the reader, we reproduce here the three main results from [BBT23a] we will be using.

Theorem 2.1 (Definable GAGA, [BBT23a, Theorem 1.4]). Let X be an algebraic space and Xdef the
associated definable analytic space. The definabilization functor Coh(X) → Coh(Xdef) is fully faithful,
exact, and its essential image is closed under subobjects and quotients.

Theorem 2.2 (Definable images, [BBT23a, Theorem 1.3]). Let X be an algebraic space and ϕ : Xdef → Z
a proper morphism of definable analytic spaces. Then there is a factorization

Xdef Z

Y def
fdef

ϕ

ι

where f : X → Y is a proper dominant6 morphism of algebraic spaces and ι : Y def → Z is a closed embedding
of definable analytic spaces. Moreover, f is uniquely determined as a morphism with fixed source.

Setup 2.3. Let LY be a line bundle on an algebraic space Y with the following property. For every reduced
closed subspace Z ↪→ Y and any proper log smooth algebraic space (X,D) with a proper birational morphism
π : X\D → Z, the pullback LX\D := π∗LZ of the restriction LZ extends to a nef and big line bundle LX on
X. Moreover, for any two such (X,D), (X ′, D′) and a morphism g : (X ′, D′) → (X,D) with π ◦ g|X′\D′ = π′

we have g∗LX ∼= LX′ .

Definition 2.4. Assume Setup 2.3. Given a closed subscheme Z ↪→ Y , we say a section s of LnZ vanishes at
the boundary if for some (hence any) (X,D) as above the section s pulls backs and extends to a section of
LnX(−D). We let H0

van(Z,L
n
Z) ⊂ Γ(Z,LnZ) denote the linear subspace of sections vanishing at the boundary,

which is finite-dimensional as H0
van(Z,L

n
Z) injects into H

0(X,LnX).

Theorem 2.5 ([BBT23a, Theorem 5.4]). Assume Setup 2.3. Then Y is a scheme and LY is an ample line
bundle. Moreover, for every n ≫ 1, the natural morphism Y → P(H0

van(Y,L
n
Y )

∨) is defined everywhere and
is a locally closed embedding.

Finally, the following notions will be useful; see [BBT24, §3] for more details.

Definition 2.6. For a definable analytic space X with a choice of basepoint x ∈ X , a definable analytic space

P admitting an action of π1(X , x) by definable analytic automorphisms, and a covering space X̃ → X an, we

say a π1(X , x)-equivariant analytic morphism ϕ : X̃ → Pan is π1-definable analytic if its restriction to any
continuous lift of a definable open U ⊂ X is definable analytic. A π1-definable analytic coherent sheaf E on

X̃ is an analytic coherent sheaf which is equipped with the structure of a definable analytic coherent sheaf
on any such lift U , compatibly with respect to intersections and the π1(X , x) action. It is clear that this is
equivalent to a definable analytic coherent sheaf on X .

Observe that if X is a definable topological space and X̃ a covering space, a π1(X, x)-equivariant sheaf of

C-algebras O on X̃ (with respect to covers pulled back from X), which is the structure sheaf of a definable
analytic space on any continuous lift of a definable open subset of X, is equivalent to a definable analytic
space structure on X.

6Here we mean “scheme-theoretically” dominant, that is, X → Y is surjective on points and OY → f∗OX is injective.
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2.2. Trivializing covers of local systems. For a local system V on an analytic space X, we denote by

X̃V → X the minimal covering space of X on which V is trivialized—that is, the cover corresponding to
the quotient of π1(X,x) given by the monodromy representation π1(X,x) → GL(Vx) for some choice of

basepoint x. If the analytic space is Xan for an algebraic space X, we denote the cover by X̃V (as opposed

to X̃an
V
).

2.3. DR-neighborhoods. Let X be a definable topological space. For any locally closed definable topo-
logical space Z, we say that a neighborhood Z ⊂ TX(Z) ⊂ X is a DR-neighborhood of Z if it has a strong
deformation retraction onto Z.

Lemma 2.7. Let X be a definable topological space, i : Z → X the inclusion of a locally closed definable
subspace, j : X\Z → X the inclusion of the complement, T(Z) := TX(Z) a DR-neighborhood of Z, and E
a local system on X\Z. For any subsheaf GZ ⊂ i∗j∗E which is a local system, there is a unique subsheaf
G(Z) ⊂ j∗E|T(Z) which is a local system for which i∗G(Z) = GZ .

Proof. Without loss of generality, we may assume that both Z and X\Z are connected and nonempty, and
X = T(Z). Take z ∈ Z. For any x ∈ X\Z, pick a path γ such that γ(0) = z, γ(1) = x, γ((0, 1]) ⊂ X\Z,
and define Gγ(Z)x ⊂ Ez to be the space of elements which are the restriction of a section of j∗E(U) on any
neighborhood U containing γ.

We claim this is independent of γ. To see this, suppose γ′ is another such path. Since X strongly
deformation retracts onto Z, there is a loop γ0 in Z based at z such that γ and γ′′ := γγ0 are homotopic (as
paths from z to x), and it suffices to replace γ′ with γ′′. Thus we may assume there is a homotopy H between

γ and γ′ such that H
(
(0, 1] × [0, 1]

)
⊂ X\Z. Then by continuing along H we see that Gγ(Z)x = Gγ

′
(Z)x.

We thus obtained a well-defined local system G(Z) ⊂ E, and it is clear that G(Z) extends to a subsheaf of
j∗E as required. □

If (X,D) is a log smooth algebraic space and Z ⊂ X a connected component of an intersection of
irreducible components of D, we may take TX(Z) to have the property that the retraction preserves D and
that the resulting map TX(Z) \D → Z strongly deformation retracts onto a torus fibration.

2.4. Griffiths and Hodge bundles. Let (X,D) be a proper log smooth algebraic space. For a complex
local system VC on (X\D)an we denote by VO the algebraic flat vector bundle on X\D (with regular
singularities) corresponding to VC via the Riemann–Hilbert correspondence, so (VO,∇)an ∼= (VOan ,∇) :=
(O(X\D)an ⊗VC, d⊗1). We denote by (V,∇) the Deligne extension of (VO,∇), that is, the unique logarithmic
flat vector bundle on (X,D) whose analytification extends the flat vector bundle (VOan ,∇) whose residues
have eigenvalues with real part contained in (−1, 0]. If j : X\D → X is the inclusion, we have a natural
inclusion jan∗ VC ↪→ Van.

Definition 2.8. Let (X,D) be a proper log smooth algebraic space. Let (VC, F
•VO) be a graded polarizable

admissible mixed complex variation of Hodge structures on X\D and (V, F •V) its Deligne/Schmid extension
to X. We say (VC, F

•VO) is a CY variation if the deepest nonzero part of the Hodge filtration FmVO ∼=
grmF VO has rank one, in which case we call L = FmV ∼= grmF V the Hodge bundle.

We will need a version of the transcendental part of a CY variation.

Definition 2.9. Let (X,D) be a proper log smooth algebraic space and V = (VQ,W•VQ, F
•VO) an admissible

graded polarizable rational mixed variation of Hodge structures on X\D. Let FmVO ̸= 0 be the smallest
nonzero piece of the Hodge filtration and assume rkFmVO = 1.

(1) There is a unique minimal quotient V → V min in the category of rational mixed variations for which
grmF V

min
O ̸= 0, which factors through all other such quotients. We refer to V min as the CY-minimal

quotient.
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(2) There is a unique minimal subvariation U ⊂ V with grmF UO ̸= 0 which we call the CY-minimal
subobject. We don’t introduce notation for the CY-minimal subobject.

(3) The CY-minimal subobject of the CY-minimal quotient of V is canonically identified with the CY-
minimal quotient of the CY-minimal subobject of V ; we call it the transcendental part V tr. It is
naturally identified with the smallest Hodge substructure V tr ⊂ grWk V for which grmF V

tr ̸= 0, where
k is the unique weight with grmF grWk V ̸= 0.

Note that if V is a graded polarizable mixed Hodge structure with deepest nonzero Hodge filtration piece
FmVC of rank 1, there is a unique k such that grmF grWk VC ̸= 0. Then V → V min factors through the quotient
V/Wk−1V , U ⊂WkV , and V tr is both the lowest weight subobject of V min and the highest weight quotient
of U . Moreover, V tr is simple, since WkV

min is a pure polarizable Hodge structure.
For a polarizable rational pure variation V which is not necessarily CY with deepest nontrivial Hodge

filtration piece FmVO, we will sometimes refer to V tr ⊂ V as the smallest rational subvariation for which
FmV tr = FmV .

Lemma 2.10. Let V be a graded-polarizable rational mixed Hodge structure such that the smallest nonzero
piece FmVC of the Hodge filtration has rkFmVC = 1. Let V → V min be the CY-minimal quotient and
V tr ⊂ V min the transcendental part. Then

Aut(V min) ↪→ Aut(V tr) ↪→ Aut(grmF VC) = Aut(grmF V
min
C ) = Aut(grmF V

tr
C )

via the restriction maps, where the first two groups are automorphisms in the category of rational mixed
Hodge structures and the last three are automorphisms in the category of vector spaces.

Proof. For any f in the kernel of either of the above two restriction maps, ker(f− id) is a Hodge substructure
with grmF ker(f − id) = 0, which must therefore be trivial. □

In the general context of variations of Hodge structures, we will pass to a certain CY variation whose
Hodge bundle detects variation in any filtration piece of the original variation.

Definition 2.11. Let (X,D) be a proper log smooth algebraic space. Let origV = (origVZ, F
•
origVO) be a

polarizable pure integral variation of Hodge structures on X\D. We define

V =
⊗
p

∧rkFp
origVO

origV .

It is a polarizable integral pure CY variation of Hodge structures which has unipotent local monodromy if

origV does. We refer to the Hodge bundle L =
⊗

p detF
p
origV of V as the Griffiths bundle of origV .

2.5. Boundary variations. Let (X,D) be a proper log smooth algebraic space. After a modification,
we may assume the irreducible components of D are smooth, and that the intersection of any number of
irreducible components of D is connected (though possibly empty). We call such a space a proper strictly
log smooth algebraic space.

Note that the set of irreducible components of D is naturally identified with π0(D
reg) by taking clo-

sure. Moreover, by the above assumption, any component of the natural locally closed stratification of X
induced by D can be uniquely characterized by which irreducible components of D they are contained in,
or, equivalently, the dual complex of D is simplicial. Thus, we make the following definition: for any subset
Σ ⊂ π0(D

reg), we take XΣ :=
⋂
E∈ΣE\

⋃
E/∈ΣE.

Let V = (VZ, F
•VO) be a polarizable integral pure variation of Hodge structures of weight w on X∅ =

X\D. We collect here the various variations one obtains on the strata by degenerating; see, for example,
[PS08] for background.
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2.5.1. For each stratum XΣ there is:

• A DR-neighborhood XΣ ⊂ TX(XΣ) =: T(Σ) in the sense of Section 2.3. Set T∗(Σ) := T(Σ)\D.
• For each E ∈ Σ, there is a globally defined nilpotent operator NE : VQ|T∗(Σ) → VQ|T∗(Σ) given by the

logarithm of the unipotent part of the local monodromy around E. Indeed, there is a dense Zariski
open set U ⊂ X meeting XΣ on which every divisor in Σ has a local defining equation. If T(U ∩XΣ)
is a bundle over U ∩XΣ with fiber (∆∗)Σ, then we have a commutative diagram with exact rows

(2.1)

1 π1((∆
∗)Σ) π1(U ∩ T∗(Σ)) π1(U ∩ T(Σ)) 1

π1((∆
∗)Σ) π1(T

∗(Σ)) π1(T(Σ)) 1

where the top row is split by the defining equations. Hence, the meridian winding around E is central
in π1(T

∗(Σ)), and so NE intertwines the monodromy representation of VQ|T∗(Σ).
• Associated to the local monodromy logarithms {NE}E∈Σ there is a weight filtration W (Σ)•VQ|T∗(Σ)

on VQ|T∗(Σ) for which each NE is degree −2. Each one has a natural saturated integral structure
which we denote W (Σ)•VZ|T∗(Σ).

• The Hodge filtration F •VO extends to a locally split filtration F •V of the Deligne extension V.
• The restriction of Deligne extension V|T(Σ) is naturally filtered by sub-logarithmic flat vector bundles
W (Σ)•V|T(Σ) which are the Deligne extensions of the local systems W (Σ)•VQ|T∗(Σ). There are
natural flat morphisms NE : V|T(Σ) → V|T(Σ) with degree −2 with respect to W (Σ)•V|T(Σ).

2.5.2. If we further suppose VZ has unipotent local monodromy, then:

• Each gr
W (Σ)
k VZ|T∗(Σ) extends as a local system to T(Σ). We somewhat abusively denote the extension

by gr
W (Σ)
k VZ.

• Define

V (Σ)Q|T∗(Σ) := coker

(
⊕E∈ΣNE :

⊕
E∈Σ

VQ|T∗(Σ) → VQ|T∗(Σ)

)
which has a natural integral structure V (Σ)Z|T∗(Σ) coming from the image of VZ|T∗(Σ), and a natural
filtration W•V (Σ)Q|T∗(Σ) coming from the image of W (Σ)•VQ|T∗(Σ). Then V (Σ)Z|T∗(Σ) (together
with its filtration) extends to V (Σ)Z on T(Σ).

Observe that grWk V (Σ)Q is naturally identified with the primitive part of gr
W (Σ)
k VQ with respect

to the (simultaneous) hard Lefschetz decomposition with respect to the maps NE : gr
W (Σ)
k VQ →

gr
W (Σ)
k−2 V (Σ)Q for E ∈ Σ.

• The graded pieces gr
W (Σ)
k V|T(Σ) of the Deligne extension have connection with no residue and are

identified with the Deligne extensions of gr
W (Σ)
k VZ. The same is true for

V (Σ)O := coker

(
⊕E∈ΣNE :

⊕
E∈Σ

V|T(Σ) → V|T(Σ)

)
.

• VΣ := (V (Σ)Z|XΣ
,W•V (Σ)Q|XΣ

, F •V (Σ)O|XΣ
) is an admissible graded polarizable integral variation

of mixed Hodge structures.

2.5.3. If finally V is a CY variation with unipotent local monodromy and Hodge bundle FmVO, then:

• For each Σ there is a unique integer kΣ such that grmF grWkΣ VΣ ̸= 0. Then grWkΣ VΣ is a CY variation

with Hodge bundle Fm grWkΣ VΣ.
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• We denote by VΣ → V min
Σ the CY-minimal quotient of VΣ and by V tr

Σ the transcendental part of VΣ
in the sense of Definition 2.9. Note that V tr

Σ is also the transcendental part of grWkΣ VΣ. Note also

that even on the stratum Σ = ∅ where X∅ = X\D and V∅ = V , the transcendental part V tr
∅ and

the CY-minimal quotient V min
∅ (which is equal to V tr

∅ ) may be strictly smaller than V .

• For a single point x ∈ X, there is a unique XΣ containing x and we define V min(x) (resp. V tr(x)) as
the CY-minimal quotient (resp. the transcendental part) of the mixed Hodge structure VΣ,x. Note
that at a very general point x ∈ XΣ(C) we simply have V tr(x) = V tr

Σ,x and V min(x) = V min
Σ,x .

• The restriction of the Schmid extension of the Hodge bundle FmVO to XΣ is naturally identified
with the Schmid extension of the Hodge bundle of each of the following:

gr
W (Σ)
kΣ

V |XΣ

VΣ

grW≥kΣ VΣ := VΣ/WkΣ−1VΣ

grWkΣ VΣ

V tr
Σ .

Indeed, all of the above constructions are compatible on the level of filtered logarithmic flat vector
bundles.

• After choosing a very general basepoint xΣ ∈ XΣ, we thereby obtain a period map

ϕtrΣ : X̃Σ

Vtr
Σ,Q → Ď(V tr

Σ,C,xΣ
)an

associated to V tr
Σ , where Ď(V tr

Σ,C,xΣ
) is a flag variety of filtrations on V tr

Σ,C,xΣ
.

• When V arises from a general variation origV as in Definition 2.11, and assuming the local monodromy
of origV is unipotent, we further define origV

gr
Σ to be the graded polarizable integral mixed variation

with underlying local system origV
gr
Σ,Z =

⊕
k gr

W (Σ)
k origVZ|XΣ

. For x ∈ XΣ we take origV
gr(x) =

origV
gr
Σ,x.

• We let V ∨ denote the dual variation to V . We may canonically identify

V (Σ)Q|∨T∗(Σ) := ker

(
⊕E∈ΣN

∨
E : V ∨

Q |T∗(Σ) →
⊕
E∈Σ

V ∨
Q |T∗(Σ)

)
⊂ j∗(V

∨
Q )|T∗(Σ)

and thus V (Σ)∨Q ⊂ j∗(V
∨
Q )|T(Σ).

• Moreover, we have a subvariation V min,∨
Σ := (V min

Σ )∨ ⊂ V ∨
Σ , which is the smallest subvariation which

pairs non-trivially with grmF VΣ, and likewise V tr,∨
Σ is the highest graded piece of V min,∨

Σ . Note that

the Hodge bundle of V tr,∨
Σ is Fm−kΣV tr,∨

Σ .

Lemma 2.12. (1) The local system V min,∨
Σ,Q is the restriction of a local system V min,∨(Σ)Q on T(Σ),

which is naturally a subsheaf of V |T(Σ) consisting of flat sections. The fibers of V min,∨(Σ)Q,x at a
point x ∈ T∗(Σ) consist of all elements sx ∈ V∨

x which extend to a flat section s along any contractible

subset U ⊂ T(Σ) whose restriction to XΣ lands in V min,∨
Σ,Q . Moreover, it is sufficient to check this

condition for a single contractible U which non-trivially intersects XΣ.
(2) If Σ ⊂ Σ′, we have the containments V min,∨(Σ′)Q ⊂ V min,∨(Σ)Q within T(Σ) ∩ T(Σ′).

Proof. For (1), first note that V min,∨
Σ,Q extends as a subsheaf of j∗V

∨
Q |T(Σ) by Lemma 2.7, and hence as a

subsheaf of (V∨)an |T(Σ) since j∗V
∨
Q ⊂ (V∨)an. Moreover, the image of any section of j∗V

∨
Q is flat. Finally,

it is clear by our construction that any element of V min,∨(Σ)Q,x extends along any contractible set U to
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a section, and the fiber along XΣ ∩ U will land in V min,∨
Σ,Q . To see that it is sufficient to consider a single

contractible open set U which intersects XΣ, note that any such U gives a canonical identification of stalks
which preserves the restrictions of global flat sections.

For (2), first note that the Deligne extension of V min,∨
Σ,Q along XΣ′ is naturally a flat subbundle of V∨|XΣ

whose restriction to XΣ′ underlies a rational subvariation of Hodge structures with gr−mF ̸= 0 hence contains

V min,∨
Σ′,Q . It is clear that V (Σ′)∨Q ⊂ V (Σ)∨Q on T(Σ) ∩ T(Σ′). Now take a contractible U ⊂ T(Σ′) which

intersects XΣ′ (and therefore also XΣ). Let x ∈ T(Σ)∩U\D be a point whose path-component in T(Σ)∩U
meets XΣ. By (1) any element of V min,∨(Σ′)Q,x extends to a flat global section s over U . By the above, the

restriction s |XΣ
is contained in V min,∨

Σ,Q , so by (1) again the conclusion follows. □

2.6. The CY-minimal quotient. Let (X,D) be a proper strictly log smooth algebraic space and V =
(VZ, F

•VO) a polarizable integral pure CY variation on X\D with unipotent local monodromy. By [BBT23a],
for any Σ ⊂ π0(D

reg) we may consider the factorization of the period map of V tr
Σ

Xdef
Σ Y def

Σ ΓΣ\DΣ
fdef
Σ ψΣ

where fΣ is dominant with geometrically connected general fiber, YΣ is normal, and ψΣ is finite. Note that
fΣ does not depend on ΓΣ as it is the Stein factorization of any relative compactification of any period map
associated to V tr

Σ . If the monodromy of V tr
Σ is neat, then V tr

Σ is pulled back from a variation on YΣ, say
V tr
Σ = f∗ΣU . Recall that V tr

Σ is the lowest weight piece of the CY-minimal quotient VΣ → V min
Σ , that is,

V tr
Σ =WkΣV

min
Σ .

Lemma 2.13. Assume the monodromy of VZ is neat. There is a dense open subset Y ◦
Σ ⊂ YΣ such that,

setting X◦
Σ = f−1

Σ (Y ◦
Σ), we have that V min

Σ |X◦
Σ
is pulled back from a local system on Y ◦

Σ .

Proof. Let Y ◦
Σ ⊂ YΣ be a dense open set for which the fibers of fΣ are smooth and fΣ is a topological

fibration. As the fibers are connected, it suffices to show V min,∨
Σ is trivial on a very general fiber Z of fΣ over

Y ◦
Σ . The connection yields a morphism grm−kΣ

F V min,∨
Σ → grm−kΣ−1

F V min,∨
Σ ⊗ΩZ and we have a commutative

diagram

grm−kΣ
F W−kΣ−1V

min,∨ grm−kΣ
F V min,∨

Σ grm−kΣ
F V tr,∨

Σ

0 = grm−kΣ−1
F W−kΣ−1V

min,∨
Σ ⊗ ΩZ grm−kΣ−1

F V min,∨ ⊗ ΩZ grm−kΣ−1
F V tr,∨

Σ ⊗ ΩZ

∼=

0

where the bottom left vanishing follows from the fact that Fm grW>kΣ V
min
Σ = 0, so V min

Σ has no Hodge

weight (p, q) piece for p ≥ m and p + q > kΣ, hence V
min,∨
Σ has no Hodge weight (p, q) piece for q ≤ −m

and p + q < −kΣ, and in particular for p = m − kΣ − 1. Thus, the middle vertical morphism vanishes,
and Fm−kΣV min,∨

Σ is flat on Z. It is therefore isomorphic as a flat bundle to grm−kΣ
F V tr,∨

Σ , hence has

trivial monodromy. By the theorem of the fixed part [And92], the fixed part H0(Z, V min,∨
Σ ) comes from

a sub-variation of mixed Hodge structures which contains the Hodge bundle, hence (VΣ|Z)min,∨ has trivial

monodromy. Since Z is a very general fiber, we have (VΣ|Z)min,∨ = V min,∨
Σ |Z , and this proves the claim. □
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Corollary 2.14. Assume the monodromy of VZ is neat. For each stratum Σ we have a commutative diagram

(2.2)

T̃◦(Σ)
V tr
Σ,Q|T◦(Σ)

P(V min
Σ,C,x(Σ))

an

X̃◦
Σ

V tr
Σ,Q|X◦

Σ Ď(V tr
Σ,C,xΣ

)an P(V tr
Σ,C,xΣ

)an

ρ(Σ)

ϕtr
Σ

where T◦(Σ) is a DR-neighborhood of X◦
Σ as in Lemma 2.13. Here, the bottom right horizontal map is the

forgetful map which only remembers the Hodge line, the right vertical map is obtained from the inclusion
V tr
Σ ↪→ V min

Σ , and the top map is obtained by taking the image of the Hodge bundle FmV under the natural
morphism of logarithmic flat bundles

V|T◦(Σ) → V min(Σ)O|T◦(Σ)

where V min(Σ)O|T◦(Σ) is the flat bundle associated to the extension of the local system V min
Σ,Q |X◦

Σ
to T◦(Σ).

Proof. The above composition is full rank on FmV in restriction to XΣ and this is an open condition. □

Remark 2.15. The analysis of the differential in Lemma 2.13 (in the case of the Griffiths bundle) is related
to the “infinitesimal period relation” of [GGR25, §2,4]. The flat connection on the Griffiths bundle in tubular
neighborhoods of numerically Hodge-trivial subvarieties constructed therein is obtained by the trivializing
sections pulled back via the map ρ(Σ) of Corollary 2.14.

2.7. Integrability. In the following for a stratum Σ ⊂ π0(D
reg) we define DΣ :=

⋃
E/∈ΣE|XΣ

to be the

natural log smooth divisor of XΣ.

Lemma 2.16. Let (X,D) be a proper log smooth algebraic space and V = (VC, F
•VO) a CY polarizable

complex variation of Hodge structures on X\D with unipotent local monodromy. Let L = FmV be the Hodge
bundle, that is, the Schmid extension of FmVO.

(1) L is nef.
(2) The Schmid extension of any power (FmVO)

k is naturally identified with the same power Lk of the
Hodge bundle.

(3) For any proper log smooth (Y,DY ) and morphism g : (Y,DY ) → (XΣ, DΣ), the pullback of the Hodge
bundle g∗L is naturally identified with the Hodge bundle of the pullback g|∗Y \DY

V tr
Σ .

Proof. Part (1) is as in [BBT23a, Lemma 6.15]. Parts (2) and (3) follow from the fact that the Deligne
extension is functorial with respect to pullbacks and tensor operations if the local monodromy is unipotent.

□

Definition 2.17. Let (X,D) be a proper log smooth algebraic space and V = (VC, F
•VO) a polarizable

complex CY variation of Hodge structures on X\D with unipotent local monodromy with Deligne/Schmid
extension (V, F •V). We say the Hodge bundle L = FmV is integrable if, after replacing (X,D) with a
strictly log smooth modification, for any irreducible proper strictly log smooth (Y,DY ) with a morphism
g : (Y,DY ) → (XΣ, DΣ) which is generically finite onto its image, g∗L is big whenever either of the following
equivalent conditions is satisfied:

(1) The Griffiths bundle of the transcendental part of the pullback (g|∗Y \DY
V tr
Σ )tr is big.

(2) The period map of the transcendental part of the pullback (g|∗Y \DY
V tr
Σ )tr on Y \DY is generically

immersive.
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Concretely, this means that if g∗L is not big, then some subvariation of the pullback g|∗Y \DY
V tr
Σ containing

the Hodge bundle is isotrivial on a curve through the generic point of Y .

Remark 2.18. It is proven in [BBT23a] that the Griffiths bundle is semiample on X\D. The same is
proven for the Hodge bundle of a CY variation whenever the Kodaira–Spencer map on the Hodge bundle is
immersive. The strategy of Section 4 can be used to prove the Hodge bundle of a CY variation is semiample
on X\D if it is integrable (on X\D) in the above sense.

Lemma 2.19. Let (X,D) be a proper log smooth algebraic space and (origVC, F
•
origVO) a polarizable complex

variation of Hodge structures on X\D with Deligne/Schmid extension (origV, F •
origV). Set

V :=
⊗
p

∧rkFp
origVO

origV .

Then:

(1) For any subvariety Y ⊂ XΣ with YΣ := Y ∩XΣ ̸= ∅, the following are equivalent:
(a) The Hodge bundle of V is big in restriction to Y .
(b) The Griffiths bundle of V is big in restriction to Y .

(2) The Hodge bundle of V is integrable.

Proof. For (1), (a) ⇒ (b) since the Griffiths bundle is the sum of the Hodge bundle and a semipositive
line bundle. For the converse, recall that the Griffiths bundle is ample on the image of a period map, by
[BBT23a]. Thus, if the Hodge bundle of V (which is the Griffiths bundle of origV ) is not big, then origV is
isotrivial on a curve through the general point, as therefore is V , so the Griffiths bundle of V is not big. (2)
is an immediate consequence, since if the Hodge bundle of V is not big in restriction to Y , (origV )Σ is again
isotrivial on a curve through the generic point of Y , as therefore is a part of VΣ which contains the Hodge
bundle. □

2.8. Unpolarized Hodge structures. Let M be the Mumford–Tate group of a polarizable integral pure
Hodge structure (VZ, F

•VC), D the M(R)-orbit of F •VC in the flag variety of filtrations on the vector space
VC, and M(Z) ⊂ M(Q) the subgroup stabilizing the lattice induced by VZ in a chosen faithful representation
of M. The following generalizes a result of Narasimhan–Nori [NN81] in the case of abelian varieties and
Huybrechts [Huy18, Cor 1.8] in the case of hyperkähler varieties.

Lemma 2.20. For any x ∈ M(Z)\D, there are finitely many points x′ ∈ M(Z)\D for which the associated
integral Hodge structures V (x), V (x′) are isomorphic.

Proof. In [NN81], this claim is proven for Abelian varieties, and the same proof works in this more general
context. We reproduce the proof for the ease of the reader.

First, note that M(Z)\D has a finite map to a usual period space Aut(VZ, Q)\D′ corresponding to a choice
of polarized lattice (VZ, Q), and so it is enough to work with the latter space.

Next, consider the algebra B = End(V (x)) of unpolarized Hodge endomorphisms. Since polarizable
Hodge structures are a semisimple category, it follows that BQ is a semisimple algebra over Q. Moreover,
the polarization gives an involution θ of BQ. Letting G be the algebraic group B× we see that θ gives
an involution G → Gop. We shall prove that V (x) admits only finitely many orbits of polarizations of
discriminant disc(Q) for the action of G(Z), which will prove the lemma.

Let P be the set of polarizations of V (x). There is a natural injection ι : P → BQ given by ι(Q′) :=
ϕ−1
Q ◦ ϕQ′ where ϕQ′ : V (x) → V (x)∨. Note the ι(P ) is contained in a minimal lattice F ⊂ Bθ=1. There is

a natural action of G on Bθ=1 given by π(g)s := θ(g−1) ◦ s ◦ g−1 for which ι is equivariant, and for which
G(Z) preserves F .
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Finally, let F1 := {f ∈ Bθ=1
C | deg(f) = 1}. As in [NN81, Lemma 3.1]7 the orbits of GC on F1 are finite

in number and closed. The result now follows by [Bor62, Thm 6.9]. □

2.9. Combinatorial monodromy. For any proper algebraic space X, a torsion line bundle L has a canon-
ical flat connection: if LN ∼= OX , then the local flat sections are those sections s for which sN extends to
a global section. Equivalently, there is a finite étale cover π : X ′ → X for which π∗L ∼= OX′ , and the flat
connection on L is inherited from the trivial connection on X ′ whose flat sections are global sections.

If X is now a nodal curve with normalization νX : X ′ → X and L a line bundle for which ν∗XL is torsion,
L has a canonical flat connection whose local flat sections are sections s whose restriction to Xreg are flat
with respect to the above connection on L|Xreg , or equivalently those for which ν∗Xs is flat.

Definition 2.21. LetX be a proper algebraic space with a line bundle L. We say L has torsion combinatorial
monodromy if for every proper nodal curve C and morphism g : C → X for which (g ◦ νC)∗L is torsion, the
canonical flat connection on g∗L has torsion monodromy.

2.9.1. Torsion combinatorial monodromy of the Griffiths bundle. Thanks to a result of [GGR25], the Griffiths
bundle always has torsion combinatorial monodromy.

Theorem 2.22 (Green–Griffiths–Robles [GGR25, Theorem 5.22]). Let (X,D) be a proper log smooth alge-
braic space and origV = (origVZ, F

•
origVO) a polarizable integral pure variation of Hodge structures on X\D

with unipotent local monodromy. Then the Griffiths bundle has torsion combinatorial monodromy.

We give a slight generalization below. We say the Hodge bundle of a CY variation has norm one combi-
natorial monodromy if the monodromy of the canonical connection on any Hodge degree 0 nodal curve acts
by a character of complex norm one.

Lemma 2.23. Let (X,D) be a proper log smooth algebraic space and (VZ, F
•VO) a polarizable integral pure

CY variation of Hodge structures on X\D with unipotent local monodromy. If the Hodge bundle has norm
one combinatorial monodromy, then it has torsion combinatorial monodromy.

Proof. For any connected nodal curve g : C → X with Hodge degree 0, the pointwise transcendental parts
V tr(g(c)) form an isotrivial simple not-necessarily-polarizable integral pure variation of Hodge structures
V tr(C) which is polarizable on each irreducible component. It suffices to show V tr(C) is polarizable, which
is a consequence of the following:

Claim 2.24. Let U = (UZ, F
•UC) be a simple polarizable integral pure CY Hodge structure with deepest

Hodge filtration piece FmUC and γ a Hodge automorphism of UZ which acts with norm one eigenvalues on
FmUC. Then γ preserves any polarization q on U ; in particular, it is torsion.

Proof. Following the proof of [GGR25], consider

q − γ∗q : UQ → U∨
Q (−w)

where w is the weight of U . For v ∈ FmUC, if γv = αv with |α|2 = 1 then we have q(v, v) = |α|2q(v, v) =
q(γv, γv). On the other hand, for u ∈ UC with no Hodge component in FmUC, the same is true for γu, and
thus q(v, u) = 0 = q(γv, γu). Thus, v ∈ ker(q− γ∗q). But ker(q− γ∗q) ⊂ UQ is then a nonzero sub-Q-Hodge
structure of UQ which must be all of UQ since UQ is simple. □

□

7This lemma uses only that (BQ, θ) is an involutive semisimple algebra.
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Theorem 2.22 follows from Lemma 2.23 as follows. Let L be the Griffiths bundle of origV . As in the
proof of Lemma 2.23, for any connected Griffiths degree 0 curve g : C → X, we obtain a well-defined
isotrivial integral mixed variation origV

gr(C) which is graded polarizable on each irreducible component. Set
Ek := grWk origV

gr(C). The polarization q of origV gives a global isomorphism Ew+k
∼= E∨

w−k(−w) where w
is the weight of origV . We also have global isomorphisms F pEk ∼= F k−p+1Ek for all p and k. Thus,

F pEw+k
∼= (Ew−k/F

w−p+1Ew−k)
∨ ∼= F p−kEw−k

∨
.

If Lk is the Griffiths bundle of Ek, then it follows that Lw+k
∼= Lw−k

∨
, and since g∗L =

⊗
k Lk, we have

g∗L ∼= g∗L
∨
. Thus, g∗L is conjugate-self dual, and hence the induced character of the π1(C) action on L is

norm 1.
For later, we record the following consequence of the argument:

Lemma 2.25. For any x ∈ X, the Griffiths line of origV
gr(x) is canonically conjugate self-dual.

3. Quotient spaces

3.1. Equivalence relations. Let X be a proper algebraic space, and let R ⊂ X(C) × X(C) be a closed
reflexive symmetric constructible relation and let pi : R→ X(C) be the two projections. Then

R+ := (p1 × p2)(R p2×p1R) ⊂ X(C)×X(C)
is also a closed reflexive symmetric constructible relation, which on the level of points is defined by x ∼+ y
if x ∼ z ∼ y for some z. Note that if for some constructible U ⊂ X(C) we have

R+ ∩ (U ×X(C)) = R ∩ (U ×X(C))
then we also have

(R+)+ ∩ (U ×X(C)) = R ∩ (U ×X(C)).
In this case, we say the R-related classes of U are stable. There is a maximal constructible subset U ⊂ X(C)
whose R-related classes are stable, given by U = X(C)\p+1 (R+\R).

The equivalence relation generated by a closed, reflexive, symmetric, constructible relation R is obtained
by setting R0 = R and letting Rj+1 = (Rj)

+. Then Rj is the relation of being connected by a chain of
2j R-equivalences, and Re :=

⋃
j Rj is the smallest equivalence relation containing R. By the above, there

is a maximal constructible Uj ⊂ X(C) whose Rj-related classes are stable, and the Uj form an increasing
sequence of subsets of X.

Lemma 3.1. Let X be a proper algebraic space and R ⊂ X(C) × X(C) a closed reflexive symmetric con-
structible relation. Then there is a closed constructible subset ∆ ⊂ X(C) such that:

(1) Every x ∈ X(C) with non-constructible Re-equivalence class is contained in ∆.
(2) The set of points x ∈ ∆ with constructible Re-equivalence class is contained in a countable union of

nowhere dense constructible subsets of ∆.

Proof. By the above, the Re-equivalence class of x is a union of the Rj-related classes Cj of x, which form
an increasing sequence of constructible subsets. If

⋃
j Cj is constructible, then it must stabilize, Cj =⋃

j Cj , for some j. In the above notation, let ∆j = X(C)\Uj . Then the ∆j form a decreasing sequence of

constructible subsets, hence the closures ∆j stabilize to ∆, and ∆ ∩
⋃
j Uj is a countable union of nowhere

dense constructible subsets of ∆. □

Remark 3.2. For any algebraic space X and proper constructible equivalence relation R ⊂ X(C)×X(C),
the quotient X(C)/R exists in the category of definable topological spaces and we will always mean it as such.
Note that X(C)/R can also be endowed with a Zariski topology, which is the quotient topology obtained
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by endowing X(C) with the Zariski topology. If q : X(C) → X(C)/R is the quotient, then for any closed
constructible Z ⊂ X(C) its saturation q−1(q(Z)) ⊂ X(C) is closed constructible, either by definable Chow
or because it is identified with p2(R ∩ p−1

1 (Z)).

3.2. Hodge-theoretic equivalence relations. Let (X,D) be a proper log smooth algebraic space and
(VZ, F

•VO) a polarizable integral pure CY variation on X\D with unipotent local monodromy and integrable
Hodge bundle L. There are several natural equivalence relations on X(C).

3.2.1. We define Rtr ⊂ X(C) ×X(C) to be the equivalence relation defined by x ∼tr y if V tr(x) ∼= V tr(y)
as (unpolarized) integral pure Hodge structures.

3.2.2. We define Rcurve ⊂ X(C) × X(C) to be the equivalence relation defined by x ∼curve y if there is a
proper connected curve g : C → X with x, y ∈ g(C) for which deg g∗L = 0. For any irreducible component
C0 of such a curve, and XΣ the unique stratum containing the generic point of C0, the transcendental part
of V tr

Σ restricted to C0 ∩ XΣ is isotrivial. It follows that the pointwise transcendental parts V tr(g(c)) for
c ∈ C form an isotrivial not-necessarily-polarizable variation of integral pure Hodge structures V tr(C) over
C which is polarizable in restriction to each irreducible component. In particular, Rcurve ⊂ Rtr.

Lemma 3.3. The Hodge bundle L = FmV has torsion combinatorial monodromy if and only if for any
proper curve g : C → X with deg g∗L = 0, the isotrivial variation V tr(C) has finite monodromy.

Proof. Let c ∈ C be a basepoint. Since V tr(g(c)) = V tr(C)c is simple, a Hodge automorphism is trivial if
and only if it is trivial on the component grmF V

tr(C)c. □

Lemma 3.4.

(1) For any connected constructible subset Z of a Rtr-equivalence class, the closure Z is contained in an
Rcurve-equivalence class.

(2) If a Rtr-equivalence class is constructible, then it is closed and its connected components are Rcurve-
equivalence classes.

(3) For any point x ∈ X(C) for which V tr(x) is maximal rank, the Rtr-equivalence class of x is con-
structible.

(4) For any closed reflexive symmetric constructible relation R ⊂ X(C)×X(C) for which Rcurve ⊂ Re ⊂
Rtr, R

e is a closed constructible equivalence relation whose equivalence classes are finite unions of
Rcurve-equivalence classes.

Proof. For (1), if a Rtr-equivalence class contains a constructible set Z, then for any proper connected
curve C ⊂ X whose generic point is contained in Z, V tr(C) as above is isotrivial, so C is contained in a
Rcurve-equivalence class, hence C ⊂ Z. Thus Z is contained in a Rcurve-equivalence class. Part (2) follows
immediately from (1).

For (3), let x ∈ X(C) be such a point and Z its Rtr-equivalence class. Then for any z ∈ Z ∩ XΣ,
V tr(x) = V tr

Σ . Applying Lemma 2.20, Z ∩XΣ is constructible, hence Z is.
For (4), by Lemma 3.1 there is a closed constructible ∆ ⊂ X(C) such that outside a countable union

of nowhere dense constructible subsets Ξ ⊂ ∆, each R-equivalence class is non-constructible. However
applying (3) to (a resolution of) each irreducible component ∆0, each Rtr|∆0

-equivalence class in ∆0 of
maximal rank transcendental part is constructible, as therefore is any Rtr|∆-equivalence class in ∆ of maximal
rank transcendental part. If ∆ were nonempty, there would then be a point x ∈ ∆\Ξ of maximal rank
transcendental part, hence constructible Rtr|∆-equivalence class Z. By (2), Z is partitioned into finitely
many constructible Rcurve-equivalence classes, hence also into finitely many constructible Re-equivalence
classes. This is a contradiction, so ∆ = ∅. □
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3.3. Properties of stratifications. Let (X,D) be a proper strictly log smooth algebraic space and V =
(VZ, F

•VO) a polarizable integral pure CY variation on X\D with unipotent local monodromy. As in
Section 2.6, again consider the period map of V tr

Σ

Xdef
Σ Y def

Σ ΓΣ\DΣ.
fdef
Σ ψΣ

Note that some power of the Hodge bundle naturally descends to YΣ. Recall that by the Griffiths criterion,

fΣ : XΣ → YΣ extends to a proper map f̆Σ : X̆Σ → YΣ where X̆Σ is the union of strata obtained from XΣ

by deleting divisors E along which V tr
Σ has nontrivial monodromy.

Property 3.5. Let (X,D) be a proper strictly log smooth algebraic space and V = (VZ, F
•VO) a polarizable

integral pure CY variation on X\D with unipotent local monodromy. Let R be an algebraic equivalence
relation on X(C) such that Rcurve ⊂ R ⊂ Rtr. We define the following property of a boundary component
Σ ⊂ π0(D

reg).

(B1) For any irreducible curve C ⊂ XΣ whose closure C ⊂ XΣ has degree 0 with respect to the Hodge
bundle, C is contained in a fiber of fΣ.

Under the assumption that the monodromy of VZ is neat, we consider the following properties.

(B2) The open set Y ◦
Σ ⊂ YΣ from Lemma 2.13 is all of YΣ.

(B3)R For any other stratum XΣ′ , every irreducible component of R |XΣ×XΣ′ is surjective onto XΣ.

We say (X,D) satisfies (B1), (B2), or (B3)R if every boundary stratum does so. For R = Recurve we simply
write (B3) with no subscript.

(B1) is equivalent to the Hodge bundle being strictly nef on YΣ, i.e., on a log smooth compactification of
a resolution, the extended Hodge bundle has positive degree on any curve meeting the interior. For the next
lemma, observe that for proper log smooth algebraic spaces (X,D), (X ′, D′) and a morphism π : X ′ → X
with π−1(D) ⊂ D′, strata map to strata. Indeed, the inverse image of any closed stratum XΣ =

⋂
E∈ΣE is

a union of closed strata ⋂
E∈Σ

π−1(E) =
⋂
E∈Σ

⋃
E′∈π0(D

′reg)

π(E
′
)⊂E

E
′
.

Lemma 3.6. Consider a relation R as above satisfying (B1-2). Let R1 = R ∩XΣ ×XΣ′ and let R0 ⊂ R1

be an irreducible component.

(1) If R0 is not dominant over XΣ, then it is not dominant over YΣ.
(2) If R0 is dominant over XΣ, then the complement of its projection XΣ\πXΣ(R0) is not dominant over

YΣ.

Proof. Note that for a general y ∈ YΣ, the fiber f−1
Σ (y) is equidimensional of dimension dimXΣ − dimYΣ.

Since Rcurve ⊂ R, it follows that there is a relation S ⊂ YΣ×YΣ′ such that R1 is the pullback of S. By (B1),
and since R ⊂ Rtr is an algebraic equivalence relation, it follows that S is quasifinite over YΣ. Since R0 is an
irreducible component of R1 it follows that it is an irreducible component of f−1

Σ,Σ′(S0) for some irreducible
component S0 ⊂ S.

For (1), assume that R0 is dominant over YΣ. Then for a general y ∈ YΣ, for (y, y′) ∈ S0 we must have
that the fiber R0,(y,y′) of R0 over (y, y

′) is an irreducible component of f−1
Σ (y)×f−1

Σ′ (y′), and hence dominates

an irreducible component of f−1
Σ (y). Thus R0 dominates a subset of XΣ of dimension dimXΣ, and hence is

dominant over XΣ as desired.
For (2), assume that R0 is dominant over XΣ. Then it is also dominant over YΣ, and so just like the

above it follows that πXΣ
(R0) contains an irreducible component of f−1

Σ (y) for a generic y ∈ YΣ. Since XΣ
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is irreducible it follows that πXΣ
(R0) in fact contains all of f−1

Σ (y) for a generic y ∈ YΣ, which implies the
claim. □

Lemma 3.7. Let (X,D) be a proper log smooth algebraic space and V = (VZ, F
•VO) a polarizable integral

pure CY variation on X\D with unipotent local monodromy, and integrable Hodge bundle L.

(1) Let (X ′, D′) be a proper strictly log smooth algebraic space and π : X ′ → X a modification with
π−1(D) ⊂ D′. If XΣ satisfies (B1) (resp. (B2)), the so does any stratum mapping to XΣ.

(2) There is a proper strictly log smooth algebraic space (X ′, D′) and a modification π : X ′ → X with
π−1(D) ⊂ D′ such that (X ′, D′) satisfies (B1). If the monodromy of VZ is neat, then we may take
(X ′, D′) to satisfy (B2) and (B3)R′ , where R′ is the pullback of R to X ′.

Proof. The first part is clear, since if X ′
Σ′ maps to XΣ, then V

′tr
Σ′ and V ′min

Σ′ are naturally the pullbacks of
V tr
Σ and V min

Σ .
For the second part, we may assume (X,D) is strictly log smooth. For each stratum Σ ⊂ π0(D

reg), by
the integrability assumption, the Hodge bundle is big on a log smooth compactification Y 0 of a resolution
Y0 of YΣ. Thus, there is a closed strict subvariety Z ⊂ YΣ containing all subvarieties for which the Hodge
bundle is not big on a log smooth compactification of a resolution, namely the image in YΣ of the non-big
locus of the Hodge bundle in Y 0. Let π : X ′ → X be an embedded log resolution of the preimage f−1

Σ (Z),
and let D′ be the union of the (reduced) exceptional divisors and the reduction of π−1(D). Then for any
stratum X ′

Σ′ of (X ′, D′) mapping to XΣ, the non-big locus of the Hodge bundle of Y ′
Σ′ has strictly smaller

dimension, and the stratum mapping to XΣ\f−1
Σ (Z) satisfies (B1). By induction on the dimensions of the

non-big locus in the period image using (1), it follows that for each Σ there is a proper log smooth (X ′′, D′′)
and a modification σ : X ′′ → X with σ−1(D) ⊂ D′′ for which every stratum mapping to XΣ satisfies (B1).
We may find a proper log smooth (X ′′′, D′′′) with a modification τ : X ′′′ → X with τ−1(D) ⊂ D′′′ which
factors through the modification X ′′ → X we thereby construct for each Σ, and again using (1) it follows
that (X ′′′, D′′′′) satisfies (B1).

The claim for (B2) follows by the same argument, except in the argument from the previous paragraph,
we take Z ⊂ YΣ to be the complement of Y ◦

Σ .
We prove the final claim for (B3)R by descending induction on the dimension of YΣ, the base case being

trivial. Thus, assume the condition holds for any Σ ⊂ π0(D
reg) with dimYΣ > k, and consider a stratum Σ

with dimYΣ = k. Suppose that there are strata XΣ′ such that there are components of R |XΣ×XΣ′ whose
projections are not surjective onto XΣ. For each such component R0, let Z0 be its projection to XΣ if it
is not dominant onto XΣ, and the complement in XΣ of its projection if it is dominant. Let Z ⊂ XΣ be
the union of the closures of all of these Z0s (as R0 ranges over all components), and now pass to a log

resolution of f−1
Σ (fΣ(Z)). By Lemma 3.6, it follows that only strata with period image of dimension strictly

smaller than k are produced. On the other hand, the stratum above XΣ\f−1
Σ (fΣ(Z)) now satisfies (B3)R.

Continuing in this way, we are done by induction. □

3.4. The quotient by Rcurve. Suppose (X,D) satisfies Property (B1) and for each stratum Σ let fΣ :
XΣ → YΣ be the period map introduced therein. Define

RΣ := XΣ ×YΣ
XΣ ⊂ XΣ ×XΣ

and

Rper =
⋃

Σ⊂π0(Dreg)

RΣ(C) ⊂ X(C)×X(C)

which is a closed, reflexive, symmetric, constructible relation on X. Denote Reper the equivalence relation it
generates.
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Lemma 3.8. Suppose that VZ has neat monodromy and (X,D) satisfies Property (B1). Then Rcurve = Reper.

Proof. Rcurve ⊂ Reper is immediate from Property 3.5, so it suffices to prove Rper ⊂ Rcurve. For any point
(x, y) ∈ Rper, there is a smooth curve g : C → RΣ for some Σ containing (x, y) in the closure of its image.
This means we have two maps C ⇒ XΣ with the same composition to YΣ. The base-change (XΣ)C then
admits two sections and has geometrically connected generic fiber. There is therefore a surface S ⊂ (XΣ)C
flat over C containing the two sections whose generic fiber is geometrically connected. There is then a proper
surface S flat over C compactifying S/C with a map S → X extending the map S → X such that the fibers
of S/C are connected and one of of these fibers F has image in X containing both x and y. The Hodge
bundle has degree 0 on F since it does so on the generic fiber of S/C, so x ∼curve y. □

Corollary 3.9. Let (X,D) be a proper log smooth algebraic space and V = (VZ, F
•VO) a polarizable integral

pure CY variation on X\D with unipotent local monodromy and integrable Hodge bundle L. Then Rcurve is
a closed constructible equivalence relation on X(C).

Proof. According to Lemma 3.7 there is a modification π : X ′ → X such that (X ′, D′) satisfies Property (B1)
with respect to the pullback variation. The relation Rcurve on X(C) is clearly the image of the corresponding
relation on X ′(C), so the claim follows from Lemma 3.4(4) and Lemma 3.8. □

3.5. Hodge strata. Let (X,D) be a proper strictly log smooth algebraic space and V = (VZ, F
•VO) a

polarizable integral pure CY variation on X\D with unipotent local monodromy and integrable Hodge
bundle. Let R ⊂ X(C)×X(C) be a closed algebraic equivalence relation with Rcurve ⊂ R ⊂ Rtr and assume
(X,D) satisfies Property (B3)R. Then for any strata Σ,Σ′ ⊂ π0(D

reg), there exist x ∈ XΣ and x′ ∈ XΣ′

such that x ∼R x′ if and only if for every point x ∈ XΣ there is a point x′ ∈ XΣ′ such that x ∼R x′. Thus,
the saturation of any stratum XΣ with respect to R is a union of strata.

Definition 3.10. In the above situation, we say Σ ∼R Σ′ if there are points x ∈ XΣ, x
′ ∈ XΣ′ with x ∼R x′.

We refer to an equivalence class S ⊂ P (π0(D
reg)) with respect to this relation, as well as XS :=

⋃
Σ∈S XΣ,

as an R-stratum. We refer to Rcurve-strata as Hodge strata.

Lemma 3.11. In the above situation, suppose (X,D) satisfies Properties (B1-3). Then there exists a local
system V min,∨(S)Q ⊂ j∗(V

∨
Q ) |T(S) and a quotient local system V min,∨(S)Q → V tr,∨(S)Q whose restriction to

each T(Σ) for XΣ ⊂ XS agrees with V min,∨(Σ) ⊂ j∗(V
∨
Q ) |T(S) and V min,∨(Σ)Q → V tr,∨(Σ)Q.

Proof. For any union of strata Z, let iZ : Z → X denote the inclusion. By Lemma 2.7, it suffices to show
there is a subsheaf V min,∨

S,Q ⊂ i∗XS
j∗(V

∨
Q ) (resp. a quotient V min,∨

S,Q → V tr,∨
S,Q ) restricting to V min,∨

Σ,Q ⊂ i∗XΣ
j∗(V

∨
Q )

(resp. V min,∨
Σ,Q → V tr,∨

Σ,Q ) for each XΣ ⊂ XS .

Let E ∩XΣ be a boundary component of XΣ in the same Hodge stratum, which means there is a curve
C ⊂ XΣ whose closure meets E ∩ XΣ and is contracted by fΣ. Then by the Griffiths criterion, V tr,∨

Σ and

fΣ extend over E ∩XΣ, as therefore does V min,∨
Σ . Thus, both extend to the closure X̆Σ of XΣ in the Hodge

stratum XS containing XΣ. Call these extensions V tr,∨
X̆Σ

and V min,∨
X̆Σ

; note that the underlying local system

V min,∨
X̆Σ,Q

is naturally a subsheaf of i∗XΣ
j∗(V

∨
Q ).

A subsheaf of i∗XS
j∗(V

∨
Q ) is uniquely determined by subsheaves of i∗Zj∗(V

∨
Q ) for each closed union of

strata Z ⊂ XS which agree on intersections. By Property (B3), any stratum XΣ′ in X̆Σ dominates YΣ,

so i∗XΣ′V
min,∨
X̆Σ,Q

= V min,∨
XΣ′ ,Q , hence there is a subsheaf V min,∨

S,Q ⊂ i∗XS
j∗(V

∨
Q ) restricting to each V min,∨

Σ,Q which is

therefore a local system. Likewise, there is a quotient V min,∨
S,Q → V tr,∨

S,Q restricting to the quotient V min,∨
Σ,Q →

V tr,∨
Σ,Q for each XΣ ⊂ XS , and this completes the proof. □
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By the previous lemma, we obtain the following diagram by projecting the Hodge bundle to V min(S)O
which restricts to the diagram in Corollary 2.14 for every XΣ ⊂ XS , after choosing a path from xΣ to xS .

(3.1)

T̃(S)
V tr(S)Q

P(V min
S,C,x(S))

an =: Pan
S

X̃S

V tr
S,Q Ď(V tr

S,C,xS
)an P(V tr

S,C,xS
)an.

ρ(S)

ϕtr
S

ρS

Proposition 3.12. Let (X,D) be a proper log smooth algebraic space and V = (VZ, F
•VO) a polarizable

integral pure CY variation on X\D with neat monodromy, integrable Hodge bundle L, and (X,D) satisfying
Property (B1-3). For any Hodge stratum S, the morphism ρ(S) from (3.1) is π1-definable analytic as in

Definition 2.6. The pullback of the Hodge bundle to T̃(S)
V tr(S)Q

is naturally identified (as a π1-definable
analytic line bundle) with the pullback of OPdef

S
(1). Finally, if the Hodge bundle has torsion combinatorial

monodromy, then the connected components of the fibers of ρS are identified via the covering map with the
fibers of XS → Y := X(C)/Rcurve. In particular, they are compact.

Proof. The definability is clear by [BM23], as is the statement about the Hodge bundle, so it remains to

prove the statement about the fibers. Let F̃ be a fiber of ρS . Since F̃ is a definable closed subspace which is
π1-stable, by definable Chow it is the inverse image of a closed algebraic F ⊂ XS . The Hodge bundle is flat
along each component of F , and since the boundary satisfies Property (B1), the variation V tr

S,Q is isotrivial

on F . For any irreducible curve C in F and C the closure in X, the local monodromy of V tr
S,Q|C is then

trivial, so C ⊂ XS and therefore C ⊂ F . Thus, F is proper. Clearly F maps to a point in Y; for any

proper connected curve C in a fiber of |X| → Y meeting F , the inverse image in X̃S

V tr
S,Q

is contained in a

fiber of ρS and meets F̃ , hence is contained in F̃ . Thus, C ⊂ F , and F is a full fiber of |X| → Y. Finally,
by Lemma 3.3 and the Lemma 3.13 below, the monodromy of V tr

S,Q|F is finite since the Hodge bundle has
torsion combinatorial monodromy, hence trivial by neatness. It follows that every connected component of

F̃ is a copy of F . □

Lemma 3.13. Let F be a connected algebraic space. Then there is a nodal curve g : C → F such that
g∗ : π1(C

an) → π1(F
an) is surjective.

Proof. Note that an algebraic space is locally contractible, and so it is enough to show that for any point
p ∈ F there exists a contractible neighborhood p ∈ U ⊂ F that the points of U are locally connected via
algebraic curves. To prove this, first note that F locally has an étale cover by a scheme over p, so it is
enough to consider the case of F a scheme. Now, in this case, replacing F with some affine subscheme, we
may assume that F has a finite surjective map to an open subscheme of affine space, and since the pullback
of a curve under a finite map is still a curve, the claim follows. □

3.6. Algebraizations.

Definition 3.14. Let X be an algebraic space, and ϕ : |X| → M be a continuous surjective map of definable
topological spaces. We say ϕ is algebraic with source X (or just algebraic if X is clear from context) if there
exists a morphism of algebraic spaces f : X → Y and an identification M ∼= |Y | such that |f | : |X| → |Y | is
identified with ϕ via this identification.

Note that the algebraic space Y is not unique, but if ϕ is proper with connected fibers, we may require
OY → f∗OX to be an isomorphism, in which case the algebraic space structure on Y is unique.
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Lemma 3.15. Let (X,D) be a proper log smooth algebraic space and V = (VZ, F
•VO) a polarizable integral

pure CY variation on X\D with neat monodromy, integrable Hodge bundle L with torsion combinatorial
monodromy, and (X,D) satisfying Property (B1-3). Let q : |X| → Y := X(C)/Rcurve be the quotient map,
XU ⊂ X an open union of Hodge strata, and U := q(|XU|) the image. If |XU| → U is algebraized by a
fibration fU : XU → YU, then for some k > 0, Lk|XU

= f∗UA for an ample line bundle A on YU. Moreover,
the vanishing sections (in the sense of Theorem 2.5) of some power of A define a locally closed embedding
YU → PN .

Proof. By Proposition 3.12 the line bundle L is trivial on the completion of X along any fiber, hence descends
to LY on YU. For each Hodge stratum XS ⊂ XU, the image YS ⊂ YU is algebraic, and since XS → YS has
connected fibers, the finite part g : Y ′

S → YS of the Stein factorization XS → Y ′
S → YS is a homeomorphism,

and in particular, birational. By Lemma 2.10 the variation V tr
S descends to Y ′

S and has g∗LYS
as its Hodge

bundle. By Lemma 2.16 the Hodge bundle satisfies the requirements of Setup 2.3, so the claim then follows
from Theorem 2.5. □

4. Semiampleness

In this section, we prove the following:

Theorem 4.1. Let (X,D) be a proper log smooth algebraic space, (VZ, F
•VO) a polarizable integral pure CY

variation of Hodge structures on X\D with unipotent local monodromy, and L the Hodge bundle on X. If L
is integrable with torsion combinatorial monodromy, then it is semiample.

We deduce the same statement for the Griffiths bundle, where the integrability and combinatorial mon-
odromy conditions are automatic:

Corollary 4.2. Let (X,D) be a proper log smooth algebraic space, (origV Z, F
•
origV O) a polarizable integral

pure variation of Hodge structures on X\D with unipotent local monodromy, and L the Griffiths bundle on
X. Then L is semiample.

Proof of Corollary 4.2 given Theorem 4.1. Apply Lemma 2.19 and Theorem 2.22. □

Remark 4.3. We remark that both the integrability of the Hodge bundle and the torsion combinato-
rial monodromy condition can clearly be checked after pulling back along a dominant proper morphism
(X ′, D′) → (X,D).

4.1. Proof of Theorem 4.1. The main step in the proof of Theorem 4.1 is the following:

Theorem 4.4. Let (X,D) and V = (VZ, F
•VO) be as in Theorem 4.1. Then the quotient q : |X| → Y :=

X(C)/Rcurve is algebraic.

Proof. We first reduce to the case where the monodromy of VZ is neat. Let L be the Hodge bundle of X.
By adjoining enough level structure, there is a proper log smooth algebraic space (X ′, D′) and a morphism
g : X ′ → X restricting to a finite étale cover g|X′\D′ : X ′\D′ → X\D such that g|∗X′\D′VZ has neat

monodromy and X\D is the quotient of X ′\D′ be a finite fixed-point free group action by G. The finite
part h : X ′′ → X of the Stein factorization of X ′ → X is then the normalization of X in the function field of
X ′, so the group action by G extends to X ′′ and X is the quotient. Thus, there is a norm map from sections
of h∗L to sections of L|G|, so L is semiample if and only if h∗L is, which in turn is semiample if and only if
g∗L is, since X ′ → X ′′ is a fibration. Thus, we may assume the monodromy is neat.

By Lemma 3.7 we may assume (X,D) satisfies Property (B1-3) after replacing (X,D) with a modification.
Each Hodge stratum XS is saturated with respect to the quotient map q, and we therefore obtain a locally
closed (in the quotient Zariski topology) stratification YS := q(|XS |) of Y.



26 B. BAKKER, S. FILIPAZZI, M. MAURI, AND J. TSIMERMAN

Claim 4.5. Let U ⊂ Y be an open union of strata, and XU ⊂ X the open subspace with underlying topological
space q−1(U). Then |XU| → U is algebraic.

We prove the claim by induction, adding one stratum at a time. The base case (the case of the open
stratum) is a consequence of [BBT23a, Theorem 1.1]. For the general case, we may assume there is a stratum
YS ⊂ U which is closed in U and such that, setting U′ = U\YS , |XU′ | → U′ is algebraized by a fibration
fU′ : XU′ → U ′. According to Lemma 3.15, there is a finite-dimensional space of sections of Lk on X which
yields a morphism XU′ → PN ′

which factors as XU′ → U ′ → PN ′
where U ′ → PN ′

is a locally closed
embedding.

Recall that by Corollary 3.9 the quotient U = XU(C)/Rcurve naturally exists in the category of definable
topological spaces [vdD98, Chap. 10, (2.15) Theorem]. Take a DR-neighborhoods XS ⊂ T(S) ⊂ XU,
YS ⊂ TY(S) ⊂ U for which XTY(S) := q−1(TY(S)) ⊂ T(S). By Proposition 3.12, we obtain a π1-definable

analytic morphism ρ(S) : T̃(S)
V tr(S)Q

→ Pan
S . Moreover, the restriction of V tr(S)Q descends to V tr

Y (S)Q on

TY(S) and the restriction of ρ(S) to X̃S

V tr
S,Q

factors through ỸS

V tr
Y,S,Q

. Taking the pullback of the linear
system |OPS

(k)| and combining it with the previous linear system of sections of Lk we obtain a π1-definable
analytic morphism

σ(S) : X̃TY(S)

V tr(S)Q
→ (PN )an

has fibers with compact connected components and the finite part of whose Stein factorization is locally a

closed immersion away from X̃S

V tr
S,Q

. In fact, the connected components of the fibers in X̃S

V tr
S,Q

are identified
with those of the quotient |XU| → U via the covering map since they are contained in the latter by the above,

and every Hodge degree 0 curve in XS lifts to X̃S

V tr
S,Q

and must be contracted. Thus, the topological Stein

factorization of σ(S) is T̃Y(S)
V tr
Y (S)Q

.
As in [BBT24], by definable triangulation, there is a definable cover Ui of TY(S) by contractible open

subsets which therefore lift to T̃Y(S)
V tr
Y (S)Q

. Letting XUi
:= q−1(Ui) ⊂ Xdef be the corresponding open

definable analytic subspaces which lift to X̃TY(S)

V tr(S)Q
, by definable Stein factorization [BBT24, Theorem

1.7] there is a Stein factorization XUi → Ui → (PN )def in the category of definable analytic spaces, and
|Ui| is canonically identified with Ui via the quotient map, by the above. We therefore obtain a definable
analytic space structure on TY(S) for which the quotient map |XTY(S)| → TY(S) underlies a morphism

of definable analytic spaces and is compatible with fdefU′ : Xdef
U′ → U ′def , hence we obtain a morphism of

definable analytic spaces Xdef
U → U which is identified with |XU | → U on the level of definable topological

spaces. By the definable image theorem (Theorem 2.2), this morphism is algebraic, whence the claim. □

Proof of Theorem 4.1. Combine Lemma 3.15 and Theorem 4.4. □

4.2. Examples and counterexamples. The integrability and combinatorial monodromy conditions in
Theorem 4.1 are clearly both necessary. We give some examples showing that neither condition is sufficient
on its own.

Example 4.6. We give an example of a CY variation whose Hodge bundle is integrable but has nontorsion
combinatorial monodromy:

Let F/Q be a real quadratic field with ring of integers OF . Consider the lattice UZ,0 := ResOF /Z O2
F with

q0 := trF/Q⟨ , ⟩ where ⟨ , ⟩ is the standard OF -linear antisymmetric pairing on O2
F . The two embeddings

ι1, ι2 : F → R give embeddings SL2(OF ) → SL2(R), and the Hilbert modular surface X = SL2(OF )\H2

parametrizes Hodge structures on UZ,0 polarized by q0 for which the splitting over R into ι1 and ι2 eigenspaces
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is a decomposition of Hodge structures. Let U = (UZ, F
•UO, q) be the associated polarized variation of

Hodge structures on X. Then ∧2U is a CY variation whose Hodge bundle is the Griffiths bundle of U , hence
semiample.

Equip Z(0)2 with the standard diagonal polarization λ and consider the polarizable integral variation of
Hodge structures

V = Z(0)2 ⊗Z(0) U

on X which is polarized by λ ⊗ q. Let e := e1 + ie2 ∈ C(0)2, which is λ-isotropic, and let UR = U1 ⊕ U2

be the splitting over R into the two eigenspaces. Consider the variation V ′ which has the same underlying
integral local system as V , but the Hodge filtration is changed by shifting:

V ′
O = Ce⊗C (U1)O(2,−2)⊕ C(0)2 ⊗C (U2)O ⊕ Ce⊗C (U1)O(−2, 2).

Since Ce ⊗C U1 is a λ ⊗ q-isotropic sub-C-variation and its conjugate is Ce ⊗C U1, the shift defines a new
C-variation and is still polarized by λ⊗ q. It has the following properties:

(1) V ′ is a polarizable integral pure CY variation with Hodge bundle F 3V ′
O = F 1(U1)O. Thus, its Hodge

bundle is trivial along the leaves of one of the two transcendental foliations of X given by the product
structure on H2, and so the Hodge bundle is not integrable.

(2) After passing to a finite-index Γ ⊂ SL2(OF ), X has a log smooth compactification, the connected
components of whose boundary are cycles of rational curves. The Hodge bundle F 2V ′ is trivial on
each of these curves. The monodromy of UZ in a neighborhood of one of those connected components
is given by upper-triangular matrices (see e.g. [AMRT10, §I.5])(

α β
0 α−1

)
for α ranging over a finite index subgroup of units in OF and β ranging over some ideal class of OF .
The combinatorial monodromy on F 1Uj around the cycle is given by multiplication by ιj(α

2), and
so the Hodge bundle of V ′ does not have torsion combinatorial monodromy (nor does it have norm
one combinatorial monodromy, in accordance with Lemma 2.23).

The CY variation V ′ ⊗ ∧2U then has integrable Hodge bundle, but nontorsion combinatorial monodromy.

Note also that U1 from Example 4.6 shows that the integral structure is important in the statement of
Corollary 4.2, and that a Z-structure is not sufficient.

Example 4.7. We give an example of a CY variation whose Hodge bundle has torsion combinatorial
monodromy (because there is no boundary) but is non-integrable:

We have the following variation of the above example: fixing a degree 4 CM field K/Q, ⟨ , ⟩ the standard
hermitian form on O2

K , and taking VZ,0 := ResOK/Z O2
K with q0 := trK/Q⟨ , ⟩, X parametrizes Hodge struc-

tures on VZ,0 polarized by q0 such that the eigenspaces associated to each embedding K → C are complex
sub-Hodge structures. The variation V ′ is obtained from the resulting variation V by shifting a conjugate
pair of factors in this decomposition.

Fix a degree 2n ≥ 6 CM field K/Q, and a hermitian pairing ⟨ , ⟩ on O2
K which is indefinite in exactly

2 places. Performing the same shifting construction, we obtain a CY variation on a variety X with no
boundary and whose Hodge bundle is not integrable. Moreover, the Hodge bundle in this case is strictly nef
since there are no curves which lift to a fiber of H × H and thus the Hodge bundle vacuously has torsion
combinatorial monodromy.

Remark 4.8. Neither of the variations in Example 4.6 and Example 4.7 is manifestly algebraic, and it
is not clear to the authors whether a geometric polarizable integral pure CY variation automatically has
Hodge bundle which is integrable and has torsion combinatorial monodromy. Of course, Theorem 7.1 and
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Theorem 7.2 below show this is the case for the variation on middle cohomology for a family of K-trivial
varieties.

Example 4.9. In both Theorem 4.1 and Corollary 4.2, the assumption of unipotent local monodromy is
necessary. This can even be seen on the level of local systems with finite monodromy. Let L = OP1(d) and
consider the ruled surface X = P(OP1 ⊕L), which is the total spaces of L and L∨ glued along the canonical
map L\0 → L∨\0 : s 7→ s∨. Let s0, s∞ be the 0 sections of L,L∨, respectively, thought of as sections of
X → P1. Let G = Z/2Z act on X by scaling by ±1, let π : X → Y = G\X be the quotient, and note that
(Y,D) with D := π(s0) + π(s∞) is log smooth. Let VZ = (π∗Z(X\D)an)

− be the local system on (Y \D)an of
anti-invariant locally constant functions on (X\s0 ∪ s∞)an. The local monodromy around each component
of D is ±1, and the Deligne extension V is generated by q−1/2v where v is a flat section and q is a local
defining equation. The pullback π∗V has a global flat section which extends with simple zeroes along s0 and
s∞ as a section of π∗V, so we have π∗V ∼= OX(s0 + s∞). In particular, π∗V|s0 ∼= L and π∗V|s∞ ∼= L∨, so for
d ̸= 0, V is not semiample.

Remark 4.10. There is however a natural modification of a power of the Griffiths bundle which is semiample
when the local monodromy is not unipotent. Indeed, for any polarizable integral pure variation of Hodge
structures V = (VZ, F

•VO) on a log smooth algebraic space (X,D), by adjoining enough level structure
there is a finite cover π : X ′ → X with X ′ normal such that X is the quotient of X ′ by a group action
G and such that V ′ := π∗

X\DV has unipotent local monodromy, where πX\D is the corestriction to X\D.

Taking a log resolution π′ : X ′′ → X, a power L′k of the Griffiths bundle L′ of V ′′ := π′∗
X′\D′V ′ descends

to a line bundle L(k) on X, and using the norm map we deduce that L(k) is semiample. Likewise for the
Hodge bundle, assuming the integrability and combinatorial monodromy conditions (on X). This will be
the natural polarization of the Baily–Borel discussed in the next section.

5. Baily–Borel compactifications of period images

5.1. Preliminaries. Let X be a smooth algebraic space and ϕ : Xan → Γ\D be a period map associated to
a polarizable integral pure variation of Hodge structures, and Γ is any discrete group containing the image of
the monodromy representation. By [BBT23a, Theorem 1.1] (see also [BBT23b, Corollary 2.11]) the closure
of the image is naturally a quasiprojective variety: there is a unique dominant morphism f : X → Y to a
quasiprojective variety Y and a closed immersion ι : Y an → Γ\D such that ϕ = ι ◦ fan. Our goal in this
section is to prove the existence of a canonical compactification Y BB of Y which we call the Baily–Borel
compactification.

The following is a more intrinsic and slightly more general notion than image of a period map. Let Y be
a reduced and irreducible algebraic space with a quasifinite Griffiths transverse8 morphism ϕ : Y an → Γ\D,
where Γ is a discrete group preserving an integral lattice. After passing to a finite morphism f : Y ′ → Y by
adjoining level structure, there will be a polarizable integral pure variation of Hodge structure origV

′ on Y ′

with monodromy contained in Γ, and the period map Y ′ → Γ\D will factor through ϕ. In this situation, it
follows from [BBT23a] that the Griffiths bundle LY is ample on Y . Henceforth, we refer to such a Y as a
“variety with quasifinite period map.”

Now, for general Γ the Griffiths bundle exists on the stack [Γ\D] and a power of it LkΓ[Γ\D] descends to the

coarse space Γ\D. We shall use the notation L
(kΓ)
Γ\D for the descent, as the descent is not necessarily a power

of a line bundle.

Definition 5.1. Let Y be a reduced and irreducible algebraic space with a Griffiths transverse morphism

ϕ : Y → Γ\D. For each non-negative integer n we define H0
mg(Y, L

(nkΓ)
Y ) ⊂ H0(Y,L

(nkΓ)
Y ) to be those sections

8That is, for any resolution Z → Y , Zan → Γ\D is Griffiths transverse.
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s whose Hodge norm |s| grows sub-polynomially at the boundary. We call these the sections of moderate

growth. We define the associated graded ring BY :=
⊕

n≥0H
0
mg(Y, L

(nkΓ)
Y ) with H0

mg(Y,L
(nkΓ)
Y ) given degree

nkΓ.

Note that for any proper log smooth algebraic space (X,D) and dominant morphism π : X\D → Y for
which the composition with the period map ϕ ◦ πan is locally liftable (to D) and such that the induced local

system has unipotent local monodromy, a section s ∈ H0(Y,L
(nkΓ)
Y ) has Hodge norm of moderate growth if

and only if its pullback π∗s extends to a section of the Schmid extension (LnkΓX\D)X of the nkΓ-th power of

the Griffiths bundle LX\D of the pullback variation origVX\D by [Kas85]. Note also that for any morphism
f : (X ′, D′) → (X,D) of proper log smooth algebraic spaces and any polarizable integral pure variation of
Hodge structures origV on X\D, there is always an injection f∗(LkX\D)X → (LkX\D)X of Schmid extensions

of powers of the associated Griffiths bundles. Thus, for any morphism g : Z → Y , we get an induced pullback
map g∗ : BY → BZ .

Our main result is then as follows:

Theorem 5.2. Let Y be a variety with quasifinite period map. Then

(1) BY is finitely generated, Y BB := ProjBY is a projective variety, and the natural morphism j : Y ↪→
Y BB is an open embedding.

(2) There exists a minimal positive kΓ|kY such that locally on Y BB there are sections of L
(kY )
Y whose

Hodge norms and inverse Hodge norms have moderate growth.
(3) For kY |n, OY BB(n) exists as a line bundle and is ample for n positive. The natural inclusion

OY BB(n) ⊂ j∗(L
(n)
Y ) is the subsheaf of sections of moderate growth.

(4) Let (Z,DZ) be a log smooth algebraic space and g : Z\DZ → Y a morphism for which the composition

(Z\DZ)
an gan−−→ Y an → Γ\D is locally liftable. Then g : Z\DZ → Y extends to a morphism g : Z →

Y BB and for kY |n, g∗OY BB(n) is canonically identified with the Schmid extension (LnZ\DZ
)Z of the

nth power of the Griffiths bundle LZ\DZ
of the induced variation origVZ\DZ

on Z\DZ .

We remark that the above properties generalize the construction for Shimura varieties, which is why we
call it the Baily–Borel compactification.

5.1.1. Hodge case. If Y is a variety with quasifinite period map ϕ : Y an → Γ\D and D parametrizes CY

Hodge structures, we may instead consider the Hodge bundleM
(ℓΓ)
Y and likewise define the moderate growth

sections H0
mg(Y,M

(nℓΓ)
Y ) ⊂ H0(Y,M

(nℓΓ)
Y ) and CY :=

⊕
n≥0H

0
mg(Y,M

(nℓΓ)
Y ) with H0

mg(Y,M
(nℓΓ)
Y ) given

degree nℓΓ. Note that in this case M
(ℓΓ)
Y may not be ample.

We say that:

• M
(ℓΓ)
Y is strictly nef if for any nonconstant irreducible smooth curve g : C → Y for which the

composition Can gan−−→ Y an → Γ\D is locally liftable and the resulting variation VC has unipotent
local monodromy, the Schmid extensionMC of the Hodge bundleMC to the smooth compactification

C ⊂ C has positive degree.

• M
(ℓΓ)
Y is integrable (resp. has torsion combinatorial monodromy) if for some (hence any) proper log

smooth algebraic space (Z,DZ) with a proper dominant generically finite morphism g : Z\DZ → Y

for which the composition (Z\DZ)
an gan−−→ Y an → Γ\D is locally liftable and the resulting variation

VZ\DZ
has unipotent local monodromy, the Hodge bundle MZ of VZ\DZ

is integrable (resp. has
torsion combinatorial monodromy).
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Theorem 5.3. Let Y be a normal variety with quasifinite period map to a period space parametrizing CY

Hodge structures. Assume the Hodge bundle M
(ℓΓ)
Y is strictly nef, integrable, and has torsion combinatorial

monodromy in the above sense. Then

(1) CY is finitely generated, Y BBH := ProjCY is a normal projective variety, and the natural morphism
j : Y ↪→ Y BBH is an open embedding.

(2) There exists a minimal positive ℓΓ|ℓY such that locally on Y BBH there are sections of M
(ℓY )
Y whose

Hodge norms and inverse Hodge norms have moderate growth.
(3) For ℓY |n, OY BBH(n) exists as a line bundle and is ample for n positive. The natural inclusion

OY BBH(n) ⊂ j∗(M
(n)
Y ) is the subsheaf of sections of moderate growth.

(4) Let (Z,DZ) be a log smooth algebraic space and g : Z\DZ → Y a morphism for which the composition

(Z\DZ)
an gan−−→ Y an → Γ\D is locally liftable. Then g : Z\DZ → Y extends to a morphism g : Z →

Y BBH and for ℓY |n, g∗OY BBH(n) is canonically identified with the Schmid extension (Mn
Z\DZ

)Z of

the nth power of the Hodge bundle MZ\DZ
of the induced variation VZ\DZ

on Z\DZ .

Moreover, Y BBH is the unique normal compactification of Y for which a sufficiently divisible power

M
(n)
Y extends to an ample line bundle and the above property is satisfied.

Remark 5.4. Assuming the hypotheses of Theorem 5.3, there is a natural morphism Y BB → Y BBH.
This morphism often has positive-dimensional fibers, even on the part of Y BB which maps to Γ\D—see
Section 7.3.2 for an example coming from a moduli space of Calabi–Yau varieties.

5.1.2. Borel extension. We finally prove that the compactifications Y BB and Y BBH satisfy an extension
theorem just like in the classical cases:

Theorem 5.5. Let Y be a variety with quasifinite period map (resp. a variety with quasifinite CY period
map satisfying the hypotheses Theorem 5.3). Then any analytic morphism from a polydisk ϕ : (∆∗)k → Y an

such that the resulting morphism (∆∗)k → Γ\D is locally liftable extends to a morphism ϕ : ∆k → Y BB,an

(resp. ϕ : ∆k → Y BBH,an). Moreover, ϕ
∗OY BB(n)an (resp. ϕ

∗OY BBH(n)an) is canonically identified with the
Schmid extension of Ln(∆∗)k (resp. Mn

(∆∗)k) for kY |n (resp. ℓY |n).

The rest of the section is devoted to the proofs of Theorem 5.2, Theorem 5.3, and Theorem 5.5. We begin
with the following compatibility lemma:

Lemma 5.6. Let (X,D) be a log smooth algebraic space and V a polarizable integral pure variation of
Hodge structures on X\D with unipotent local monodromy. Let f : (X ′, D′) → (X,D) be a morphism of
log smooth algebraic spaces. Then letting LX , LX′ be the Schmid extensions of the Griffiths bundle, we have
f∗LX = LX′ . Moreover, if V is a CY-variation, the same compatibility holds for the Hodge bundles.

Proof. The Lemma follows from the fact that the Deligne extension on (X,D) pulls back to the Deligne
extension on (X ′, D′). Recall that the Deligne extension as the unique extension with residues having
eigenvalues with real part in (−1, 0]. In the case of unipotent monodromy, the eigenvalues are 0, and so the
same follows for the pullback. □

5.2. Reduction to the neat case. We first reduce parts (1), (2), and (3) of Theorem 5.2 and Theorem 5.3
to the case when the variation in question has neat monodromy. The argument is the same in both cases,
so we do it for Theorem 5.2. By adjoining enough level structure, there is a finite morphism π : Y ′ → Y
which is the quotient map for a finite group action G and such that the induced map ϕ′ : Y ′ → Γ\D is the
period map of a variation with neat monodromy. In both cases, the pullback π∗ : BY → BY ′ is the inclusion
of the G-invariant subring, and by the existence of the global norm map it follows that if (1) holds for Y ′,
then it also holds for Y by taking the quotient of Y ′BB by G. The existence of the local norm map implies
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(2) locally, so the set of kY in question is nonempty. The set of all integral kY satisfying (2) clearly form
a (nontrivial) group, so taking the minimal positive one, (2) follows. Given (2), part (3) will now follow if

the sheaf of moderate growth sections of j∗(L
(n)
Y ) is a line bundle, but since this is the G-invariants of the

corresponding subsheaf on Y ′BB, this is clear.

5.3. Proof of Theorem 5.3 (1), (2), and (3). By the above reduction, we may assume Γ is neat.
By resolution of singularities, let (X,D) be a proper log smooth algebraic space with a proper birational
morphism X\D → Y . Since Y is normal, it follows that X\D → Y is a fibration. Applying Theorem 4.1,
we obtain a fibration f : X → Y such that MX descends to an ample bundle MY , by Lemma 3.15. Since

MX\D is pulled back from Y and is strictly nef on Y it follows that Y \f(D) ∼= Y and hence that Y is a

compactification of Y . We prove now that Y ∼= ProjCY .
Indeed, first note that every element of H0

mg(Y,M
n
Y ) pulls back to an element of H0(X,Mn

X) and thus

descends to an element of H0(Y ,Mn
Y
). Conversely, any element of H0(Y ,Mn

Y
) is a section of moderate

growth, and thus belongs to CY . Hence, we see that CY =
⊕

n≥0H
0(Y ,Mn

Y
), from which the claim follows,

and (1) is proved. Part (2) is clear since a local generator of Mn
Y
pulls back to a generator of Mn

X . As above,

for (3) it suffices to argue that the subsheaf of moderate growth sections of j∗(M
n
Y ) is a line bundle provided

local sections as in (2) exist, but this follows from the normality of Y since any moderate growth function
on Y (locally on Y ) extends to Y . □

5.4. Proof of Theorem 5.2 (1). By the above reduction, we may assume Γ is neat. Let ν : Z → Y be the
normalization of Y . By applying Theorem 5.3 (using Lemma 2.19 and Theorem 2.22), we have a Baily–Borel
compactification ZBB satisfying the requirements of Theorem 5.2. Let R0 := Z(C)×Y (C)Z(C) ⊂ Z(C)×Z(C)
be the equivalence relation defining the map to Y (C), let R0 ⊂ ZBB(C) × ZBB(C) be its closure, and
R = (R0)

e ⊂ ZBB(C) × ZBB(C) the equivalence relation it generates. Let (X,D) be a proper strictly log
smooth algebraic space (X,D) with a proper birational morphism X\D → Y , which necessarily factors
through Z.

Definition 5.7. For a point x ∈ X, we refer to H(x) as the triple of rational mixed Hodge structures and
morphisms of rational mixed Hodge structures(

origV
gr(x), V min,∨(x), ιx : grW V min,∨(x) ↪→

⊗
p

∧rkFp
origV

origV
gr(x)∨

)
with the obvious notion of isomorphism H(x) → H(y), namely, isomorphisms origV

gr(x) → origV
gr(y) and

V min,∨(x) → V min,∨(y) for which the induced maps commute with ιx and ιy.

The fiber L(x) of the Griffiths bundle at x is realized as the Hodge line in V min(x), and by Claim 2.24 and
Lemma 2.25 any automorphism of H(x) induces a torsion automorphism of L(x), whose order is bounded
by rk origV .

Corollary 5.8. There exists a positive integer N such that for any x, x′ ∈ X, there is at most one isomor-
phism LN (x) → LN (x′) induced by an isomorphism H(x) → H(x′).

We obtain a natural equivalence relation RH on X with x ∼H y if H(x) ∼= H(y). As in §3.3, we have
Rcurve ⊂ RH ⊂ Rtr, and so RH descends to ZBB(C) = X(C)/Rcurve. We abusively use the same notation
RH for the equivalence relation on ZBB(C).

Lemma 5.9. The equivalence relation R is algebraic, finite, and R ⊂ RH . In particular, RH descends
through the quotient q : |ZBB| → Y := ZBB(C)/R.
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Proof. Let RX ⊂ X(C)×X(C) be the closure of the pullback of R0; note that it surjects onto R0. For any
(x, y) ∈ RX , there is a curve C ⊂ RX ∩ (X\D)× (X\D) whose closure contains (x, y). The pullback of the
variation to C under the two resulting maps C ⇒ X\D are equal, as therefore are the limit mixed Hodge
structures, so H(x) ∼= H(y). Thus, Rcurve ⊂ (RX ∪Rcurve)

e ⊂ RH ⊂ Rtr, so by Lemma 3.4(4) (RX ∪Rcurve)
e

is algebraic. Since ZBB(C) = X(C)/Rcurve, the image of (RX∪Rcurve)
e in Z(C)×Z(C) is R, so it is algebraic

as well, finite by Lemma 3.4(2), and contained in RH (on ZBB). □

Observe that, given any definable disk9 ∆∗ → Y lifting to a definable analytic map ∆∗ → ZBB, and any
two such lifts f, f ′ : ∆∗ → ZBB, any choice of isomorphism H(f(t)) ∼= H(f ′(t)) at a very general point
t ∈ ∆∗ extends to an isomorphism of the natural variation in the very general H data on ∆∗, up to shrinking
∆, which then gives an isomorphism H(f(t)) → H(f ′(t)) at every point t ∈ ∆ via the limit mixed Hodge
structure. Moreover, the induced isomorphism LN (f(t)) → LN (f ′(t)) is continuous for t ∈ ∆.

Lemma 5.10. There is a proper strictly log smooth algebraic space (X,D) and a proper birational morphism
X\D → Y such that:

(1) (X,D) satisfies (B1), (B2), (B3)R. In particular,
(a) The Hodge strata XS of X are saturated with respect to X → ZBB (resp. |X| → Y ) and descend

to strata ZBB
S (resp. Y S) of ZBB (resp. Y ).

(b) The R-strata XT of X are saturated with respect to X → ZBB (resp. |X| → Y ) and descend to
strata ZBB

T (resp. Y T ) of ZBB (resp. Y ).
(2) Each Hodge stratum ZBB

S is smooth and each R-stratum ZBB
T is a disjoint union of Hodge strata

ZBB
S .

(3) For each Hodge stratum ZBB
S , the π1-definable analytic morphism

ρZBB,S : Z̃BB
S

V tr
S,Q

→ P(V tr
ZBB,S,C,z(S))

an

obtained from projecting the Hodge bundle is unramified.

Proof. We essentially redo the last part of the proof of Lemma 3.7. Namely, we construct such a stratification
by descending induction on the dimension of ZBB

Σ where the lemma is false, the base case being trivial. Thus,
assume the condition holds for any S with dimZBB

S > k, and consider a stratum with dimZBB
S = k. Let

W ⊂ ZBB
S be the locus where either ZBB

S isn’t smooth or the period map isn’t unramified. Note that

dimW < k and consider the pullback Z to X of the R-saturation R(W ) of W . We now pass to a log
resolution of Z, and modify further as necessary for (X ′, D′) satisfies (B3)R. As in the proof of Lemma 3.7,
only strata with period image of dimension strictly smaller than k are produced. On the other hand, the
new stratum ZBB

S \R(W ) now satisfies the conditions. Continuing in this way, we are done by induction. □

From the proof of Theorem 4.4, the variations of Hodge structures V min
T and V tr

T on an R-stratum XT of
X descend to V min

ZBB,T and V tr
ZBB,T on the corresponding R-stratum ZBB

T . We may take DR-neighborhoods

ZT ⊂ TZBB(T ) ⊂ ZBB and Y T ⊂ TY (T ) ⊂ Y of the R-strata in both ZBB and Y such that each TZBB(T )

(resp. TY (T )) only intersects strata limiting to ZBB
T (resp. Y T ) and such that each TZBB(T ) maps to TY (T ).

Corollary 5.11. The conclusions of Lemma 5.10 hold with respect to E := SymN V in place of V . Moreover,
we have the following:

(1) The Hodge bundle of E descends to Y as a continuous line bundle L
(N)

Y
.

9It would suffice to use algebraic curves.
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(2) Emin
ZBB,T descends to the R-stratum Y T as a rational local system whose fibers are continuously en-

dowed with Hodge structures, Etr
ZBB,T descends as a subobject in this category, and the Hodge line in

both is identified with L
(N)

Y
. We call the resulting objects Emin

Y ,T
and Etr

Y ,T
.

(3) By projecting the Hodge bundle (of E) we have π1-definable analytic

τ(T ) : ˜TZBB(T )
Etr

ZBB,T,Q → P(Emin
Y ,T,C,z(T )

)an

which is unramified in restriction to Z̃BB
T

Etr
ZBB,T,Q

and pointwise factors through T̃Y (T )
Etr

Y ,T,Q
(on the

preimage of T̃Y (T )
Etr

Y ,T,Q
).

Proof. By Corollary 5.8, Lemma 5.9, and the observation before Lemma 5.10, R gives a continuous descent
datum on the Hodge bundle of E (which is the Nth power of the Hodge bundle of V ), which proves (1).

By Lemma 5.9 it follows that we obtain at every point of Y a well-defined isomorphism class of Hodge
structures which are the descent of Emin

ZBB,T and Etr
ZBB,T . By Corollary 5.8 and Lemma 2.10 there is a

canonical descent datum which is pointwise induced by an isomorphism of H-data, and by the observation
before Lemma 5.10 it is continuous, so (2) follows.

Part (3) is immediate from part (2) and part (3) of Lemma 5.10. □

Next, we show the objects Emin,∨
Y ,T

are compatible between strata as rational local systems whose fibers are

continuously endowed with Hodge structures. In the following, we abusively denote the pullback of R to X by
the same letter. For any Hodge strata S1, S2 of X, the descent data for the Emin,∨

Si
and their quotients Etr,∨

Si

naturally gives via Lemma 2.7 an isomorphism of local systems RS1,S2
: p∗1E

min,∨(S1)Q → p∗2E
min,∨(S2)Q on

R ∩ T(S1)× T(S2) which is compatible with the corresponding morphism on the quotients to p∗iE
tr,∨(Si)Q.

Recall by Lemma 2.12 that if XS specializes to XS′ , then Emin,∨(S′)Q is naturally a sub-local system of
Emin,∨(S)Q on the intersection TZBB(S) ∩ TZBB(S′).

Lemma 5.12. Let XS1
(resp. XS2

) be a Hodge stratum specializing to XS′
1
(resp. XS′

2
). On

(
T(S1) ∩

T(S′
1)
)
×
(
T(S2) ∩ T(S′

2)
)
we have RS1,S2

|p∗1Emin,∨(S′
1)Q

= RS′
1,S

′
2
.

Proof. Since these are maps of local systems, it is enough to check the statement at a single point in
each connected component. Hence, let ∆∗ →

(
XS1 ∩ T(S′

1)
)
×
(
XS2 ∩ T(S′

2)
)
be a definable analytic disk

whose image is Zariski dense in XS1
×XS2

, and which extends to a map ∆ → R with the origin landing in
XS′

1
×XS′

2
. By the observation before Lemma 5.10, we obtain an isomorphism in the resulting two variations

of the very general H-data over ∆∗ up to shrinking ∆, and therefore pointwise of the H-data at every point.
These isomorphisms induce RS1,S2

on Emin,∨
S1

over ∆∗ and RS′
1,S

′
2
on Emin,∨

S′
1

at 0 ∈ ∆ by Corollary 5.8 and

Lemma 2.10. By Lemma 2.12 the claim follows. □

It follows that if Y T specializes to Y T ′ , the local system Emin,∨
Y

(T ′)Q is naturally a sub-local system of

Emin,∨
Y

(T )Q on TY (T ) ∩ TY (T
′), and that the restriction of the quotient Emin,∨

Y
(T )Q → Etr,∨

Y
(T )Q factors

through the quotient Emin,∨
Y

(T ′)Q → Etr,∨
Y

(T ′)Q. Dually, Emin
Y

(T ′)Q is naturally a quotient of Emin
Y

(T )Q and

the quotient map takes Etr
Y
(T )Q to Etr

Y
(T ′)Q, again on TY (T ) ∩ TY (T

′).

Finally, we give an algebraic structure to Y . We shall follow Theorem 4.4, and so we build our algebraic
structure one R-stratum at a time, inductively. We therefore let U ⊂ Y be an open union of R-strata,
Y T ⊂ U an R-stratum which is closed in U , and we inductively suppose that U ′ := U\Y T has been given
an algebraic structure together with an algebraic map ZBB

U ′ := q−1(U ′) → U ′ which are compatible with the
definable topological space structures. We further suppose:
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(i) The line bundle OZBB(N) of ZBB restricted to ZBB
U ′ descends10 to an ample line bundle A′ on U ′.

(ii) For each R-stratum Y T ′ ⊂ U ′, the morphism obtained by projecting the Hodge bundle

τ(T ′) : ˜TZBB(T ′)
Etr

ZBB,T ′,Q → P(Emin
ZBB,T ′,C,z(T ′))

an

factors through T̃Y (T
′)
Etr

Y ,T ′,Q
.

The base case U = Y is trivial given the above setup.
On the one hand, by Theorem 2.5 as in Lemma 3.15, we may pick a finite-dimensional homogeneous

subspace of BY yielding a linear system of sections of a power of A′ which extend to ZBB and which embed
U ′ in PN . On the other hand, by Corollary 5.11 and Lemma 5.12 we have π1-definable analytic morphisms

τ(T ) : ˜TZBB(T )
Etr

ZBB,T,Q → P(Emin
Y ,T,C,z(T )

)an

which is pointwise compatible with τ(T ′) for each stratum ZBB
T ′ ⊂ ZBB

U ′ by the paragraph right after
Lemma 5.12. Combining the resulting linear system for an appropriate power of OZBB(N)|TZBB (T ) with
the previous one, we obtain a definable analytic morphism

π(T ) : ˜TZBB(T )
Etr

ZBB,T,Q → (PNT )an

which factors through a local embedding of Ũ ′ ∩ ˜T∗
ZBB(T )

Etr
ZBB,T,Q

, and whose restriction to Z̃BB
T is both

unramified and factors through Ỹ T on Z̃BB
T . Thus, it is everywhere locally injective and factors through

T̃Y (T ).
Now, observe that in the analytic (resp. definable analytic) category we have:

• Any morphism f : X → Y with discrete fibers factors as X → Z → Y where X → Z is finite and
Z → Y is an open embedding, up to replacing X with a cover. In the definable analytic category,
this follows from [BBT24, Lemma 2.8].

• For a locally injective morphism f : X → Y , a factorization |X| → Z → |Y | with |X| → Z finite
and surjective on the level of topological spaces (resp. definable topological spaces) can be uniquely
lifted to a factorization X → Z → Y for which Z → Y is unramified. Indeed, using the previous
bullet point, and the fact that any cover of X can be refined by a cover consisting of the connected
components of the pullback of a cover from Z (which is [BBT23a, Proposition 2.4] in the definable
analytic category), we may assume (after passing to a cover of Z) that on every connected component
of X, X → Y is a homeomorphism followed by a locally closed embedding, and that the image is
identified with Z. The sheaf of functions on Z is then that of the image, using [BBT23a, Proposition
2.52]11 in the definable analytic category.

Applying the second bullet point above to π(T ) as in Claim 4.5, it follows that there is a definable analytic
space structure on TY (T ) and a morphism of definable analytic spaces TZBB(T ) → TY (T ) whose underlying
map on definable topological spaces is the quotient map, and therefore there is a definable analytic space
structure on U and a morphism of definable analytic spaces (ZBB

U )def → U whose underlying map is the quo-
tient map and which is compatible with (ZBB

U ′ )def → U ′def . By the definable image theorem (Theorem 2.2),
the definable analytic space structure on U is (uniquely) algebraizable, as is the morphism fU : ZBB

U → U .
By construction, (ii) is satisfied. Also by construction, OZBB

U
(N) descends to a definable analytic line bundle

on U which is naturally contained in (fU∗OZBB
U

(N))def , hence algebraic by definable GAGA (Theorem 2.1),

10Note that we already established this descent as a continuous line bundle, but we want it as an algebraic line bundle.
11As we are only concerned with reduced spaces, [BBT23a, Proposition 2.45] would suffice.
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and ample by Theorem 2.5. Thus, by induction there is an algebraic space structure on Y and a morphism
ZBB → Y (whose underlying map is the quotient map) such that OZBB(N) descends to an ample bundle

L
(N)

Y
.

To conclude, it follows that BY :=
⊕

k≥0H
0(Y , L

(kN)

Y
) ⊂ BY ⊂ BZBB . Since BY is a submodule of the

finitely generated BY -module BZBB it follows that BY is finitely generated, so we may define Y BB := ProjBY ,
and it follows that Y ↪→ Y BB since BY and hence BY induces an embedding of Y . □

5.5. Proof of Theorem 5.2 (2) and (3). Again by the above reduction, we may assume Γ is neat. We first
prove part (2). Let (X,D) be a log smooth algebraic space with a proper birational morphism X\D → Y .

By construction, some power L
(n)
X descends to L

(n)
Y BB as a line bundle. It follows that any locally generating

section s on Y BB pulls back to a generating section on X and thus has Hodge norm and inverse Hodge norms
of moderate growth. Thus, the set of kY in question is nonempty. Since it clearly forms a group, there is a
minimal one and (2) follows.

We now prove (3):

Lemma 5.13. Consider the maps ν : ZBB → Y BB, j : Y → Y BB. Then we have the equality OY BB = j∗OY ∩
ν∗OZBB , with the intersection taking place in j∗ν∗OZ . Moreover, OY BB analytifies to jan∗ OY an ∩ νan∗ OZBB,an .

Proof. Let R = j∗OY ∩ ν∗OZBB . It is clear that R is quasicoherent, and since it injects into ν∗OZBB it must
be coherent.

Now consider W = SpecR. By construction W fits into a map ZBB → W → Y BB. Hence, some power

the Griffiths bundle L(n) descends toW as L
(n)
W , and therefore is ample there. ThusW = ProjBW . However,

clearly BW ⊂ BY , and thus we must have equality. It follows that W = Y BB which completes the proof.
Finally, the analytification statement would follow directly from (ordinary) GAGA if it weren’t for the

fact that j∗OY is quasicoherent as opposed to coherent. To address that, we work locally and let h be a
regular function on Y BB vanishing on the boundary. For m ≥ 1 let Rm := h−mOY ∩ν∗OZBB . It is clear that
Rm analytifies to (Ran)m := h−mOY an ∩ νan∗ OZBB,an , and so the claim follows as jan∗ OY an ∩ νan∗ OZBB,an =
∪m(Ran)m. □

We may define a coherent sheaf L
(kY )
Y BB ⊂ j∗L

(kY )
Y by considering all local sections whose Hodge norms have

moderate growth.

Corollary 5.14. L
(kY )
Y BB is a line bundle on Y BB.

Proof. We work locally around a point y ∈ Y BB. By part (2), there is an affine neighborhood y ∈ U and a

local section s ∈ H0(U,L
(kY )
Y BB ) whose Hodge norm and its inverse have moderate growth around every point

in U\Y . We claim that s is a local generator around y.

Suppose that s′ ∈ H0(U,L
(kY )
Y ) is some other moderate growth section. Then t = s′/s ∈ H0(U ∩Y,OY BB)

has moderate growth, hence is bounded locally on U\Y . Since ZBB is normal, it follows that ν∗t extends to

a function on int
(
ν−1(U)

)
= ν−1(int(U))) since ν : ZBB → Y BB is open. Hence t extends to an element of

H0(U,OY BB) by Lemma 5.13 as desired. □

Finally, we complete the proof of (3). It is clear that L
(kY )
Y is ample. Now it follows from Corollary 5.14

that we have H0(Y BB, L
(kY )
Y BB ) = H0

mg(Y,L
(kY )
Y ), and thus L

(kY )
Y BB is naturally identified with OY BB(kY ) as

desired. □
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5.6. Proof of Theorem 5.5. The compatibility with the Schmid extensions is immediate from parts (2)
and (3) of Theorem 5.2 (resp. Theorem 5.3), so we focus on the existence on the extension of the morphism.
The proof for Y BBH is the same so we focus on the Y BB statement. Let f : Y ′ → Y be a finite étale cover
of Y with level structure so that the monodromy group is neat. There is then a finite map π : ∆k → ∆k :
(z1, . . . , zk) 7→ (zN1 , . . . , z

N
k ) and a commutative diagram

(∆∗)k Y ′

(∆∗)k Y

π|
(∆∗)k

and it is sufficient to show the top map extends. Thus, we may assume the variation has neat monodromy.
The extension of ϕ is unique if it exists, so the claim is local on (∆∗)k, and we may freely shrink ∆k.

Thus, we may assume ϕ : (∆∗)k → Y is definable (by [BKT20, Theorem 4.1]12) and therefore that it
extends meromorphically, as in [BBT23b, Lemma 2.2]. By Hironaka’s embedded resolution theorem, we
may construct a tower of blowups along smooth centers

Xr → Xr−1 · · · → X0 = ∆k

such that ϕ extends to a morphism ϕr : Xr → Y BB,an and the pair (Xr, Dr) is log smooth, where Dr is
the union of exceptional divisors and the strict transform of the coordinate hyperplanes of ∆k. Locally on
Y BB, the Griffiths bundle has a generating section with moderate growth and whose inverse has moderate
growth, and it follows that the pullback ϕ∗rLY BB agrees with the Schmid extension of the Griffiths bundle of
the variation on Xr\Dr. But then we also have ϕ∗rLY BB

∼= f∗L∆k where f : Xr → ∆k is the blow-down and
L∆k is the Schmid extension of the variation on (∆∗)k. Thus, ϕ∗rLY BB is trivial on every fiber of f , hence
ϕr factors through f , as desired. □

5.7. Proof of Theorem 5.2 (4) and Theorem 5.3 (4). The existence of the extension of the morphism
and the compatibility with the Schmid extension is immediate from Theorem 5.5. The uniqueness statement
in Theorem 5.3(4) is standard: if Z were another such compactification of Y , then X\D → Y also extends
to X → Z, but since OZ(n) and OY BBH(n) are both ample and pullback to the same line bundle on X,
X → Y BBH factors through Z and X → Z factors through Y BBH by normality, hence Z ∼= Y BBH. □

6. Birational geometry and Hodge theory of lc-trivial fibrations

The moduli part of an Ambro model is the Hodge bundle of a variation of Hodge structure. We discuss
in detail the variation arising (Construction-Definition 6.14), and provide a geometric characterization of its
restriction in codimension one in terms of sources of slc pairs (cf. Theorem 6.31). To this end, we first recall
the notions of b-divisor, pairs, canonical bundle formula, and locally stable families. We refer to [KM98] and
[Kol13] for the standard terminology in birational geometry.

6.1. B-divisors. Let K denote Z or Q. Given a normal algebraic space X, a K-b-divisor D is a (possibly
infinite) sum of geometric valuations νi of k(X) with coefficients in K,

D =
∑
i∈I

biνi, bi ∈ K,

12The statement therein should read that the local period map is definable up to shrinking ∆k.
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such that, given any normal variety X ′ birational to X, only finitely many valuations νi have a center of
codimension 1 on X ′. The trace DX′ of D on Y ′ is the K-Weil divisor

DY ′ :=
∑

biDi

where the sum is indexed over valuations νi that have divisorial center Di ⊂ X ′.
Given a K-b-divisor D over X, we say that D is a K-b-Cartier if there exists a birational model X ′ of

X such that DX′ is K-Cartier on X ′ and for any model π : X ′′ → X ′, we have DX′′ = π∗DX′ . When this
is the case, we will say that D descends to X ′ and we shall write D = DX′ for the K-b-divisor which DX′

determines. We say that D is b-effective, if DX′ is effective for any model X ′. We say that D is b-nef (resp.
b-semiample), if it is K-b-Cartier and, moreover, there exists a birational model X ′ of X such that D = DX′

and DX′ is nef (resp. semiample) on X ′.
In all of the above, if K = Z, we will systematically drop it from the notation.

Example 6.1. Let (X,∆) be a log sub-pair. The discrepancy b-divisor A(X,∆) is defined as follows: on a
birational model π : X ′ → X, its trace A(X,∆)X′ is given by the identity A(X,∆)X′ := KX′ −π∗(KX+∆).
The b-divisor A∗(X,∆) is defined by taking its trace A∗(X,∆)X′ on X ′ to be

A∗(X,∆)X′ := A(X,∆)X′ +
∑

a(Di;X,∆)=−1

Di,

where A(X,∆)X′ =
∑
i a(Di;X,∆)Di.

6.2. Singularities of pairs. The acronyms klt, dlt, lc, sdlt, and slc describe types of singularities that occur
naturally in various constructions within birational geometry. For instance, the minimal (resp. canonical)
model of an snc pair has dlt (resp. lc) singularities. The reduced part of the boundary of a dlt (resp. lc)
pair is sdlt (resp. slc). The fibers of a semistable or locally stable morphism (e.g., the families of varieties
parametrized by KSBA moduli spaces) have slc singularities. Finally, up to finite base change, any family
of Calabi–Yau varieties over a punctured disk has a dlt log Calabi–Yau filling; see [Fuj11]. Here, we limit
ourselves to recalling the relevant definitions and mentioning some properties of lc centers used in the
following sections.

Definition 6.2 (Singularities of normal pairs). Let (X,∆) be a log sub-pair where X is a normal algebraic
space.

• (X,∆) is Kawamata log terminal (klt), if ⌈A(X,∆)⌉ ≥ 0, i.e., a(D;X,∆) > −1 for every divisor D.
• (X,∆) is log canonical (lc), if ⌈A∗(X,∆)⌉ ≥ 0, i.e., a(D;X,∆) ≥ −1 for every divisor D.
• (X,∆) is purely log terminal (plt), if a(D;X,∆) > 0 for every exceptional divisor D.
• An irreducible subvariety Z ⊂ X of an lc sub-pair (X,∆) is an lc center if there exist a birational

morphism π : X ′ → X and a divisor E ⊂ X with a(E;X,∆) = −1 whose image coincides with Z.
• (X,∆) is divisorial log terminal (dlt) if (X,∆) is lc and none of its lc centres lies in the complement
of the largest open locus where the sub-pair is snc.

Definition 6.3 (Singularities of demi-normal pairs). Let (X,∆) be a log sub-pair where X is demi-normal,
i.e., satisfies Serre’s condition S2 and it is nodal in codimension 1. Let ν : (X,∆ + C) → (X,∆) be the
normalization of (X,∆) with conductor C and ∆ := ν−1(∆).

• (X,∆) is semi-log canonical (slc), if (X,∆+ C) is lc.
• (X,∆) is semi-divisorial log terminal (sdlt), if (X,∆) is slc and none of its lc centres lies in the
complement of the largest open locus where the sub-pair is semi-snc.

Definition 6.4. A log Calabi–Yau pair (X,∆) is a proper lc pair with KX +∆ ∼Q 0.

All minimal lc centers of a dlt log Calabi–Yau pair are P1-linked in the following sense.
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Definition 6.5 (Standard P1-link). A standard P1-link is a Q-factorial pair (X,D1+D2+∆) together with
a proper morphism π : X → T such that:

(1) KX +D1 +D2 +∆ ∼Q,π 0,
(2) (X,D1 +D2 +∆) is plt (in particular, D1 and D2 are disjoint),
(3) the morphisms π|D1

: D1 → T and π|D2
: D2 → T are isomorphisms, and

(4) every reduced fiber Xred
t is isomorphic to P1.

Remark 6.6. Alternatively, the total space X of a standard P1-link is the projectivization of a split Q-vector
bundle of rank 2, whose two direct summands correspond to the sections D1 and D2; see [Mor24, Thm. 1.4].

Definition 6.7 (P1-linking). Let f : (Y,∆) → X be a fibration such that (Y,∆) is a dlt pair andKY +∆ ∼f,Q
0, and let Z1, Z2 ⊂ X be two lc centers.

• Z1 and Z2 are directly P1-linked if there exists an lc center W ⊂ X containing both Zi such that
f(W ) = f(Z1) = f(Z2), and the pair (W,Diff∗

W (∆)) (cf. [Kol13, §4.18]) is birational to a standard
P1-link, with Zi mapping to Di. Observe that W = X is allowed.

• Z1 and Z2 are P1-linked if there exists a sequence of lc centers Z ′
1, Z

′
2, . . . , Z

′
m such that Z ′

1 = Z1,
Z ′
m = Z2, and for each i = 1, . . . ,m−1, the centers Z ′

i and Z
′
i+1 are directly P1-linked (or Z1 = Z2).

In particular, every P1-linking defines a crepant birational map between the pairs (Z1,Diff∗
Z1
(∆)) and

(Z2,Diff∗
Z2
(∆)).

Proposition 6.8. [Kol13, Thm. 4.40] Let f : (Y,∆) → X be a projective fibration such that (Y,∆) is a dlt
pair and KY +∆ ∼f,Q 0. All minimal lc centers of (Y,∆) among those that intersect a fixed fiber of f are
P1-linked.

Among the minimal lc centers in Proposition 6.8, those dominating X are of particular interest, and they
are called sources of f : (Y,∆) → X.

Definition 6.9 (Sources). Let f : (Y,∆) → X be a fibration from an slc pair (Y,∆) to an integral base X
with KY +∆ ∼Q,f 0. A source of f : (Y,∆) → X is a generically klt pair obtained as an lc center, minimal

among those dominating X, of a dlt modification (Y dlt,∆dlt) of the normalization (Y ,∆+ C) of (Y,∆):

(6.1) (S,∆S)
ι
↪−→ (Y dlt,∆dlt)

π−→ (Y ,∆+ C)
ν−→ (Y,∆).

It is unique up to crepant birational equivalence; see [Kol13, §4.5].

6.3. Canonical bundle formula. We recall the notion of lc-trivial fibration.

Definition 6.10. Let (Y,∆) be a sub-pair with coefficients in Q. A projective fibration f : Y → X is
lc-trivial if

(i) (Y,∆) is an lc sub-pair over the generic point of X;
(ii) rankf∗OY (⌈A∗(Y,∆)⌉) = 1;
(iii) there exists a Q-Cartier Q-divisor L on X such that KY +∆ ∼Q f

∗L.13

Remark 6.11. Note that property (ii) holds automatically if the general fiber (YνX ,∆νX ) of f is a klt pair.

The canonical bundle formula is a broad term designating a formula for the Q-divisor L in (iii), encoding
the log canonical thresholds of the codimension one singularities of f (boundary part) and the variation of
the general fiber (moduli part).

13Observe that lc-trivial stands for (relatively) trivial log canonical divisor, i.e., assumption (iii), and not to the type of the

singularities in assumption (i).
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Theorem 6.12 (Canonical bundle formula). Let f : (Y,∆) → X be an lc-trivial fibration. Then

(6.2) KY +∆ ∼Q f
∗(KX +BX +MX)

where BX and MX are the boundary and moduli b-divisors. Furthermore, (X,BX ,M) has the structure of
a generalized sub-pair (cf. [BZ16], [FS23]). We say that f : (Y,∆) → X induces (X,BX ,M).

When (Y,∆) is a klt (resp. lc) pair, then (X,BX ,M) is a klt (resp. lc) generalized pair.

We recall the definition of BX and M. For further details, we refer to [Amb04,Amb05,FG14b,Kol07].

Definition 6.13 (Boundary divisor). Let f : (Y,∆) → X be an lc-trivial fibration. The boundary divisor
BX is the Q-divisor whose coefficient along the prime divisor D is given by

ordD(BX) = sup
E

{
1− 1 + a(E;Y,∆)

multE(π∗D)

}
,

where the supremum is taken over all the divisors E over Y which dominate D, and a(E;Y,∆) is the
discrepancy of E with respect to (X,∆).

Construction-Definition 6.14 (Moduli part). Let f : (Y,∆) → X be a lc-trivial fibration of relative
dimension n. Write ∆ as difference of effective divisors without common components, namely

∆ := E + F −G with E := ∆=1, G := ⌈∆<0⌉

so that F is the fractional part of ∆ satisfying ⌊F ⌋ = 0.

(†) Suppose that there exists an snc pair (X,D) such that (Y ◦,∆◦) is a locally trivial snc pair over
X◦ := X \D with KY ◦ +∆◦ ∼Q,f 0, where the superscript ◦ refers to the restriction of an object of
interest over X◦.

Let d be the minimal positive integer such that dF ◦ is an integral divisor and d(KY ◦ +∆◦) ∼f 0. Consider
L := OY ◦(G◦−KY ◦ −E◦). The isomorphism Ld ≃ OY ◦(dF ◦) determines a normalized cyclic cover a : Y ◦

2 →
Y ◦ of degree d branched along F ◦, with quotient singularities; see [KM98, 2.49-53]. Choose a µd-equivariant
resolution of singularities h : Y ◦

3 → Y ◦
2 . Write f2 := f ◦ a and f3 := f2 ◦ h, E2 := Supp(a−1E), E◦

3 :=
Supp(h−1E◦

2 ).

(Y ◦,∆◦)

f

��

Y ◦
2

aoo

f2

zz

Y ◦
3

hoo

f3
uu

X◦.

The sheaf (a ◦ h)∗(ωY ◦
3
(E◦

3 )) is µd-invariant, and admits a decomposition into µd-isotypic components

(a ◦ h)∗(ωY ◦
3
(E◦

3 )) ≃ a∗(ωY ◦
2
(E◦

2 )) ≃
d−1⊕
i=0

a∗(ωY ◦
2
(E◦

2 ))χi ≃
d−1⊕
i=0

ωY ◦ ⊗ Li(−⌊i∆◦⌋),

where χ is a generator of the character group µ̂d. In particular, we get the direct summand

(6.3) (a ◦ h)∗(ωY ◦
3
(E◦

3 ))χ ≃ ωY ◦ ⊗ L ≃ OY ◦(G◦ − E◦).

The χ-isotypic component of the restriction over X◦ of Rn(f3)∗CY ◦
3 \E◦

3
determines a complex CY variation

of mixed Hodge structures whose deepest nonzero piece of the Hodge filtration is the line bundle f∗OY ◦(G◦−
E◦); see (6.3) and Definition 6.10.(ii).

(††) Suppose that Rn(f3)∗CY ◦
3 \E◦

3
has local unipotent monodromy.
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Let VY be the Deligne/Schmid extension on X of the variation of mixed14 Hodge structures Rn(f3)∗QY ◦
3 \E◦

3

defined on X◦. Then the moduli part MX is the Hodge bundle of the transcendental part of its χ-isotypic
component

MX := Fm(VY,O)
tr
χ .

Up to shifting the Hodge filtration of VY , the moduli part MX is also the Hodge bundle of an admissible
graded polarizable rational (not just complex!) CY variation V ′

Y of mixed Hodge structures, whose underlying
local system is the Deligne extension of Rn(f3)∗QY ◦

3 \E◦
3
; see Remark 6.17.

If conditions (†) and (††) are not satisfied, then there exists a projective alteration q : W → X such that
the pullback of the generic fiber of f along q extends to a fibration f ′ : (Y ′,∆′) → W satisfying conditions
(†) and (††) (cf. Proposition 6.27). Set

MX :=
1

deg(q)
q∗(MW ).

Example 6.15. If f : Y → X is a family of smooth CY varieties of dimension n, then MX = f∗ωY/X is
simply the Hodge bundle of the variation of Hodge structures Rnf∗QY .

Remark 6.16. By the functoriality of Deligne/Schmid extension, M(f) pulls back to M(f ′) as a b-divisor,
which descends on W because of the snc assumptions Construction-Definition 6.14; see [Kol07, §8.4.8].

Remark 6.17. VY = (VY,Q,W•VY,Q, F
•VY,O) is a graded polarizable rational mixed variation of Hodge

structures of Hodge-level n but not CY in general, while the variation (VY,C)χ is a complex CY variation,
not rational if d > 2. Up to shifting the Hodge filtration of the µd-isotypic components, there exists a
polarizable rational pure CY variation of Hodge-level n + 4 whose deepest piece of the Hodge filtration is
MX . Choose for instance

V ′
Y = (VY )χ(2,−2)⊕

⊕
i ̸≡1,−1(d)

(VY )χi ⊕ (VY )χ−1(−2, 2).

In particular, note that the period map of VY is generically injective if and only if so is the period map of
V ′
Y .

Remark 6.18. Since Y ◦
2 has quotient singularities (hence it is a rational homology manifold), the constant

sheaf CY ◦
2
is a direct summand of Rh∗CY ◦

3
. Its (µd-equivariant) pushforward along a decomposes in isotypic

components as follows

(6.4) a∗CY ◦
2
=

d−1⊕
i=0

ι∗Lχi ,

where Lχi are suitable local systems on ι : Y ◦ \F ◦ ↪→ Y ◦, on which µd acts via the character χi. Then there
exist isomorphisms of complex variations of Hodge structures

(Rn(f3)∗CY ◦
3 \E◦

3
)trχ ≃ (Rn(f2)∗CY ◦

2 \E◦
2
)trχ ≃ (Rnf∗(ι∗Lχ))

tr,

which yield equivalent alternative definitions of the moduli part. Compare the previous chain of isomorphisms
with the different period maps considered in [Amb05]. This also fixes a minor inaccuracy in the definition
of the variation of Hodge structures whose bottom piece extends to define the moduli part appearing in
[Kol07, Def. (8.4.6)].

Remark 6.19. The Q-linear equivalence in the canonical bundle formula (Theorem 6.12) can be upgraded
to the linear equivalence of Q-divisors d(KY +∆) ∼ d(f∗(KX +BX +MX)), where d is the index appearing
in Construction-Definition 6.14; see [PS09, §7.5].

14pure if E◦ = 0, i.e., (Y,∆) is klt over the generic point of X.
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Remark 6.20. The canonical bundle formula (Theorem 6.12) continues to hold for projective fibrations
f : (Y,∆) → X of complex analytic spaces satisfying (i), (ii), (iii) in Definition 6.10. Indeed, resolutions of
singularities needed to achieve (†) and the cyclic covers in [KM98, 2.49-53] can be performed in the analytic
category too. To achieve (††), we can take a suitable étale cover of X \ D making the local monodromy
of the relevant local system unipotent and then extend it to a finite cover (with quotient singularities)
by the Grauert–Remmert Extension Theorem [GR03, Ch. XII, Thm. 5.4, p. 340]. Finally, the proof of
[Kol07, Thm. 8.5.1] works through verbatim in the analytic context too.

Furthermore, if (Y,∆) is klt over the generic point on X, the projectivity of f can be even replaced
with the assumption that the morphism f is Kähler. In general, the projectivity assumption grants the
polarizability of the rational variation of Hodge structures Rn(f3)∗QY ◦

3 \E◦
3
, but in the klt case (i.e., E◦

3 = 0)
such polarization is induced simply by the intersection form of the smooth proper fibers of f3, regardless of
their projectivity. It is unclear whether the projectivity of f is needed in the lc case. Note also that our
proofs of Theorem 1.5 and Theorem 7.3 require the projectivity of the morphism.

6.4. Locally stable families.

Definition 6.21. Let X be a reduced scheme, f : Y → X a flat morphism of finite type and f : (Y,∆) → X
a well-defined family of pairs (see [Kol23, Thm.-Def. 4.7]). Assume that (Yx,∆x) is slc for every x ∈ X.
Then f : (Y,∆) → X is locally stable if the following equivalent conditions hold:

(1) KY/X +∆ is Q-Cartier;
(2) fT : (YT ,∆T ) → T is locally stable whenever T is the spectrum of a DVR and q : T → X is a

morphism (see [Kol23, Thm.-Def. 2.3] for the notion of a locally stable family over a DVR).

We recall some properties of locally stable families.

Lemma 6.22 ([Kol23, Thm. 4.8]). Let f : (Y,∆) → X be a locally stable morphism over a reduced base
X, and q : V → X be a morphism of reduced schemes. Then the family over V obtained by fiber product is
locally stable.

Lemma 6.23 ([Kol23, Thm. 4.55]). Let f : (Y,∆) → X be a morphism over a smooth scheme X with ∆ ≥ 0.
Then f is locally stable if and only if the pair (Y,∆+ f∗D) is slc for every snc divisor D ⊂ X.

Lemma 6.24. Let f : (Y,∆) → X be a locally stable morphism over a smooth base X, and ν : Y → Y be
the normalization of Y with conductor C ⊂ Y . Then f ◦ ν : (Y ,∆+ C) → X is locally stable.

Proof. If (Y,∆ + f∗D) is slc for any snc divisor D ⊂ X, then (Y ,∆ + C + (f ◦ ν)∗D) is lc by [Kol13,
Thm. 5.38]. □

Lemma 6.25 ([Pat16, Lem. 2.12]). Let f : (Y,∆) → C be a locally stable morphism over an snc curve C.
Then (Y,∆) is slc.

The moduli part of locally stable lc fibrations admits the following birational characterization.

Lemma 6.26. Let f : (Y,∆) → X be a locally stable lc-trivial fibration inducing the generalized pair
(X,B,M). Then B = 0 and f∗MX ∼Q KY/X +∆.

Proof. Let (T, 0) be the spectrum of the local ring of a prime divisor D on any modification of X. Since f
is locally stable, the pair (YT ,∆T + Y0) is lc by [Kol23, (2.3.3)], so ordD(B) = 0 by Theorem 6.12.(2). □

A fibration with K-trivial general fiber can be made locally stable and lc-trivial via an alteration.

Proposition 6.27. Let f : (Y,∆) → X be a fibration of quasiprojective varieties whose general fiber (YηX ,∆ηX )
is log Calabi–Yau. Then there is a projective, generically finite, dominant morphism q : W ◦ → X, and a
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projective compactification W ◦ → W , a locally stable morphism f ′ : (Y ′,∆′) → W such that the pullback of
the generic fiber of f along q is crepant birational to the generic fiber of f ′.

Furthermore, we can assume that:

(1) any closed locus of interest in W is a simple normal crossing divisor;
(2) given a polarized variation V of Hodge structure supported on a smooth locally closed subset Z◦ in

X, there exist a proper log smooth scheme (R,DR) and an embedding ι : R ↪→ W such that the
composition q ◦ ι : R \DR → Z◦ is projective, generically finite and surjective, and (q ◦ ι)∗V has local
unipotent monodromy;

(3) KY ′/W +∆′ ∼Q,f ′ 0; and

(4) (Y ′,∆′) is dlt in codimension 1 over W , i.e., (Y ′,∆′ + f−1(D)) is dlt over the generic point of any
prime divisor D in W .

Proof. We follow closely [Kol23, Thm. 4.59]. We can replace X with a projective alteration of a compactifi-
cation of X satisfying (1) and (2). To achieve (2), choose for R an irreducible component, dominating Z◦,

of a complete intersection of ample divisors in the simple normal crossing divisor q−1(Z◦). Eventually, first
replace X with a projective alteration to grant that the local monodromy of (q ◦ ι)∗V is unipotent.

Now, let (ỸηX , ∆̃ηX ) → (YηX ,∆ηX ) be a log resolution of the generic fiber of f . By [AK00] (cf., also
[ALT20]), there exists a generically finite, dominant map q : W 99K X, from a smooth projective variety W ,

such that (ỸηX , ∆̃ηX ) ×ηX ηW extends to a locally stable morphism f1 : (Y1,∆1) → W and semistable in
codimension 1. By [ALT20, Thm. 4.7], W can be chosen in such a way that (1) and (2) continue to hold.
Observe that (YηX ,∆ηX )×ηX ηW extends to a good minimal model f2 : (Y2,∆2) →W ; see [HX13, Thm. 1.1].
By [HH20, Thm. 1.7], this ensures that a (KY1/W +∆1)-MMP with scaling of an ample divisor terminates
with a minimal model f ′ : (Y ′,∆′) → W , which is again locally stable by [Kol23, Cor. 4.57]. Furthermore,
since (Y1,∆1) is semistable in codimension 1, (Y ′,∆′) is dlt in codimension 1 over W . □

We conclude the section with a technical lemma, used in Theorem 7.2, about the existence of a special
sdlt modification of an slc pair over a nodal curve.

Lemma 6.28. Let f : (Y,∆) → C be a locally stable fibration over a connected (strictly) snc curve C with
KY/C + ∆ ∼Q 0. Suppose that (Y,∆) is an sdlt pair over a dense open set C◦ ⊂ C. Then there exist a
surjective morphism q′ : C ′ → C from a connected (strictly) snc curve and a fibration f ′ : (Y ′,∆′) → C ′ with
the property that

(1) (Y ′,∆′) is an sdlt pair, whose irreducible components each dominate an irreducible component in C ′;
(2) the restriction of f ′ to any sources dominating an irreducible component of C is an lc-trivial fibration

(with connected fibers);

(3) f∗(ω
[m]
Y ′/C′(m∆′)) ≃ (q′)∗(f∗(ω

[m]
Y1/C′(m∆C′))) for any integer m.

Proof. We first achieve (2), i.e., the connectedness of the fibers of the sources. Let Z be the closure in YC
of a stratum of YC◦ . By [Kol23, Lem. 2.11], the restriction (fC)|Z : (Z,Diff∗

Z(∆)) → CW is a locally stable
morphism over an irreducible component CW of C, but not necessarily a fibration with connected fibers.

The finite map qW : C ′
W → CW in the Stein factorization W → C ′

W

qW−−→ CW cannot be ramified by local
stability of (fC)|Z , so it is étale. Since any étale cover of CW extends to an étale cover of C, there exists
an étale cover C ′ → C with the property that any source of fC′ : YC′ → C ′ has connected fibers over the
irreducible component that it dominates.

Note that the irreducible components of YC′ are normal in codimension one. Indeed, since (Y,∆) is sdlt
over C◦, eventual self-intersections in codimension one lie in fibers over closed points. If the branches of
the self-intersection map via fC′ to distinct branches of a node in C ′, then C ′ is nc not snc, which is a
contradiction; otherwise, if the branches of the self-intersection dominate a single branch contained in an
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irreducible component CB of C ′, then a fiber of the locally stable morphism fCB
would be non-reduced,

which is a contradiction.
By [Has21], since the irreducible components of YC′ are normal in codimension one, then there exist an

sdlt pair (Y ′,∆′) and a crepant birational morphism π : (Y ′,∆′) → (YC′ ,∆C′), which is an isomorphism at
all codimension 1 singular point of Y ′ and YC′ , such that

(6.5) π∗(ω
[m]
Y ′/C′(m∆′)) ≃ ω

[m]
Y1/C′(m∆C′).

Taking pushforward along fC′ and by [Kol23, (2.67.2)], we achieve (3). □

6.5. Variation of Hodge structures and source of a degeneration of CY pairs. The main result
of this section is Theorem 6.31: it identifies the transcendental part of the cohomology of the source over
a divisor with that of the limiting mixed Hodge structure of a family of (log) Calabi–Yau in the punctured
neighbourhood of the divisor. We first define the relevant variations of Hodge structures. To this end, we
extend the Construction 6.14 from the generic point of the base X through the generic point of a divisor
DX ⊂ X.

Construction 6.29. Let f : (Y,∆) → X be a projective fibration whose generic fiber (YηX ,∆ηX ) is klt log
Calabi–Yau of dimension n. Fix a smooth integral divisor DX ⊂ X. Up to shrinking X around the generic
point of DX , by Proposition 6.27, there exist

(1) a projective alteration q : W → X;
(2) an lc-trivial locally stable fibration f ′ : (Y ′,∆′) →W , locally trivial over D := DW and W \D, such

that the pullback of the generic fiber of f along q is crepant birational to the generic fiber of f ′; and
(3) (Y ′,∆′ + Y ′

D) is a dlt pair with ⌊∆′ + Y ′
D⌋ = Y ′

D.

Let g : (Y1,∆1) → (Y ′,∆′ + Y ′
D) be a log resolution of (Y ′,∆′ + Y ′

D) with log pullback (Y1,∆1) such that
g is an isomorphism over the snc locus of (Y ′,∆′ + Y ′

D); see [Kol13, Thm. 10.45]. Then, write

∆1 := E1 + F1 −G1 with E1 := ∆=1
1 , G1 := ⌈∆<0

1 ⌉.

Since the generic fiber of f is klt, E1 lies over D. Let d be the minimal positive integer such that dF1

is an integral divisor and d(KY1 + ∆1) ∼f1 0.15 Consider L1 := OY1(G1 − KY1 − E1). The isomorphism
Ld1 ≃ OY1(dF1) determines a normalized cyclic cover a : Y2 → Y1, with Galois group µd, branched along
F1; see [KM98, 2.49-53]. Since a is a cyclic cover branched along an snc divisor, Y2 and all strata of Y2,D
have quotient singularities. Let h : (Y3, (Y3)D) → (Y2, (Y2)D) be a µd-equivariant log resolution, and set
f2 := f1 ◦a and f3 := f2 ◦h. Generically, the cover a is one of the covers obtained by applying Construction-
Definition 6.14 to f1 : Y1 → W ; cf. also footnote 15. In particular, f2 and f3 are fibrations (with connected
fibers). To summarize, we collect the introduced maps over W in the following diagram

(Y ′,∆′)

f ′

��

(Y1,∆1)
goo

f1

yy

Y2
aoo

f2

tt

Y3
hoo

f3
ssW

where g is crepant birational, a is a cyclic cover, and h is birational.
Let (S,∆S) be a source of f ′ : (Y ′

D,∆Y ′
D
) → D. Let Si be a stratum of Yi,D, generically finite onto the

source S ⊂ Y ′. Generically, the restriction a : S2 → S1 is again one of the covers obtained by applying

15 Observe that d is also the minimal positive integer d◦ such that the previous conditions hold simply along the generic
fiber of f1; a priori d◦ only divides d. However, by Remark 6.19, we have d◦(KY1

+∆1) ∼ d◦f∗(KW +BW +MW ), but by (2)

the RHS is an integral Cartier divisor, so d◦ = d.
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Construction-Definition 6.14 to f1 : S1 → D. Up to shrinking X again, and replacing W with an étale cover
obtained by spreading out the Stein factorization of f ′|S , we can suppose that

(4) fS := f ′|S : (S,∆S) → DW is an lc-trivial fibration (in particular with connected fibers) of relative
dimension m.

By Construction-Definition 6.14, the moduli part of the lc-trivial fibration f ′ : (Y ′,∆′) → W is the
Hodge bundle of the χ-isotypic component of the Deligne/Schmid extension of Rn(f2)∗C (or equivalently of
Rn(f3)∗C as in Remark 6.18), i.e.,

MW := Fn(Rn(f2)∗CY ◦
2
)trχ ≃ Fn(Rn(f3)∗CY ◦

3
)trχ ≃ ((f3)∗ωY3/W )χ.

Notation 6.30. Denote by VY and VS the Deligne/Schmid extension of the µd-equivariant polarizable
variations of pure Hodge structures Rn(f3)∗CY ◦

3
and Rm(f3)∗CS◦

3
.

Theorem 6.31. In the notation above, there exists an isomorphism of variations of Hodge structures

(VY |D)trχ ≃ (VS)
tr
χ .

Proof. The required isomorphism is obtained by composing the isomorphisms (6.6), (6.8), and (6.11).
Step 1. Since VY is a CY variation of Hodge structure, there exists a unique integer k such that

grnF grWn+k(VY,O)χ ̸= 0. Recall that the logarithmic monodromy N defining the weight filtration has type

(−1,−1). Then the isomorphism Nk : grWn+k(VY |D)χ → grWn−k(VY |D)χ induces an isomorphism

Fn(VY,O|D)χ ≃ (grWn+k(VY,O|D)χ)n,k
≃−−→
Nk

(grWn−k(VY,O|D)χ)n−k,0
≃−−−→

conj.
(grWn−k(VY,O|D)χ)0,n−k ≃ gr0F (VY,O|D)χ.

In particular, Nk(VY |D)trχ is the unique minimal subvariation of Hodge structure in grWn−k(VY |D)χ containing

gr0F (VY,O|D)χ, denoted (VY |D)trχ , i.e.,

(6.6) (VY |D)trχ ≃ (VY |D)trχ .
Step 2. Let ψD be the vanishing cycle functor associated to a global function defining Y3,D, which exists

up to further shrinking W . The specialization morphism QY3,D
→ ψDQY3

between Hodge modules on Y3,D
(cf. [Sai90, (2.24.3)] or [PS08, Thm. 11.29]) induces a µd-equivariant morphism of polarizable variation of
mixed Hodge structures

(6.7) Rn(f3)∗QY3,D
→ RnψDQY3

≃ VY |D,
where the last isomorphism follows, e.g., by the remark right before [Ste75, (5.11) Cor.]. The morphism (6.7)
induces an isomorphism

gr0F R
n(f3)∗CY3,D

≃ gr0F (VY,O|D)χ,
which entails the isomorphism of variation of pure Hodge structures

(6.8) (VY |D)tr ≃ (Rn(f3)∗QY3,D
)trχ ≃ (Rn(f2)∗QY2,D

)trχ ;

see [KLS21, Cor. 5.7, Proof of Prop. 9.2].
Step 3. Write Y2,D := R =

⋃
i∈I Ri as a union of its irreducible components, and fix an ordering of I.

Denote by R[k] the disjoint union of the strata that have codimension k in R. The Mayer–Vietoris complex
of QR associated to the closed cover {Ri}i∈I
(6.9) QR• : QR[0] → QR[1] → QR[2] → . . .

is a µd-equivariant resolution of QR. Recall that the differential of the complex is induced by the natural
restriction QRJ

→ QRJ∪{j} , with a plus or a minus sign according to the parity of the position of j in J ∪{j};
cf. [KLSV18, App. A]. There exists a µd-equivariant spectral sequence

(6.10) Ep,q1 = Rp(f2)∗QR[q] =⇒ Rp+q(f2)∗QR.
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Since the differentials of the spectral sequence are morphisms of variations of mixed Hodge structures and all
strata of R are proper with quotient singularities (hence they are rational homology manifolds), the spectral
sequence (6.10) induces the µd-equivariant spectral sequence

gr0F E
p,q
1 = gr0F R

p(f2)∗QR[q] = gr0F grWp Rp(f2)∗CR[q] =⇒ gr0F R
p+q(f2)∗CR,

abutting at the E2 page for weight reasons. Together with Lemma 6.32, we obtain

gr0F (R
n(f2)∗CR)χ ≃ gr0F E

n
∞,χ ≃ gr0F E

n
2,χ ↠ gr0F E

m,n−m
2,χ ↠ gr0F (R

m(f2)∗CS2
)χ.

Since both gr0F (R
n(f2)∗CR)χ and gr0F (R

m(f2)∗CS2
)χ are line bundles, the last two surjective maps are actual

isomorphisms, and so
gr0F (R

n(f2)∗CR)χ ≃ gr0F (R
m(f2)∗CS2

)χ

(as an aside, this also shows that k = m). Therefore, we conclude

(6.11) (Rn(f2)∗QY2,D
)trχ ≃ (Rm(f2)∗QS2

)trχ = (VS)
tr
χ ,

where the last equality follows again from the fact that S2 has quotient singularities. □

We prove the lemma used in the proof of Theorem 6.31. Recall that n (resp. m) is the relative dimension
of the morphisms Yi →W (resp. Si → D).

Lemma 6.32. In the notation of Step 3 of the proof of Theorem 6.31, we have

coker(d1 : gr0F E
m,n−m−1
1,χ → gr0F E

m,n−m
1,χ ) ↠ gr0F (R

m(f2)∗CS2
)χ.

Proof. Since all strata of R have quotient (hence du Bois) singularities, we write

gr0F E
p,q
1,χ ≃ (Rp(f2)∗OR[q])χ ≃ Rp(f1)∗Oa(R[q])(−L1).

Write a(R[q]) = LCC [q]∪a(R[q])′, where LCC [q] is the disjoint union of the lc centers of (Y1,∆1) of dimension
n − q, and a(R[q])′ is the disjoint union of the residual (n − q)-dimensional strata of Y1,D that are not lc
centers. For brevity, set Ap,q := Rp(f1)∗OLCC[q](−L1) and Bp,q := Rp(f1)∗Oa(R[q])′(−L1). Since the only

strata of a(R[n−m−1]) containing a minimal lc center are lc centers, the differential

d1 : A
m,n−m−1 ⊕Bm,n−m−1 → Am,n−m ⊕Bm,n−m

is lower triangular; cf. (6.9). We determine the upper block of

dA := prAm,n−m ◦ d1 ◦ iAm,n−m−1◦ : Am,n−m−1 → Am,n−m,

where pr and i denote the natural projections and inclusions.
To this end, let Z1 ⊂ Y1 be an irreducible component of LCC [n−m−1]. The trace of E1 on Z1, denoted

by EZ1
, is the restriction to Z1 of the components of E1 not containing Z1. By Construction 6.29, the log

resolution g : Y1 → Y ′ is an isomorphism over the snc locus of the dlt pair (Y ′,∆′+Y ′
D), hence at the generic

point of Z1. By [Kol13, (4.6),(4.7.1), Thm. 4.19], the induced map

g : (Z1, EZ1
+ (F1 −G1)|Z1

) → (Z ′,Diff∗
Z′(∆′ + Y ′

D)) := (g(Z1), g∗(EZ1
+ (F1 −G1)|Z1

))

is crepant birational, and (Z ′,Diff∗
Z′(∆′+Y ′

D)) is an (effective) dlt pair. In particular, g must contract G1|Z1

and maps EZ1
birationally onto EZ′ := Diff∗

Z′(∆′ + Y ′
D)

=1. We obtain

Rg∗OZ1(G1|Z1 − EZ1) ≃ g∗OZ1(G1|Z1 − EZ1) ≃ OZ′(−EZ′),

where the first isomorphism follows from [Kol13, Cor. 10.38.(1)] since G1|Z1
− EZ1

∼Q,g KZ1
+ F1|Z1

, and
the second isomorphism follows by the normality of Z ′ and Z1 and since G1|Z1 − EZ1 + g∗EZ′ is effective
and g-exceptional. Pushing forward along f1 and using relative duality, we obtain

(Rm(f1)∗OZ1
(−L1))

∨ ≃ R1(f1)∗(ωZ1/D⊗L1) ≃ (R1(f1)∗OZ1
(G1|Z1

−EZ1
))⊗ω−1

D ≃ (R1f ′∗OZ′(−EZ′))⊗ω−1
D .
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Note that

• EZ′ has either one or two irreducible components by [Kol13, Prop. 4.37]; and
• R1f ′∗OZ′ ↪→ R1f ′∗OEZ′ by [BFPT24, Lem. 3.2].

Pushing forward along f ′ the short exact sequence 0 → OZ′(−EZ′) → OZ′ → OEZ′ → 0, we obtain

R1f ′∗OZ′(−EZ′) ≃

{
R0f ′∗OS if EZ′ = S ⊔ S′,

0 if EZ′ is connected.

To summarize, if Z1 is an lc center containing two distinct minimal lc centers S1 and S′
1, then

(6.12) Rm(f1)∗OZ1
(−L1) ≃ Rm(f1)∗OS1

(−L1);

otherwise Rm(f1)∗OZ1(−L1) ≃ 0.
Let Γ be the (oriented) graph whose vertices VΓ are the minimal lc centers of (Y1,∆1), and whose edges

are lc centers of dimension m + 1 joining two minimal lc centers. Then by definition of d1 and (6.12), the
map dA can be identified with δ⊗ idRm(f1)∗OS1

(−L1), where δ : C[EΓ] → C[VΓ], δ(e) = e0−e1 is the boundary

map of the graph Γ. By [Kol13, Thm. 4.40], Γ is connected, so

coker(dLCC1 ) = coker(δ)⊗Rm(f1)∗OS1
(−L1) ≃ H0(Γ,C)⊗Rm(f1)∗OS1

(−L1)

≃ Rm(f1)∗OS1
(−L1) ≃ gr0F (R

m(f2)∗CS2
)χ.

□

7. B-semiampleness conjecture

7.1. Proof of the b-semiampleness conjecture.

7.1.1. Proof of Theorem 1.5. Let f : (Y,∆) → X be an lc-trivial fibration inducing the generalized pair
(X,BX ,M). Up to taking a modification of X and the corresponding normalized fiber product of Y , we
may assume that all varieties involved are quasiprojective. The b-semiampleness conjecture for lc (or slc)
generic fiber is equivalent to the b-semiampleness conjecture for klt generic fiber, via subadjunction to a
source; see [FG14b, Thm. 1.1] or Remark 7.4. Moreover, the statement of the conjecture is insensitive to
alteration of the base; cf. Remark 6.16. Therefore, we can suppose:

(‡) (Y,∆) is a klt quasiprojective pair over the generic point of X, and that properties (†) and (††) in
Construction-Definition 6.14 hold.

Then Construction-Definition 6.14 and Remark 6.17 imply the existence of:

(1) a snc pair (X,D);
(2) a polarizable integral variation of pure Hodge structures on X \D whose Deligne/Schmid extension

on X is denoted VY ;
(3) a complex CY variation of Hodge structures (VY )

tr
χ ⊆ VY,C whose Hodge bundle is MX ;

(4) a polarizable integral pure CY variation VCY of Hodge structures on X\D with unipotent local
monodromy whose Hodge bundle is MX .

In view of Theorem 4.1, to prove the b-semiampleness conjecture, it suffices to show that the moduli part is
integrable and has torsion combinatorial monodromy. This is the content of Theorem 7.1 and Theorem 7.2.

Theorem 7.1 (Integrability of M). Under the assumption (‡), the moduli part MX is integrable.

Proof. It suffices to show that for any integral subvariety Z ⊂ XΣ such that the restriction of MX is not
big, the period map of (VY |Z)trχ is not generically immersive.

We first alter X,Y, Z in order to compare the relevant variations of Hodge structure and set the inductive
argument on the dimension of the source. By Proposition 6.27, there exist
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(1) a projective alteration q1 : W1 → X,
(2) an lc-trivial locally stable fibration f1 : (Y1,∆1) →W1, dlt in codimension one, such that the pullback

of the generic fiber of f along q1 is crepant birational to the generic fiber of f1.
(3) a prime divisor E ⊂W1 dominating Z;
(4) a proper snc pair (R,DR), where R is a general complete intersection in E, mapping generically

finite onto Z,

such that (q∗1VY )
tr
χ has local unipotent monodromy on R \ DR. By §6.5, up to a further finite dominant

morphism q2 : W2 → R, a source of (f1)W2 : ((Y1)W2 , (∆1)W2) → W2, denoted fS : (S,∆S) → W2, is an
lc-trivial fibration

(1) inducing the generalized pair (W2, BW2
,N),

(2) satisfying properties (†) and (††) (in particular N descends on W2), and
(3) such that

(7.1) (q∗VY )
tr
χ ≃ (VS)

tr
χ and q∗MX ≃ NW2 ,

where q := q1 ◦ q2 : W2 → X. Note also that fS is locally stable by Lemmas 6.22, 6.24 and [Kol23, cf. proof
of Lem. 2.11], so f∗SNW2

∼Q KS/W2
+∆S by Lemma 6.26.

Now, assume that MX |Z is not big. Then NW2 is so too. By [Amb05, Thm. 3.3] or [PZ20, Thm. A.12],
there exist curves passing through the general point of W2 over which fS is isotrivial, so the period map of
(VS)

tr
χ (resp. of V tr

S and V tr
S,CY ) is not generically immersive. By (7.1), we conclude that the period map of

(VY |Z)trχ (resp. (VCY |Z)trχ ) is not generically immersive. □

Theorem 7.2 (Torsion combinatorial monodromy of M). Under the assumption (‡), the moduli part MX

has torsion combinatorial monodromy.

Proof. Let C be a proper connected strictly nodal curve with normalization νC , and q : C → X be a
morphism from a proper strictly nodal curve C such that (q ◦νC)∗MX is trivial. We show that the canonical
flat connection on q∗MX has torsion monodromy. Observe that, in the statement, we can always replace C
with proper connected strictly nodal curves dominating C.

Step 1. We first construct an sdlt modification of f over C. By Proposition 6.27, there exist

(1) a projective alteration q1 : W → X,
(2) an lc-trivial locally stable fibration f1 : (Y1,∆1) →W , dlt in codimension one, such that the pullback

of the generic fiber of f along q1 is crepant birational to the generic fiber of f1.

such that

q∗1M(f) = M(f1) and MW := M(f1)W ∼Q
1

k
(f1)∗(ω

[k]
Y1/W

(k∆1)),

where k is a sufficiently divisible positive integer, and q−1
1 (C) has simple normal crossings. Replace C

with a (connected) proper strictly nodal complete intersection in q−1
1 (C) dominating C. In particular, we

can suppose that the locally stable fibration f1,C : Y1,C → C is sdlt over a dense open set C◦ ⊂ C. By
Lemma 6.28, there exist a morphism q′ : C ′ → C from a connected stricly snc curves and an lc fibration
f ′ : (Y ′,∆′ := ∆1,C′) → C ′ with the property that

(1) (Y ′,∆′) is an sdlt pair, whose irreducible components each dominate an irreducible component in
C ′;

(2) the restriction of f ′ to any sources dominating an irreducible component of C ′ is an lc-trivial fibration
(with connected fibers);

(3) f ′∗ω
[k]
Y ′/C′(k∆

′) ≃ k(q ◦ q′)∗MX , where k is a sufficiently divisible positive integer.



48 B. BAKKER, S. FILIPAZZI, M. MAURI, AND J. TSIMERMAN

Step 2. We are left to show that if f ′∗ω
[k]
Y ′/C′(k∆

′) is trivial on each component of C ′, then the monodromy

of f ′∗ω
[k]
Y ′/C′(k∆

′) is torsion. To this end, observe that any source fS : S → C ′
S , for some irreducible component

of C ′, is an lc-trivial fibration with M ∼Q 0, since MC′ ∼Q (q ◦ q′)∗MX is trivial by assumption along the
irreducible components of C ′. Hence, by the compatibility of locally stable families with base change,
[Amb05, Thm. 3.3 and Prop. 4.4] or [PZ20, Thm. A.12], fS is an isotrivial families, i.e., all fibers are
isomorphic to one another, which allows to identify minimal lc centers over adjacent nodes of C ′.

The intersection complex of an sdlt variety is the dual polyhedron of its dual complex. Denote by ∆(C ′)
and ∆(Y ′) the intersection complex of the snc curve C ′ and that of the sdlt variety Y ′. The 1-skeleton of
∆(Y ′), denoted ∆(Y ′)1, consists of two types of edges:

• (dominating edge) those corresponding to sources of Y ′ dominating a component of C ′, which are
isotrivial families of fiberwise minimal centers; and

• (edge of P1-link type) those corresponding to P1-link between minimal strata of Y ′, mapping to a
node of C ′.

Note that ∆(Y ′)1 is connected by the isotriviality of sources over dominating edges and [Kol13, Thm. 4.40] for
edges of P1-link type. Also, by construction there is a surjective simplicial map ∆(Y ′)1 → ∆(C ′)1 = ∆(C ′).
In particular, each loop in ∆(C ′) admits a (non-unique) lift γ in ∆(Y ′)1. Fix it once for all. Recall that any
vertex of γ corresponds to the source W . A dominating edge e with vertices s, t induces an isomorphism of
minimal lc centers (Zs,∆Zs

) → (Zt,∆Zt
) by the isotriviality of the family of sources. An edge of P1-link type

with vertices s, t induces a crepant birational map (Zs,∆Zs
) 99K (Zt,∆Zt

) by [Kol13, Thm. 4.40]. Following
the birational identification along the loop γ, we obtain a birational automorphism of a fixed reference

minimal lc center (Z,∆Z) of a general fiber, which induces a representation Zγ → Aut(H0(Z, ω
[2k]
Z (2k∆Z))),

which is trivial for k large and divisible enough by the finiteness of B-representations [HX16, Thm. 1.2]. □

This concludes the proof of Theorem 1.5. □

7.1.2. B-semiampleness for projective morphisms between complex analytic spaces. In recent years, there has
been quite some activity in extending the usual MMP to the context of Kähler spaces or analytic varieties.
The b-semiampleness of the moduli part for projective morphisms of complex analytic spaces can be reduced
to the algebraic case of Theorem 1.5 as follows. In particular, we drop the quasiprojectivity assumption in
(‡).

Theorem 7.3. Let (Y,∆) be a normal complex analytic space with a sub-pair structure, and let f : (Y,∆) →
X be a projective fibration between complex analytic spaces. Assume that KY +∆ ∼Q,f 0 and that the general
fiber of f is an lc pair. Then, the moduli part of f is b-semiample.

Proof. Without loss of generality, we can assume that the generic fiber is klt by Remark 7.4. Let F : (Y,Ξ) →
X be a Hilbert scheme parametrizing general fibers of the projective morphism f : (Y,∆) → X. Up to
replacing X with a modification, we can suppose that the classifying map Ψ: X 99K X is an analytic
morphism, by applying Hironaka’s flattening theorem [Hir75, Cor. 1] to f and the components of Supp(∆)
dominating X. Replacing X with the Zariski closure of the image of Ψ: X → X , we can attribute coefficients
to the irreducible components of Ξ such that (YU ,∆U ) ≃ (Y,Ξ) ×X U , over a dense open set U ⊂ X. In
particular, there exists a dense open subset U ⊂ Z such that (XU ,ΞU ) is a pair ([HX15, Prop. 2.4]) with klt
singularities, and (XU ,ΞU ) → U is an lc-trivial fibration.

Up to an alteration, the moduli part of f is the Hodge bundle of a variation of Hodge structures obtained
by the algorithm in Construction-Definition 6.14; see Remark 6.20. Construction-Definition 6.14 applied to
FU pulls back to the analogous construction for fU , up to eventually shrinking U . Replacing X and X with
compatible alterations, there exists a morphism Ψ: X → X , and polarizable variations of Hodge structures
VU and VU on dense open subsets U ⊂ X and U ⊂ X , whose complements are snc divisors, and such that:
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(1) Ψ|∗UVU = VU , and (2) the Schmid extension of the deepest piece of the Hodge filtration of VU (resp. VU )
is the moduli part. By the functoriality of the Schmid’s extension, we have Ψ∗MX = MX . Hence, the
semiampleness of the moduli part of f in the analytic case follows from the semiampleness of the moduli
part of FU in the algebraic case, proved in Theorem 1.5. □

Remark 7.4. Let f : (Y,∆) → X be a morphism as in Theorem 7.3 and fS : (S,∆S) → X be a source of
(Y,∆). Note that M(f) ∼Q M(fS) as in (6.11). This means that the moduli part of an lc-trivial fibration
from an lc pair is the moduli part of an lc-trivial fibration from a klt pair. This reproves [FG14b, Thm. 1.1]
without using semistable reduction, in particular it holds over an analytic base as well.

7.2. Applications of the b-semiampleness conjecture and open questions. In this section, we collect
some immediate applications of the b-semiampleness of the moduli part of an lc-trivial fibration.

7.2.1. Image of lc pairs. We show that the image of an lc pair under an lc-trivial fibration is again lc,
generalizing [Amb05, Thm. 4.1] and [FG14b, Lem. 1.1].

Theorem 7.5. Let (Y,∆Y ) be an lc (resp. klt) pair and f : (Y,∆Y ) → X be a projective fibration with
KY +∆Y ∼Q 0. Then there exists an lc (resp. klt) pair (X,∆X) such that KY +∆Y ∼Q f

∗(KX +∆X).

Proof. The moduli part of the generalized lc pair (X,BX ,M) induced by f (cf. Theorem 6.12) is b-semiample
by Theorem 1.5. Apply then [EFG+25, Lem. 4.3]. □

We expect that Theorem 7.5 could be a key ingredient in inductive arguments in birational geometry. In
the klt case, a version of Theorem 7.5 for klt sub-pairs is used to reduce the finite generation of canonical
rings to the general type case; see [BCHM10, Cor. 1.1.2]. According to [BGLM24, §1.8], Theorem 7.5 was
one of the missing ingredients to prove that reductive quotients of lc pairs are again lc.

7.2.2. Adjunction and inversion of adjunction. The lc centers of a dlt pair (X,∆) coincide with the irre-
ducible components of the strata of ∆=1. In particular, adjunction to an lc center of any dimension can be
performed using the usual residue theory iteratively, as with prime divisors; see [Kol13, §4.2]. In general, to
induce a structure of a pair on an lc center Z of an arbitrary lc (not dlt) pair (X,∆) is more complicated.
Roughly speaking, one performs the following steps:

(1) take a dlt modification (X ′,∆′) → (X,∆);
(2) choose a prime divisor S in Supp(∆′)=1 dominating Z;
(3) perform dlt adjunction of (X ′,∆′) to S, thus obtaining a pair (S,∆S);
(4) consider the lc-trivial fibration (S,∆S) →W , where W denotes the Stein factorization of S → Z;
(5) utilize the canonical bundle formula to induce a pair structure on W ; and
(6) descend this latter structure to the normalization Zν of Z.

For more details, we refer to [FG12, §4]. For this reason, so far, it was only possible to induce the structure
of klt pair on minimal lc centers of lc pairs. Thanks to Theorem 1.5, we can generalize this construction to
any lc center.

Theorem 7.6 (Adjunction and inversion of adjunction). Let (X,∆) be a pair and Z be an lc center. Then,
the normalization Zν can be endowed with a pair structure (Zν ,∆Zν ) with the following properties:

(1) KZν +∆ν ∼Q (KX +∆)|Zν ; and
(2) (X,∆) is lc in a neighborhood of Z if and only if (Zν ,∆Zν ) is lc.

Proof. We apply the construction in [FG12, §4]. Thus, (1) holds by construction. Then, by Theorem 7.5 and
the construction adopted, the “only if” part of (2) follows. Thus, we are left with showing that, if (Zν ,∆Zν )
is lc, then so is (X,∆) in a neighborhood of Z. For general lc centers, due to the lack of Theorem 1.5,
adjunction could only be formulated by using b-divisors on Zν ; see [Hac14, FH22]. The approaches in
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[Hac14,FH22] are proved equivalent in [FH23]. The b-divisor considered in [Hac14] is exactly the boundary
b-divisor of the canonical bundle formula considered in [FG12, §4]. In particular, in [Hac14], inversion of
adjunction is formulated by requiring that the boundary b-divisor has coefficient at most 1 on any model. By
Theorem 7.5 and the construction adopted, this condition is equivalent to requiring that the pair (Zν ,∆Zν )
is lc. Then, the claim follows. □

7.2.3. Comment about boundary with R-coefficients. Throughout this work, for a pair (X,∆) we assume that
∆ has coefficients in Q. For many applications, it is important to extend results to pairs with coefficients in
R. We remark that Theorem 7.5 and Theorem 7.6 also hold for pairs with real coefficients, provided that all
linear equivalences are taken to be over R. This relies on the approximation of pairs with real coefficients
by means of convex combinations of pairs with rational coefficients; see, e.g., [HL21].

Indeed, let f : (Y,∆) → X be an lc-trivial fibration where (X,∆) is a quasi-projective R-pair. By [HL21,
Lem. 4.1], we may write the R-divisor KY + ∆ =

∑
ci(KY + ∆i) as a real convex combination of finitely

many Q-Cartier divisors KY +∆i such that: (1) the non-lc and non-klt loci of the pairs (Y,∆i) agree with
the corresponding ones of (Y,∆) for all i; and (2) KY + ∆i ∼Q,f 0 for all i. Let (Xi, Bi) be the lc Q-pair
obtained applying Theorem 7.5 to the lc-trivial fibration f : (Y,∆i) → X. To deduce Theorem 7.5 for (Y,∆),
take the lc R-pair (X,

∑
ciBi). Moreover, to obtain the corresponding version of Theorem 7.6 for (Y,∆),

we utilize the pair just constructed whenever the canonical bundle formula is invoked in the proof, together
with inversion of adjunction for fiber spaces and the fact that (Y,∆) and (Y,∆i) have the same classes of
singularities.

7.2.4. Effective b-semiampleness. Let f : (Y,∆) → X be an lc-trivial fibration inducing the generalized pair
(X,BX ,M). The effective b-semiampleness conjecture predicts the existence of a universal positive integer
c, only depending on the relative dimension of f and the coefficients of the horizontal part of ∆, such that
cM is b-free, or eventually weaker statements involving other topological invariants of the general fiber.
The conjecture was formulated by Prokhorov and Shokurov [PS09, Conj. 7.13.3], and proved in loc. cit. in
relative dimension 1. Recently, the conjecture has also been solved for lc-trivial fibrations whose general
fiber is an abelian or primitive symplectic variety with bounded second Betti number of fixed dimension;
see [EFG+25, Thm. C]. This was a key step towards the proof of boundedness results for certain K-trivial
fibrations in [EFG+25]. In particular, combining [EFG+25] and [ABB+23, Thm. 1.4], the conjecture is also
settled in relative dimension 2.

It is natural to ask whether a fixed positive power of the Schmid extension of the Griffiths bundles of
a polarizable integral variation of Hodge structures sharing the same period domain is free. Analogously,
whether the same holds for the Hodge bundle of integrable polarizable CY variations of Hodge structure
with torsion combinatorial monodromy sharing the same period domain. A positive answer to this question
may entail boundedness results for more general K-trivial fibrations.

While the effective version of the b-semiampleness conjecture remains open at the moment, Corollary 7.8
below provides a tool to prove it when the general fibers belong to a given bounded family of pairs. Thus,
we deduce the effective version of the conjecture when the general fiber is a klt log CY pair of Fano type.
In particular, we obtain the following application, which was kindly pointed out to us by Shokurov.

Corollary 7.7. Let f : (Y,∆) → X be an lc-trivial fibration of relative dimension n from a pair (Y,∆) such
that ∆ is effective over the generic point of X. Further assume the following:

(i) the generic fiber of f is a klt pair;
(ii) ∆ is big over X.

Let M denote the moduli b-divisor induced by f . Then, there is a constant I, only depending on n and the
horizontal multiplicities of ∆, such that IM is b-Cartier and b-free.
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Proof. Since the moduli b-divisor is determined by the general behavior of the fibration, we may shrink X
so that (Y,∆) is a klt pair and ∆ has no f -vertical components. Then, we may replace (Y,∆) with a small
Q-factorialization. In particular, we may assume that ∆ is a Q-Cartier divisor that is f -big. Notice that
(Y, (1 + ϵ)∆) is klt for 0 < ϵ≪ 1 and KY + (1 + ϵ)∆ is f -big.

Thus, we may apply [BCHM10] to (Y, (1 + ϵ)∆) and the morphism f and replace Y with the relatively
ample model of ∆. In particular, Y may no longer be Q-factorial, but we gain the fact that ∆ is f -ample.
Notice that all these operations do not affect M.

Up to shrinking X, we may assume that all the fibers (Yx,∆x) of f are klt pairs. Then, these belong to
a bounded family of pairs by [HX15]. In particular, there is a constant C, independent of f or of the point
x ∈ X (recall X has been shrunk), such that C∆x is ample and Cartier. In order to construct a relative
polarization to apply Corollary 7.8 below, we need to conclude that also C∆ is Cartier. This latter fact
follows by boundedness and [Kol23, Thm. 5.8]; in particular, the constant C can be taken to guarantee that
C∆ is Cartier and f -ample.

Then, we may invoke Corollary 7.8 for these log CY pairs and the polarization given by the Cartier divisor
C∆x. Then, M is pulled back from a unique space as constructed in Corollary 7.8, and the claim follows. □

7.2.5. Connections to the theory of complements. The theory of complements has been introduced by Shokurov
to study flips and, more generally, morphisms of Fano type; we refer to [Sho20] for details. In recent years,
this theory has proved very powerful; for instance, Birkar’s proof of the BAB conjecture relies heavily on this
theory; see [Bir19,Bir21]. On the other hand, in Birkar’s strategy, it is important to relax the category of
pairs to also include generalize pairs, and then study complements for these more general objects, originally
introduced in [BZ16]. Indeed, in [Bir19], complements are built with an inductive approach, and one of the
possible scenarios includes lifting complements from the base of an lc-trivial fibration with fibers of Fano
type; see [Bir19, §6.4]. In particular, even when interested in pairs, the approach in [Bir19] needs to introduce
generalized pairs for the inductive argument to go through. Now, by Corollary 7.7, we may induce a pair
with controlled coefficients on the base of such lc-trivial fibrations. Thus, it would be interesting to explore
whether boundedness of complements could be proved without resorting to generalized pairs.

7.2.6. B-semiampleness for GLC fibrations. Let f : (Y,∆) → X be a generically log canonical (GLC) fibra-
tion, i.e., (Y,∆) is lc over the generic point of X. Note that, contrary to the lc-trivial case, the general fiber
is no longer assumed to be log Calabi–Yau. In the GLC case, the moduli part is the b-divisor on the total
space Y given by MY := KY +∆− f∗(KX +BX), up to flatification of Y ; see [ACSS21, §2.2] for details. It
is known that M is b-nef, relatively b-semiample, but not b-semiample in general; see [ACSS21]. However,
Shokurov conjectured that M is b-semiample after a small perturbation by an ample divisor coming from
the moduli of the general fiber; see [Sho23, Conj. 1]. The second-named author and Spicer proved a variant
of Shokurov’s conjecture in [FS22, Thm. 1.2]: for GLC fibrations with klt generic fibers that are locally
stable families of good minimal models, the b-divisor M+ ϵf∗ det(f∗mM) is b-semiample, conditional to the
b-semiampleness conjecture in the lc-trivial case. Here, m is sufficiently divisible and ϵ is arbitrarily small
and positive. The result now holds unconditionally by Theorem 1.5.

7.3. Moduli of Calabi–Yau varieties. In this section we deduce Corollary 1.8. In fact, we prove a more
precise statement allowing for mild singularities.

Let Y be a Gm-rigidified algebraic stack of finite type parametrizing polarized klt log Calabi–Yau pairs,
i.e., triples (X,∆;L), where (X,∆) is a klt log Calabi–Yau pair, and L is an ample line bundle on X. Note
that here we rigidify with respect to the automorphisms of the line bundle L. Families of triples (X,∆;L)
are families of locally stable pairs in the sense of Kollár, together with a polarization, i.e., the datum of
compatible relatively ample line bundles defined étale locally over the the base; see, e.g., [AH11, §4.2] or
[Kol23, Def. 8.40].
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We list noteworthy properties of the moduli stack Y:

(i) The moduli stack Y is a separated (cf., [Kol23, Thm. 11.40]) Deligne–Mumford stack. Indeed, the
group of polarized automorphisms of a klt log Calabi–Yau pair is finite; see, e.g., [PZ20, Prop. 10.1].
Hence, Y admits a coarse moduli space Y which is a separated algebraic space of finite type by
[KM97].

(ii) Let f : (X ,∆X ) → S be a polarized family of klt log Calabi–Yau pairs admiting a classifying map
ψ : S → Y . If f is isotrivial, then ψ is locally constant. Indeed, since the Albanese fibration of any
projective klt log Calabi–Yau pair (X,∆) is surjective and isotrivial by [PZ20, Cor. A.14], there exists
an étale cover of (X,∆), with Galois group G, which can be decomposed into a product of an abelian
variety A, isogenous to the Albanese variety, and a klt log Calabi–Yau pair isomorphic to the fiber
of the Albanese fibration. The G-equivariant translation group of A descends to automorphisms
of (X,∆), which identify numerically equivalent ample line bundles on X up to finite ambiguity.
Therefore, for any given fixed pair (X,∆), there are at most finitely many points of Y parametrizing
triple (X,∆;L), with an arbitrary line bundle L. This means that Y does not contain non-constant
isotrivial families of pairs.

(iii) The Hodge bundle of the universal family is well-defined on Y as it coincides with the relative

canonical bundle of the family. Its powers descend to a Q-line bundles M
(k)
Y on the coarse moduli

space Y ; see [KV04, Lem. 3.2].

(iv) The Q-line bundles M
(k)
Y are strictly nef by [Amb05, Thm. 3.3] or [PZ20, Thm. A.12] and (ii).

(v) There is a dense Zariski open substack U ⊂ Yred over which the topology of the universal family of
the pairs (X,∆) (more precisely, that of the construction in Construction-Definition 6.14) is locally
constant. The variation of Hodge structures associated to the universal family, as constructed in
Construction-Definition 6.14, gives a period map ϕ : U → U → Γ\D, which factors through the
coarse moduli space U of U ; cf. [BBT23a, Proof of Cor. 7.3].

(vi) The map U → Γ\D is quasifinite again by [Amb05, Thm. 3.3] or [PZ20, Thm. A.12] and (ii).

Corollary 7.8. Let Y be an algebraic stack of finite type parametrizing polarized klt log Calabi–Yau pairs,
and Y be its coarse moduli space. Then the normalization Y ν of the reduction Y red has a unique normal

compactification Y BBH for which some power M
(k)
Y of the Hodge bundle of the variation of Hodge structures

on middle cohomology extends to an ample bundle OY BBH(k) and such that for any family g : Z\DZ → Y for
a log smooth algebraic space (Z,DZ), the resulting morphism Z\DZ → Y lifts to Y ν and extends to extends
to g : Z → Y BBH with the property that g∗OY BBH(k) pulls back to (Mk

Z\DZ
)Z .

Proof. The Hodge bundle of the universal family over Y is integrable and has torsion combinatorial mon-
odromy by Theorem 7.1 and Theorem 7.2, since these can be checked on an alteration. These properties
of the Hodge bundles, together with properties (iv) and (vi), allows us to apply Theorem 5.3: there is a
normal compactification (Uν)BBH of the normalization Uν of U satisfying the properties of Theorem 5.3. In

particular, the Hodge bundle M
(k)
Uν extends amply on (Uν)BBH. The Hodge bundle on Y agrees with the

Schmid extension of the Hodge bundle on a log smooth resolution S → Y. By the universal property of
coarse moduli space, the extension S → (Uν)BBH factors through Y ν → (Uν)BBH, which is birational and
quasifinite, hence an open immersion. □

Proof of Corollary 1.8. By Bogomolov–Tian–Todorov [Bog78,Tia87,Tod89], Y is smooth, so Y is normal.
□

7.3.1. Stratification of Baily–Borel compactifications. In the context of Corollary 7.8, the following descrip-
tion of the underlying set of points of Y BBH follows from the proof in §5. For any choice of proper log smooth
algebraic space (X,D) with a proper birational morphism X\D → Y , we will have Y BBH = X(C)/Rcurve.
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For a particular choice (X ′, D′), the compactification Y BBH will have a natural stratification by the images

Y BBH
S of the Hodge strata X ′

S , and for each one there will be a period map whose projection Ỹ BBH
S

V tr
S,Q

→
P(V tr

X′,S,C,xS
)an has discrete fibers. Thus, for any stratum XΣ of X whose image meets Y BBH

S we have

(7.2) dimY BBH
S ≤ rk grm−1

F V tr
X′,S ≤ rk grm−1

F grWkΣ VX,Σ = rk grm−1
F grWkΣ ψΣV

where ψΣV is the limit mixed Hodge structure at any point of XΣ. The last equality follows since any
part of grm−1

F grWkΣ ψΣV is necessarily primitive, since grmF grWkΣ+2 ψΣV = 0. In particular, in the case of the
Baily–Borel compactification of a moduli space of d-dimensional Calabi–Yau varieties as in Corollary 7.8
(where V is the variation on degree d cohomology), we have dimY = rk grd−1

F V and so

codimY BBH
S ≥

∑
k ̸=kΣ

rk grd−1
F grWk ψΣV.

As it can be seen from the case of Ag or the moduli of K3s, this codimension can be quite large in practice.
In fact, in these two cases, equality is achieved (though in general it won’t be, as either of the inequalities
in (7.2) might be strict).

7.3.2. BB vs BBH compactifications. We give an example of a moduli stack of Calabi–Yau manifolds Y for
which the morphism Y BB → Y BBH has positive-dimensional fibers. This is easy to do on the boundary.
For example, let Y be the coarse moduli space of smooth quintic threefolds, and consider a degeneration
to a transverse union of a hyperplane L and a smooth quartic threefold T , meeting along a quartic K3
surface S. The associated graded of the limit mixed Hodge structure then includes the primitive cohomology
H3(T,Q)prim in weight 3 and the primitive cohomology H2(S,Q)prim in weight 2. The transcendental part of
the limit mixed Hodge structure is then the transcendental part of H2(S,Q). Thus, since quartic threefolds
and quartic surfaces satisfy an infinitesimal Torelli (for middle cohomology), and the period map of the linear
systems |OT (1)| on a fixed (general) T is immersive, this boundary piece survives in Y BB with dimension
4 + (

(
4+4
4

)
− 52) = 49. On the other hand, this boundary piece has dimension 19 in Y BBH.

It is even possible for Y BB → Y BBH to contract curves in the interior of the period domain. Precisely,
Y BB will always contain as an open set Y ⊂ Y̆ BB ⊂ Y BB the normalization (in Y ) of the closure of the image
of Y an → Γ\D. This is the locus of Y BB where the Hodge structure does not degenerate (or equivalently,

where the limit mixed Hodge structure is pure), and Y̆ BB → Y BBH may have positive-dimensional fibers.
This is indeed the case of the coarse moduli space Y of smooth quintic threefolds.

The following is an example due to Radu Laza, and we warmly thank him for sharing it with us. For a
generic choice of a := (a1, a2, a3, a4) ∈ C4,16 the quintic threefold X in P4 cut by the polynomial

fa(x0, x1, x2, x3, x4) := x20x
3
1 + x30(x

2
2 + x23 + x24) + a1x

5
1 + a2x

5
2 + a3x

5
3 + a4x

5
4

has a unique isolated A2 singularity at p := [1 : 0 : 0 : 0 : 0]. The blowup X̃ → X along p, with exceptional
divisor E ≃ P(1, 1, 2), is a resolution of singularities. The Mayer–Vietoris exact sequence for the mapping
cylinder of this resolution reads

Hi−1(X̃,Q) ↠ Hi−1(E,Q) → Hi(X,Q) → Hi(X̃,Q),

which implies that Hi(X,Q) carries a pure Hodge structure.
Now, let X be the hypersurface in P4 × A2

(b1,b2)
cut by

fa(x0, . . . , x4)− (b22 + b2 + 1)b21x1x
4
0 + b2(b2 + 1)b31x

5
0 = 0,

16e.g., (a1, a2, a3, a4) = (1, 1, 1, 2) works but (a1, a2, a3, a4) = (1, 1, 1, 1) does not.
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and let f : X → A2
(b1,b2)

be the natural projection. Note that the restriction of X along the curve (b1 = 0)

is a trivial family with fiber X. Instead, the restriction of X along the curve {b2 = m}, with m general, is a
family with a unique isolated compound Du Val singularity of type cD4 along its central fiber X(0,m). The
local model is

(7.3) x23 + x24 + [x31 + x22 − (b22 + b2 + 1)b21x1 + b2(b2 + 1)b31] = 0,

i.e., a double suspension of [CML13, Eq. (7.3)], which is a blowup of the Weyl cover of the miniversal
deformation of a cuspidal curve. By the Thom–Sebastiani’s formula for Hodge modules (cf., e.g., [MSS20,
Thm. 1.2]), the vanishing cohomology of (7.3) and [CML13, Eq. (7.3)] are isomorphic Hodge structures, up
to a Tate shift. By [CML13, §7.7], the vanishing cohomology is then a Tate shift of the first cohomology
group of an elliptic curve with j-invariant 256(b22 + 3)3/(b22 − 1)3.

Globally, the nearby cohomology for f : X(b1,m) → A1
b1

is an extension of the pure Hodge structures
of the vanishing cohomology of the isolated hypersurface singularity and of the cohomology of X(0,m), as
one can check taking cohomology of the specialization triangle [PS08, p.276] and using the purity of the
vanishing cohomology and of H∗(X,Q). By the purity of the limiting mixed Hodge structure, the period
map Y an → Γ\D extends to (A2)an(b1,b2) → Γ\D.

We conclude that the curve (b1 = 0) maps generically finitely in Y̆ BB, but it is contracted by Y BB → Y BBH.
Indeed, the Hodge bundle is trivial along (b1 = 0) since f is trivial along the curve, but the Griffiths bundle
of R3f∗QX |(A1)∗b1

×A1
b2

is positive since the j-invariant of the vanishing cohomology as a summand of the

nearby cohomology varies.
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Épijournal Géom. Algébrique 7 (2023), Art. 12, 31. ↑6
[Den25] H. Deng, On the generalized toroidal completion of period mappings, arXiv e-prints (2025), available at 2506.10109.

↑3
[DR23] H. Deng and C. Robles, Completion of two-parameter period maps by nilpotent orbits, arXiv e-prints (2023), available

at 2312.00542. ↑3
[EFG+25] P. Engel, S. Filipazzi, F. Greer, M. Mauri, and R. Svaldi, Boundedness of some fibered K-trivial varieties, arXiv

e-prints (July 2025), arXiv:2507.00973, available at 2507.00973. ↑49, 50
[FFL22] O. Fujino, T. Fujisawa, and H. Liu, Fundamental properties of basic slc-trivial fibrations II, Publ. Res. Inst. Math.

Sci. 58 (2022), no. 3, 527–549. ↑5
[FG12] O. Fujino and Y. Gongyo, On canonical bundle formulas and subadjunctions, Michigan Math. J. 61 (2012), no. 2,

255–264. ↑49, 50
[FG14a] O. Fujino and Y. Gongyo, Log pluricanonical representations and the abundance conjecture, Compos. Math. 150

(2014), no. 4, 593–620. ↑8
[FG14b] O. Fujino and Y. Gongyo, On the moduli b-divisors of lc-trivial fibrations, Ann. Inst. Fourier (Grenoble) 64 (2014),

no. 4, 1721–1735 (English, with English and French summaries). ↑4, 5, 39, 46, 49
[FH22] O. Fujino and K. Hashizume, On inversion of adjunction, Proc. Japan Acad. Ser. A Math. Sci. 98 (2022), no. 2,

13–18. ↑49, 50
[FH23] O. Fujino and K. Hashizume, Adjunction and inversion of adjunction, Nagoya Math. J. 249 (2023), 119–147. ↑50
[Fil20] S. Filipazzi, On a generalized canonical bundle formula and generalized adjunction, Ann. Sc. Norm. Super. Pisa Cl.

Sci. (5) 21 (2020), 1187–1221. ↑5
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