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Abstract

We prove that Shimura varieties and geometric period images satisfy a p-adic extension
property for large enough primes p. More precisely, let D* C D denote the inclusion of the
closed punctured unit disc in the closed unit disc. Let X be either a Shimura variety or a
geometric period image with torsion-free level structure. Let F' be a discretely valued p-adic
field containing the number field of definition of X, where p is a large enough prime. Then,
any rigid-analytic map f : (DX)® x D* — X&' defined over F whose image intersects the
good reduction locus of X3 (with respect to an integral canonical model) extends to a map
De*tb — Xan We note that this hypothesis is vacuous if X is proper. We also deduce an
application to algebraicity of rigid-analytic maps. Our methods also apply to the more general
situation of the rigid generic fiber of formal schemes admitting Fontaine-Laffaile modules which
satisfy certain positivity conditions.

1 Introduction

The purpose of this paper is to prove p-adic extension and algebraicity theorems for exceptional
Shimura varieties and geometric period images. This result is a p-adic analogue of the following
theorems for complex Shimura varieties that Borel ([Bor72]) proved in 1972:

Theorem (Borel extension). Let Shyx (G, X) be a Shimura variety with torsion-free level structure.
Let D be the complex open disc and let D* be the punctured open unit disc. Then, every holomorphic
map D** x D® — Shk (G, X)! extends to a map D+ — (Shy (G, X)BB)hel,

An immediate corollary of this extension result and GAGA is the following algebraicity theorem.

Theorem (Borel algebraicity). Let Shx(G,X) be as above, and let M be a complex algebraic
variety. Then every holomorphic map M"' — Shy (G, X)"! is the analytification of an algebraic
map M — Shk(G,X).

Here is the main theorem of this paper.

Theorem 1.1. Let X be either a Shimura variety or a geometric period image with torsion-free
level structure. There exists an integer N with the following property. Let p be a prime that doesn’t
divide N and suppose F is a discretely valued p-adic field containing the field of definition of X.
Suppose that f : (D*)*xD® — X8 is a rigid-analytic map defined over F such that Im(f) intersects
the good-reduction locus of Xr. Then, f extends to a map D0 — X

Theorem [1.1] has the following corollary.



Theorem 1.2. Let X,p and F be as above, and let M be an algebraic variety defined over F'.
Then, every rigid-analytic map f : M* — X" defined over F such that ITm(f) is contained in the
good reduction locus is the analytification of an algebraic map M — X.

Remark 1.3. 1. We define the good reduction locus precisely in Section [3| but informally, the
good reduction locus is the analytic open subspace of X" whose classical K-points arise as
Og-points of a good integral model of X. If X is proper, then the good reduction locus is
all of X" and therefore the good reduction hypothesis is vacuous. We expect the theorem to
hold without this hypothesis.

2. We draw the reader’s attention to the fact that the good reduction hypothesis in Theorem
has the consequence that the extension of f yields a map to X, and it is not necessary to
compactify X.

3. The setting of Shimura varieties of abelian type is addressed in |[OSZP24], where the authors
prove p-adic extension and algebraicity theorems without a good reduction hypothesis and
for all primes p. However, the extension of the map from (D*)® x D’ is only obtained to
the Baily-Borel compactification of X. Indeed, one may start with a map from D to the
Baily-Borel compactification with the property that D* maps to the interior and 0 maps to
the boundary.

1.1 Other results

The proofs of Theorem and [I.2] work in a more general setting than just the case of geometric
period images and Shimura varieties. In order to not mire ourselves in unenlightening notation and
technicalities, we will state a result that is not the most general but that is the cleanest to state.

Theorem 1.4. Let 2 be a smooth scheme over W (F,), and let 2°™& denote its rigid generic fiber.
Let L/ 28 be a crystalline local system with Vg, the associated Fontaine-Laffaile module. Suppose
that we are in one of the following two cases.

1. The Kodaira-Spencer map associated to the filtered flat bundle underlying Vy, is everywhere
1mmersive.

2. The Griffiths bundle associated to Vyr, is an ample bundle on Z .

Then, every map (D*)® x D® — 278 egtends to a map DO — 278

1.2 Outline of proof

The main results of [OSZP24] proved the p-adic extension and algebraization results for Shimura
varieties of abelian type parallelling Borel’s theorem in the setting of a discretely valued p-adic
field. The strategy of [OSZP24] crucially uses the existence of Rapoport-Zink (JRZ96]) spaces and
Rapoport-Zink uniformizations of A,. This in turn of course relies on the moduli interpretation of
Ag. While there is a theory of Rapoport-Zink spaces (see [RV14]) that goes beyond the setting of
abelian varieties, it is not known (though it is certainly expected) that exceptional Shimura varieties
admit such uniformization maps. The setting of geometric period images is even more barren,
without even any expectations of p-adic uniformization maps. Our proof therefore sidesteps the
existence Rapoport-Zink uniformizations and instead make strong use of the existence of crystalline
local systems and Fontaine-Laffaile modules.



The outline of our proof is as follows. The main step is the case of a one-dimensional disk.
For brevity, we will focus on the Shimura case. We work at a prime p at which X has an integral
canonical model (which we will denote by 2 in the introduction)—2" is equipped with ¢-adic local
systems and a Fontaine-Laffaille module, and X is equipped with a crystalline p-adic local system
associated to the Fontaine-Laffaille module. We first prove that any map f : D* — X3 has the
property that f(D*) is either entirely contained in the good reduction locus, or the bad reduction
locus. This proof is ¢-adic and follows the arguments in [OSZP24], and uses a monodromy-theoretic
description of the good-reduction locus proved in [PST*21] for exceptional Shimura varieties. By
a recent result in [DY25], we know that the p-adic local system extends to D. We then apply
the theory of prismatic F-crystals to show that up to shrinking D, the F-crystal associated to the
crystalline Galois representation IL, is independent of the classical point x € D. Now, we write
D* as an increasing union of annuli Ay, each of which admits an integral model 2{; that maps to
2. We then generalize an argument of Oort ([Oor04]) to show that the F-crystal on 2 mod p
pulls back to 2 mod p. Finally, we use the Kodaira-Spencer map to prove that any map from a
connected variety over F, to 2  mod p with the property that the F-crystal over 2" mod p pulls
back to something constant must in fact be the constant map. We then conclude that the map
from D* to X&" maps to a residue disc, and therefore extends by the Riemann extension theorem.

To deduce Theorem for morphisms from polydisks f : (D*)® x Db — X2 we show that the
existence of an extension on any one-dimensional disk implies that f extends meromorphically and
then use the p-adic Riemann-Hilbert correspondence of [DLLZ23| to show that the exceptional
fibers in the resolution of indeterminacies of f must be contracted. In fact, this part of the argu-
ment also shows that the one-dimensional disk case of Theorem without the good reduction
assumption implies the polydisk case (without the good reduction assumption).

1.3 Previous work

There are several results prior (aside from Borel’s work) to our work that addresses the questions of
algebraicity and extension — both in the complex and p-adic settings. In the complex case, [BBT23]
and [BFMT25|] prove the algebraicity and extension results for geometric period images.

As earlier mentioned, [OSZP24] treats the case of abelian Shimura varieties for all primes p,
without a good-reduction hypothesis. It also treats the case of the universal abelian scheme over
compact Shimura varieties of Hodge type, and Rapoport-Zink spaces associated to A, k. The
paper [OP25] proves the p-adic extension theorem for local Shimura varieties. Cherry (in [Che02])
addresses the case of genus > 2 curves in the more general situation of C,. Cherry-Ru ([CR04])
prove a p-adic big Picard style theorem, and Sun ([Sun20]) proves the C,-analogue of the algebraicity
theorem.

1.4 Organization of the paper

In Section [2] we introduce various objects that live on Shimura varieties and period images. In
Section (3] we prove that the image of every map D* — X must either be entirely contained in the
good reduction locus or the bad reduction locus. In Section 4, we recall results about prismatic F-
crystals, and in Section [ prove a crucial constancy result for F-crystals. In Section[6] we generalize
work of Oort to show that a pointwise constant F-crystal on P! must be constant. In Section
we prove the main theorem for D*, and prove the main theorem in general for
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2 Notations and the general setup

2.1 The set-up for the Shimura case

We follow closely the notations of [BST24]. To recall, (G,X) shall denote a Shimura datum. Let
E := E(G,X) C C denote the reflex field. We let V' be the adjoint representation of G, a Z-lattice
Vof V, and a neat compact open subgroup K C G(Ay) that stabilizes V®Z C V ®gAys. We further
assume that K acts trivially on V/3V. Denote by Shk(G, X), the corresponding Shimura variety
over E. Associated to V C V, we have a family of Z, (respectively Q) étale local systems on
Shk (G, X) that we denote by Ve, (resp. Vi) We denote by Vyg := (V, V, F*V) the associated
filtered flat vector bundle on Shi (G, X) defined over E.

We pick a large integer N as in [BST24, Theorem 1.3], so that Shk (G, X) admits a smooth model
JK(G,X) over Og[1/N] and such that for all places v of E outside N, (G, X) ®o,11/n OF,
is a canonical integral model of Shx(G,X) ®g E, over the ring of integers Op, of the v-adic
completion E, of E. Furthermore, for every place v { N, k(G,X) ®o,n/n8 Or, admits a log-
smooth compactification over Op,. The Z,-étale local systems V¢, on Shx(G,X) @ E,, extend
to f-adic étale local systems on 7k (G,X) ®o,n/n) Or,[1/f]. We also have that for p { N, the
restriction of V¢, to Shx(G,X) ®fg E, is crystalline in the sense of Faltings-Fontaine-Laffaille,
where v is a place of E dividing p. By increasing N if necessary, we may also assume that (V, V)4r
spreads out to .k (G, X) such that the Kodaira-Spencer map is everywhere immersive.

We shall fix henceforth a rational prime p{ N, a place v of E above p. We shall work throughout
over the p-adic local field K := E,. Set . := (G, X) ®o,n/n OF,, and S := Shy (G, X) @ g E,.
By a slight abuse of notation, we denote the pullbacks to S of the local systems V; ¢, Vi ¢ and the
filtered flat vector bundle Vgr also by Vi ¢, Vs ¢ and Vgr respectively, and in the case £ # p, their
extensions to the integral canonical model . shall also be denoted by the same. We let Vy, denote
the Fontaine-Laffaile module associated to V¢ ,,/S on the formal p-adic completion S , and we let
Veris denote the F-crystal on .7, := .7 ®o I ky, where k, is the residue field of Of,. Note that the
filtered flat bundle underlying Vgy, is just (V, V)qr. We will sometimes use the symbol L to denote
the Z,-étale local system V¢, on S We denote by Shk (G, X)BB the Baily-Borel compactification
of Shi (G, X) and set SBB := Shx (G, X)PB @ E,.

2.2 The set-up for geometric period images

Let E C C be a number field, P a smooth, connected quasi-projective algebraic variety over E, and
f 1 Z — P asmooth, projective E-morphism. For a fixed m, we have a polarizable integral variation
of Hodge structures (Wz, F'*) with underlying Z-local system Wz := R™ fh(Z 1a). Denote by
G, the generic Mumford-Tate group of the variation. We shall further assume that the variation
has neat monodromy, which can always be arranged after passing to a finite étale cover of P. We



denote by W ¢ := R™ fét (Zy¢) the associated Zg local system on P, and by Wagr := (W, V, F'*) the
filtered flat algebraic vector bundle on P defined over E, such that Wz is the sheaf of flat sections
of the associated analytified filtered flat bundle on P!,

We denote by Y g the Stein factorization of the period map associated to the variation (Wz, F'*), in
the sense of [BST24} §1.4] (see also [BBT23]). Thus, Y, is a quasi-projective algebraic variety over

hol
E, and the associated period map ¢ : P@Ol — T\ D, factors as a composite P! EARN Yéml — I\D,

where the morphism Yé“’l — I'\D is finite, and P EN Y/ is an algebraic map defined over E with
geometrically connected generic fiber. There also exists a smooth partial compactification P’ of P
defined over E and a proper map P’ — Y, with Wygr, Wey ¢ (vesp. (Wz, F*)) extending to P’ (resp.
Phhol).

Note that the variation (Wgz, F'*) descends to a polarizable Z variation of Hodge structures
(Vz, F*) on Yé“’l, as do the Zs-étale local systems Wep to Zg-étale local systems Ve on Y
(see [BST24] §2.6]). The filtered flat bundle Wyg = (W, V, F'*) on P descends to a filtered vector
bundle on Y, defined over E, denoted by Var = (V, F'*).

There is a finite set of places ¥ of E such that:

e 7 — P spreads out to a smooth proper family over a smooth base Z — P over O x.

e P’ — Y spreads out to a proper map P’ — Y over Opy where P’ is a smooth partial
compactification of P.

e The filtered flat bundle Wygr /P’ and the filtered bundle Vgr/Y spread out to a filtered flat
bundle on P’ and a filtered bundle on ). We abusively denote the extensions by the same
notation. The Griffiths bundle of Vgr on ) is ample.

e For every prime /, the local system W o extends to an f-adic local system on P&E’E where
3¢ is the union of ¥ and all primes of E dividing ¢. We abusively denote these local system
by Wi ¢ as well. Likewise, the Z-étale local systems V¢, on Y extend to Zg-local systems
on Yo, 5, which we denote by the same notation.

e )V is an integral canonical model (as in [BST24]) of Y over Og 5.

e There is a uniform stratified resolution with boundary ST — Vi of Y over O ey as in [BST24,
Definition 4.2], and for each j, there is a smooth scheme 77/Op yx and maps T/ Yy P’ and

TI & S’ as in [BST24, Section 5.2]. For the largest-dimesnional stratum Y™ = ), we may
assume P’ — Y factors through 8™, and that P’ — S™ has geometrically connected fibers.

o We let Ugt,é denote the pullback of Vétj@’ijOEVEe to 87 x Ogy,, and let (Z/{,V)de be the
pullback of Vgr|y;—note that (U, V)qr’ is a filtered flat bundle.

The filtered flat bundle Wyr/P’ has the structure of a Fontaine-Laffaille module at a prime
v ¢ ¥ and this corresponds to the local system We, for v | p via the Faltings-Fontaine-Laffaile
correspondence. There are two filtered flat bundles on S7—one is (U, V)de , already defined. The
other one is the filtered flat bundle underlying the Fontaine-Laffaille module associated to Uétyp.
We denote this Fontaine-Laffaille module by U%L. We note that both these filtered flat bundles
become isomorphic when pulled back to 77. Note however that for the largest stratum S™, these

two filtered flat vector bundles are isomorphic, since P’ — 8™ has geometrically connected fibers.



Henceforth, we fix once and for all a finite place v ¢ X. Let p denote the rational prime below v.
Set K := E,, with ring of integers Ok and residue field k. We will let Y, P, Vgr (resp. V,S,T,)
etc. also denote the basechange of the corresponding objects from E (resp. Opyx) to K (resp.
Ok). Note that the p-adic (and f-adic) local systems on all the spaces agree under pullback. We
will sometimes use the symbol L to denote our p-adic local system(s) if the base is implicit (or
unimportant). We denote by YBB the Baily-Borel compactification of the period image Y (see
[BEMT25]).

2.3 General notations

As above, we fix a rational prime p, a p-adic field K with ring of integers O, and residue field k.

For a complete non-archimedean field extension F' of K, rigid-analytic varieties and spaces over
F shall be viewed as adic spaces over Spa(F,Op). In particular, by a rigid-analytic variety over
F, we shall mean a quasi-separated adic space that is locally of finite type over Spa(F,OF). For
an admissible formal Op-scheme 27/ Spf(OF), we denote the associated rigid-analytic generic fiber
by 2°™&. For an algebraic variety X over F (respectively a morphism g : W — X of algebraic
varieties over F'), we denote by X" the associated rigid-analytic space over Spa(F') (resp. by
g™ WA — X2 the associated morphism of rigid-analytic spaces over F').

For a complex algebraic variety X — Spec(C) (respectively a morphism of complex algebraic
varieties g : W — X) we denote the associated complex analytic space by X" (respectively the
associated morphism of complex analytic spaces by g"°!).

The rigid-analytic closed unit disk over F' is denoted by D := Spa(F(t), Or(t)). The punctured
closed unit disk over F is Dy := Dp \ {t = 0}.

3 Boundary and interior

Definition 3.1. Let X denote either the Shimura variety S or the period image Y, and let 2~
denote the integral canonical model. Let K be a discretely valued field with ring of integers Ok.
We say that a point x € 2 (K) has good reduction if its specialization lies in the interior, i.e. z is
induced by an Og-valued point of 2Z°. We say that = has bad reduction otherwise. Define the good
reduction locus X8°°% of X to be the set of points of X" whose mod p specialization with respect
to the canonical model lies in the interior. We define the bad reduction locus to be the complement
in X2 of the good reduction locus. We note that X&°°9 is an analytic open subspace of X2,

We will first prove that a map f : D* — X®" must either be contained entirely in the good
reduction locus or the bad reduction locus where X is as above. This argument appears in an old
arXiv version of [BST24] (Lemma 6.4) (which is turn is essentially the same as the argument in
the abelian case [OSZP24, Theorem 3.3]) but we include it in this paper for completion.

Theorem 3.2. Let f: D* — X" be an analytic map where X is as above. Then either f(D*) C
Xgood or f(DX) C (Xan\Xgood)'

The following lemma is an analogue of the Neron-Ogg-Shafarevich criterion and follows directly
by the arguments of [PSTT21, Lemma 8.4].

Lemma 3.3. Let K either be F((t)) or a discretely valued p-adic field, and let x € X(K) be a
point. Then x has bad reduction if and only if the action of the inertia subgroup Ix C Galg on
(Vere)z is quasi-unipotent of infinite order.



Proof of [Theorem 3.3 [OSZP24l, Proposition 3.6] does what is required for thin annuli. To deduce
the result for thick annuli from thin annuli, we proceed along identical lines to the argument in
[OSZP24, Section 3.1.2]. We are reduced to proving the following result. Let g : G,, — 2, be
any map. Then, g extends to a map P! — 2,,. To prove this, it suffices to prove that the local
monodromy of g_1Vét7g around the boundary points is semi-simple. To prove this, it suffices to
prove that the geometric monodromy of g_lvcftj is semisimple. By [Del80L 3.4.12], it suffices to
prove that the arithmetic local system 971Vét’[ is point-wise pure—of course, this would follow
from proving that Vg ¢ itself were pure.

In the Shimura case, this follows from the fact that V¢ ¢ is induced by the adjoint representation
of G, and is therefore an irreducible local system with finite determinant. In the case of geometric
period maps, this follows from the fact that the local system is induced by a geometric family, and
is therefore point-wise pure by [Del80].

O

4 Crystalline p-adic local systems and analytic prismatic F'-crystals

In this section, we recall the notions of crystalline local systems and F-crystals that are used in the
article.

Definition 4.1. Let X/k be a smooth scheme. Let X .ys denote the p-completed crystalline site
of X [I equipped with the structure sheaf Ox crys.

(i) By a crystal over X we mean a finite locally free crystal or equivalently, a crystal of vector
bundles over X, that is, a sheaf of Ox rys-modules E such that for each PD-thickening (U, T')
in Xcrys, the induced Zariski sheaf E7 is a finite locally free Op-module, such that for each
morphism g : (U',T") = (U,T) in Xerys, the induced map g*Er = Egv is an isomorphism.

(ii) An isocrystal over X is an object in the isogeny category of crystals of modules. All of the
isocrystals we will consider will in fact be obtained from a crystal (in vector bundles) by
inverting p.

(iii) An F-crystal (resp. F-isocrystal) over X consists of a pair (E, ¢) where E is a crystal (resp.
isocrystal) over X and ¢ is an isomorphism
¢ FoyE[1/p] = E[1/p]

crys

which is compatible with the Frobenius map Firys on Ox crys induced by functoriality.

We write Vect? (Xerys) (resp. Isoc?(Xerys)) for the category of F-crystals (resp. F-isocrystals) over
X.

We also need the notion of prismatic and analytic prismatic F-crystals. Let us first recall that,
given a p-adic formal scheme X/Og, its absolute prismatic site X is the opposite of the category
of bounded prisms (A4, I) equipped with a map Spf A/I — X, endowed with the flat topology (on
prisms). Let O (resp. Z ) denote the structure sheaf (resp. the Hodge-Tate sheaf) on X , which
sends (A, I) — A (resp. sends (A,I)+— I). Let ¢ denote the Frobenius map on O .

Example 4.2. Let £ = E(u) be an Eisenstein polynomial for a fixed uniformizer w € O.

'In this article, we shall consider the absolute crystalline site of X, or equivalently, crystalline site of X over the
divided power algebra (W (k),p).



1. The Breuil-Kisin prism (6, FE) with & = W(k)[u] and ps(u) = uP gives an object in
(Spf Ok) via the surjection & — Ok sending u +— w. In fact, by the argument in [BS23]|
Example 2.6(1)] it covers the final object of the topos Shv((Spf Ok ) ,O ). Taking the Cech
nerve of (&, E) over the final object in this topos gives rise to a cosimplicial object

e —=cW 3 s (1)

in (SpfOk) . One can explicitly describe the Prisms (6®), E) in terms of the prismatic
envelop construction. For example, we have &) = Wu, v] {%}E\p ) where {-} denotes
the prismatic envelop.

2. Let R = (Okl|t]);, be the p-adic completion of Ok[t] and let Ry = (W{to]),. Let X = Spf R
be the p-adic formal Al over Spf Ok. Let &g = Ry[u], equipped with a d-structure given by
o(u) = uP and p(tg) = th. As in the previous example, we have a surjection &z — R sending
u +— w and to — ¢, which makes (&g, E) into an object in X .

Lemma 4.3. In the second example above, the prism (&g, E) covers the final object in the topos

of (X ,0 ).

Proof. Let (A, I) be a prism in the absolute prismatic site X , equipped with a map ¢: R — A/I.
Note that A is canonically a W-algebra. Let us pick an element @ (resp. t) in A which lifts the
image of w (resp. of t) in A/I under ¢. Let us consider the map A — (A Qw GR)@,,I) of d-rings
and form the prismatic envelope (see [BS22, Proposition 3.13])

uw—a,tg—t.

Bi= (Aew S0

so we have a map (A, I) — (B,IB) of prisms in X . By [BS22l, Proposition 3.13], the map A — B
is (p, I)-completely flat, and in fact (p,I)-completely faithfully flat, so (A,I) — (B,IB) forms a
cover in X . Finally, note that by construction we have F(u) = E(@w) = 0 mod IB, so we have
E(u) € IB and thus we have a map of prisms (Sg, E(u)) — (B, IB) by [BS22, Lemma 2.24]. This
finishes the proof of the lemma. O

Definition 4.4. Let X/Og be a smooth p-adic formal scheme. A prismatic crystal (of vector
bundles) over X is an O -module &, such that there exists bounded prisms (A;, ;) in X , with
{U; = Spf(A;/I;)} covering the final object of the topos of (X ,O ), and finite projective A;-
modules Ej, such that E|y, = E; ®4, O U A prismatic F-crystal over X is pair (€, pg), where €
is a prismatic crystal and ¢ is an isomorphism

et E[/T | = EN/T ]

of O -modules. We write Vect(X ,O ) (resp. Vect?(X ,0 )) for the category of prismatic
crystals (resp. prismatic F-crystals) over X.

Following notations from [BS23], for a given bounded prism (A,I), we write Vect(A) for the
category of finite projective A-modules. We write Vect?(A, I) for the category of pairs (E, ¢g)
that consists of a finite projective A-module F together with an A-linear isomorphism ¢g :
e E[1/1] = E[1/1I], with morphisms being morphisms between the finite projective A-modules



that are compatible with Frobenius. By (p, I)-completely faithfully flat descent for vector bundles
(see [BS23| Proposition 2.7]), we have natural equivalences

Vect(X ,0 ) = lim Vect(A)
(A, I)ex

Vect?(X ,0 ) — lim Vect?(A,I)
(AD)EX

In particular, to specify a prismatic F-crystal over X is equivalent to specifying a prismatic F-crystal
over each bounded prism (A,I) € X in a compatible fashion. If (Ag, lp) € X is a bounded prism
that covers the final object of Shv(X ,O ), this is also equivalent to the data of a prismatic F-
crystal over (Ag, Ip) which satisfies certain the descent data coming from the Cech nerve of this
cover. We will also need the following variant.

Definition 4.5. (i) Let (A, I) be a bounded prism, we define the category of analytic prismatic
F-crystals over (A,I), denoted by Vect®™ ¥ (A, I), to be the category of pairs (E, pr) where
E is a vector bundle over Spec(A)\V (p,I), and g is an isomorphism ¢* E[1/1] = E[1/I].
Morphisms in Vect® ¥ (A, I') are morphisms between vector bundles that are compatible with
Frobenius. [
(ii) Let X/Ok be a smooth p-adic formal scheme. We define the category Vect® ¥ (X ) of analytic
prismatic F'-crystals by the derived limit

Vect?™?(X ):= lim Vect™¥(A,I).
(A Iex

We have a natural forgetful functor Vect?(X ) — Vect®¥?(X ) from prismatic F-crystals to
analytic prismatic F-crystals. This functor is induced from the map Vect¥ (A, I) — Vect™ ¥ (A, I)
that sends a vector bundle over Spec A to its restriction over the complement of V' (p,I) for each
(A,I) € X and is fully faithful. Moreover, it is compatible with crystalline realizations, in the
sense that we have a commutative diagram

Vect¥(X ) —— Vect™™?(X )

| | g

Vect?(Xs erys) — 180¢? (X crys)

where the vertical arrows are induced by specializing to the special fiber X; of X and identifying
the absolute prismatic site X, of X5 with the p-completed absolute crystalline site X; cys of X
(see [BS23, Construction 4.12]). Let us consider a special case of this restriction functor in the
setting of Example [4.2]

Lemma 4.6. Let X = Spf R, where R = (Ok|t]),. Let U = Spec(Sg)\V (p, E(u)) be the open

P
subset of Spec(SRr) and denote by j : U — Spec(Spg) the open immersion. The essential image of

the fully faithful functor
Vect?(X ) — Vect™ (X )

consists of pairs (E,pg) satisfying the following condition: if we write (Ey,y) for the wvector
bundle over U obtained by evaluating (£, ps) on the prism (Sg, E(u)) € X , then j.Ey is a vector
bundle over Spec GR.

ZNote that, for a prism (A, I), the Frobenius 4 preserves the zero locus V (p, I) C Spec A as well as its complement.
Thus the definition above makes sense.



Proof. This is [IKY24l, Proposition 1.26]. O

Definition 4.7. Let X/ Ok be a smooth p-adic formal scheme. Let X,/ K be its adic generic fiber
and let X;/k denote the special fiber. Let L be an étale Z,-local system on X,. We say that L
is crystalline if there exists an F-isocrystal (E, ) over X, together with a Frobenius equivariant
isomorphism of B.,ys-vector bundles

IBcrys(IE) - Bcrys ®Zp L.

Here Beys(E) is the sheaf of Beys-modules on the pro-étale site X, o4 associated to (E,p). We
denote the category of crystalline Z,-local systems on X, by Loc%;ys (X,). E|

We shall need the following result in the article, due to Bhatt—Scholze [BS23]| in the case of Spf Ok
and to Du-Liu-Moon-Shimizu [DLMS24] /Guo-Reinecke [GR24] in general.

Theorem 4.8 ([BS23| DLMS24, (GR24]). Let X/ Ok be a smooth p-adic formal scheme. There is
a natural equivalence of categories

Vect*™?(X ) = Loccziys(%n).
In particular, this equivalence is functorial in X.

Remark 4.9. In the setting above, if LL is a crystalline Z,-local system on X,, then one can recover
the F-isocrystal over the special fiber X, from this equivalence via the crystalline realization (see

Diagram (2)).

Example 4.10. Let us revisit Example once again.

(i) Let (&,FE) be the Breuil-Kisin prism, and let Uy = Spec(&)\V(p, E) denote the open
subscheme obtained as the complement of a closed point in Spec&. Theorem (due to
Bhatt—Scholze in this context) says that a Z,-lattice A in a crystalline Galg-representation
is equivalent to the data of a vector bundle £y over Uy = Spec(S)\V (p, E), equipped with a
Frobenius isomorphism after inverting F, as well as the descent data coming from the cosim-
plicial complex . Since 6 is a regular local scheme of dimension 2, £y uniquely extends
to a vector bundle over Spec &, which still carries the Frobenius isomorphism after invert-
ing F, and again satisfies descent. In other words, for Spf O, the fully faithful embedding
Vect?((Spf Ok) ) — Vect® ¥ ((Spf Ok) ) is an equivalence. Moreover, via Theorem (4.8 and
this equivalence, a Zjy-lattice A in a crystalline representation is equivalent to a Breuil-Kisin
module (O, pon) that satisfies descent along the cosimplicial complex , that is, equipped
with a descent isomorphism after pulling back to &) which satisfies a cocycle condition over
c?.

(ii) Let R = (Oklt]) be as in Example (2) and let X = Spf R, so X,, = D = Spa(R[1/p], R) is
the closed unit disc over K. In this case, Theorem tells us that crystalline Z,-local system
on D is equivalent to the category of analytic prismatic F-crystals over X. In particular, it
gives rise to a vector bundle Ey; over U = Spec(Gr)\V (p, E(u)) equipped with a Frobenius
vp (by evaluating the analytic prismatic F-crystal on the prism (Sg, E(u))).

3Note that, a priori, the notion of crystallinity of local systems depends on the integral model ¥ over Q. In fact,
this notion only only depends on the generic fiber X,, (and independent of the chosen integral model).
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5 From F-isocrystals to F'-crystals

Let L be a crystalline Zy-local system on the closed unit disc D, and let E be the F-isocrystal
over the special fiber of D (which is a copy of A}g) attached to L. Let us also recall that, if V is a
crystalline Q,-representation of the Galois group Galx with nonnegative Hodge-Tate weights, and
A C V is a Galg-stable Z,-lattice, then one can attach to A a Frobenius module

Derys (A) = (M, oum),

which consists of a finite free W (k)-module M together with a Frobenius map ¢y : M — M that
becomes an isomorphism upon inverting p. This can be achieved by considering the Breuil-Kisin
module (9, pon) and base changing along the map & = W (k)[u] — W (k) sending u — 0. We may
regard Derys(A) as an F-crystal over Speck (see Example and also see Diagram ) The goal
of this section is to show the following.

Theorem 5.1. Assume the above setup. Up to replacing D by a smaller closed disc in D if neces-
sary, there exists an F-crystal D over A with D[1/p] = E, that is compatible with the crystalline
Zy-local system L in the following sense: for every finite extension L/K and every classical L-point
x € D which specializes to a closed point T € Al, there is an isomorphism D|z = Deys(L|z) of
F-crystals over T. Consequently, up to replacing D by a smaller disc, the isomorphism class of the
F-crystal Deyis(Ly) is independent of the classical point x € D.

5.1 Locally free extensions

Let 7 be an admissible p-adic formal scheme over Spf W, and consider the sheaf of rings OT[[u]]H
We say 7T is regular if every local ring is regular. In this section we prove the following;:

Proposition 5.2. Let T be a regular 2-dimensional p-adic formal scheme over Spt W and E a
finitely generated Or[u]-module. Then there is a sequence

T=Th—-—>T=T

of formal admissible blow-ups at closed points, such that (f[u]*E)"" is locally free as an Or[u]-
module, where f: T — T denotes the composition of sequence of maps above.

We begin with the following observation.

Lemma 5.3. Let O be a 3-dimensional regular local ring and E a finitely generated reflexive O-
module. Then Exty(E,0) =0 fori > 1.

Proof. Every term in the double dual spectral sequence
RHomp(RHomp(E,0),0) =FE

vanishes except EYY, Exth(EY,0), and Ext(Exty(E,0),0). In particular, this implies that
Extd (Extl (E,0),0) = 0 for i > 1, so Exti,(E,O) = 0 by local duality. O

The main step of Proposition [5.2]is the following:

“In the context of Example 2), the reader may take 7 = Spf Ry as a working example in this subsection.
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Lemma 5.4. Let O be a 3-dimensional regular local ring and E a finitely generated reflexive O-
module which is not free. Let f : X — SpecO be the blow-up along any regular curve. Then we

have
UExt b, ((f*E)Y, 0x)) < l(Exty(EY,0)),

where ¢ denotes the length of (O-)modules.

Proof. Step 1. E has a presentation of the form

0 om A, on E

~
o

Proof. Consider any presentation

om 4, on s E 0.

We claim that N = img(A) is free. Indeed, applying RHomo(—, Q) to the sequence

0 N > O™ F 0

and using Lemma we see that Ext’b(N, 0) =0 for i > 0. O

Step 2. Let M be any nonzero finitely-generated O-module supported on (some thickening of) the
closed point x of Spec ©. Then Lif*M =0 for i < —1 and H°(Ext %X(L_lf*M, Ox)) #0.

Proof. First observe that the vanishing claim is true for M = k(x) using the Koszul resolution. In
general we may take a short exact sequence

0 M’ > M k(x) —— 0.

and the vanishing follows from the above observation by induction on ¢(M).

For the second claim, again observe that the claim is true for M = k(x) since L=! f*k(z) = Oc(—1)
where C = f~!(z) = IP)}C(:E) and Ext %X(OC(—l), Ox) = Oc¢. In general, using the same sequence
we have an exact sequence

0 —— L7Yf*M —— L7Yf*M —— Oc(-1)

and the image of the rightmost map is therefore either 0 or O¢(—a) for some a > 1. Thus by
induction we may assume we are in the latter case. But then we have an inclusion

0 —— Ocla—1)=Ext %/)X (Oc(—a),0x) —— Ext %X(L_lf*M, Ox)
whence the claim. O
Taking the dual of the presentation from Step 1 we have

0 y BV y on AL, om Exty(E,0) — 0.

Let F = img(A4*) and Q = Ext}(E, O).
Step 3. We have L'f*F = 0 and L'f*(EY) =0 for i < 0.

12



Proof. Pulling back the sequence

0 F om Q 0
and using the vanishing in Step 2 implies the first claim. Pulling back

0 EY on F 0

and using the first claim implies the second. O

Step 4. There is a natural short exact sequence
0 —— fYEY) — (f*BE)Y —— L7'f*Q —— 0.
Proof. Since Ox is torsion-free, pulling back the presentation from Step 1 we have an exact sequence

0—— op L4 on FE 0

and therefore an exact seqeunce

f*A*

0 —— (fE)Y o on.

Now applying the previous step to the diagram with exact diagonals

0
~
L7 f*Q 0
~ 1
[*F
7 ~
e X A X -
. fH(EY) Q
~
L7'f*F 0
yields the claim. O

Step 5. There is a natural short exact sequence
0 —— H'(f*(EY)Y) — Extp(EY,0) —— H%Exty (f*(EY),0x)) — 0.

In particular, ((Ext i (f*(EY),Ox)) < ((Exty(EY, 0)).

Proof. Use

Rf.(RHom o, (Lf*(E"),0x)) = RHomo(E", Rf.Ox)
together with Rf,Ox = O and the vanishing of L' f*(EY) for i < 0 from Step 3. O
Step 6.

U(Ext o, ((f'E)Y,0x)) < UExtp(EY,0)) — (H (Ext§, (L1 F*Q, Ox))).
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Proof. Applying RHomp, (—,Ox) to the sequence from Step 4 and using the vanishing from
Lemma [5.3] we have an exact sequence

0—— Sxt%gx((f*E)V,OX) — Extbx(f*(EV),(’)X) — Sxt%X(Lflf*Q,OX) — 0.
The first term has dimension 0, so the sequence remains exact on taking global sections

0 — HOExth ((fE)Y,0x)) — HO(Exth (F(EY),0x)) — HO(Extd (LFQ,0x)) — 0.
Combining this with Step 5, we have the claim. ]

Step 7. Conclusion of proof.

By the assumption on E and Lemma [5.3| we have @@ # 0. But then by the nonvanishing in Step
2 we have 0 # ((H°(Ext %X (L71f*Q,0x))), so the claim follows from Step 6. O

Proof of Proposition[5.9. Note it is equivalent to show (f[u]*E)" is locally free. Since EY is a
reflexive O [u]-module, we have

Ext o 1,(EY, O7lu]) =0

for i > 1 by Lemma Moreover, Ext éT[[u]](EV,OT[[u]]) is supported at finitely many closed
points, hence has finite length /. We proceed by induction on ¢, the £ = 0 case being trivial. Let
x € T be any point in the support, O, the local ring of 7 at x with maximal idea m,, and let n,
be the ideal generated by m, in O ;[u]. Let

m: B — SpecO1
be the blow-up at m,, and note that:

e the base-change 7[u] : B[u] — Spec(O7 ;[u]) is the blow-up at n,, where Bu] denotes the
scheme theoretic base change Blu] := B Xgpec(0,, SPec(O7 z[u]);

e the p-adic completions of the local rings of B are identified with the local rings of the formal
admissible blow-up
g: T =T
of T at z.

In particular, for a closed point 2’ of 7’ (which we also view as a closed point in B[u]), the p-adic
complete local ring

(O [ul)er = O [u]
is flat over Oppy - Here (O77[u]),s denotes the stalk of the sheaf O [u] of the p-adic formal
scheme T at 2’

According to Lemma the length of £xt %93[[ Lot (r[u]*E.)Y, OB[u],o') 18 strictly smaller than

by = Ext %/)’Tz[[u]] (Eg\;/a O’T,z [[u]])’

so the same is true of Ext %OT’ [ul) ((glu]*Ez)Y, (O7:[u])ar). Therefore, we know that

U(Ext o, py((9lu]*B)Y, O [u])) < L.

By induction the proof is complete. O
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5.2 Existence of the Prismatic F-crystal

We are now ready to prove Theorem

Proof of Theorem[5.1l Let X = Spf R = Spf((’)K[t])I/)\ be an integral model of D as in the setting of
Example (2). In particular, the crystalline local system L gives rise to a vector bundle Ey; over
U = Spec(6r)\V (p, E(u)), where we recall that &g = Ro[u] and Ry = (W(to]),. Let Xo = Spf Ro
(which is another copy of the p-adic formal A!). Let E = j,Ey where j : U — Spec &g is the open
immersion, which is a reflexive module over Ox,[u]. By Proposition we know that there exists
successive admissible blowups of X at closed points such that the pullback 7[u]*E is a locally free
Ox; [u]-module, where 7 : X{, — X is the composition of the required blowups. From the proof
of Proposition [5.2], we know that by shrinking the radius of the disc in the generic fiber at each
step of the blowup if necessary, we may without loss of generality assume that at each step we only
need to blowup at the origin. In other words, the required blowups 7 can be achieved by the map
T ¢ Ro = (Wto]);, = Rn = (Wlta]); sending to +— p"t, for some large enough integer n. This
means that, after replacing the disc D by its closed subdisc D,, = {|z| < 1/p"™}, the local system L|p,
gives rise to a pair (Ey i, ¢n,r) where E, 7 is a vector bundle over U,, = Spec R,,[u]\V (p, E(u))
that extends to a vector bundle over Spec R, [u]. By Lemma[4.6, L|p, in fact gives rise to a (unique
up to isomorphism) prismatic F-crystal (&,,pn,) over Spf(Ok [t/ ])1/7\ where t' = p™t. This prismatic
F-crystal is compatible with the F-crystal Deys(L|;) under specialization to closed points z € D,,
by the functoriality of the equivalence in Theorem This finishes the proof of the theorem. [

6 Constancy of the F-crystal

In this section, we will prove that the fiber-wise F-crystal produced in Section[5]is actually constant.
Our argument is essentially Lemmas 1.10 and 1.9 of [Oor04] in the setting of F-crystals.

Lemma 6.1 (Oort, Lemma 1.10). Let Dy and Dy be two F-crystals over F,, having the same rank
and let N be a fixed integer. Then there are finitely many sub-crystals of Do isomorphic to Dy
whose co-kernel is pN torsion.

Proof. Let L = Hom(Dy,Dy). Consider the set S C L defined as S = {f € L : Im(f) D pVDy}.
Let f1, f2 € S be two maps such that f; = fo mod p" in L/p". A direct computation shows that
Im f; = Im f5. It follows that the number of sub-crystals is bounded by the image of the subset S
in L/pN. The lemma follows from the fact that L is a finite generated Z,, module. O

Definition 6.2. Let X/F, be a scheme and D an F-(iso)crystal. Let pty : X — SpecF, be the
map to a point, and for any point z € X (F,) let i, : SpecF, — X be the corresponding morphism.

1. We say D is constant if there is an (iso)crystal Dy on SpecF, such that if D & pt Dy.

2. We say D is point-wise constant if there is an (iso)crystal Dy on Spec EJ such that ;D = Dy

for every x € X(IF,).

We are now ready to prove

Theorem 6.3. Let X be a smooth connected variety over Fy,. Let D/X be a point-wise constant
F-crystal such that the F-isocrystal D[1/p| is constant. Then D itself is constant.
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Proof. Let Dy be the F-crystal iXD for € X(F,). The constancy of D[1/p] gives an isogeny
g : D — ptiDy. By Lemma the set X (Fp) admits a partition into finitely many subsets
X1 ... X, such that for two points z, 2’ € X;, we have g,(D,) = g,/(D,). Without loss of generality,
suppose that X7 is Zariski dense, and let z € X7 be any point. Consider the inclusion of crystals
g : pt Dy — pt’ Do, where ¢’ = pt% g,. We now have that Im ¢’ and Im g are two subcrystals of
pt* Do which agree on a Zariski-dense set of points. We will now show that they are the same.

We first reduce to the case that X is affine. We claim that for two crystals D;,Ds on X and
any dense Zariski open U C X, any morphism fy : D1|y — Ds|y extends uniquely to a morphism
f : D — Do. By the uniqueness, such an extension patches, so we may assume X is affine,
and in particular lifts to a formally smooth scheme X/ W(ﬁp) equipped with a lift of Frobenius
¢ : X — X. Then D corresponds to a flat vector bundle F; on X together with a flat morphism
¢p, : o*E1 — Ep for which ¢g,[1/p] is an isomorphism; likewise for Dy and F3. Then f yields a
morphism fy : By — Ealgy. In characteristic 0, it is easy to see that fy[1/p] extends uniquely to a
moprhism E1|x[/p — E2|x[1/p)- But then the underlying morphism of vector bundles £y — F is
defined outside of a set of codimension 2, hence extends uniquely, and the extension is compatible
with the connection and the Frobenius structure.

Therefore, we suppose that X = Spec A. Let A (cite the people Kedlaya cites!) be a p-adically
complete smooth W-algebra with a lift of Frobenius such that A = A mod p. Evaluating all these
crystals on A, we obtain two Frobenius-stable flat-subbundles of Dy ® A which:

1. Are the same after inverting p.

2. Agree at a dense set of W-points.

Even without using F-crystal structure, the formal-smoothness of A implies that the these two
sub-bundles must already agree. The theorem follows.

O]

7 Proof of the extension theorem for D*

In this section, we prove our main results for D*.

7.1 Extending crystalline local systems
The following result is Theorem 1.17 of [DY25].

Theorem 7.1 ([DY25]). Let L/D* be a Zy-local system with crystalline fibers everywhere. Then,
L extends to a crystalline local system on D.

For the sake of completeness, we will sketch a proof in the easy case where in addition there exists
a smooth formal scheme X, a crystalline Z,-local system L'/X,, and a map g : D* — X, such
that L = ¢*L’. Let E[1/p] denote the isocrystal associated to L’ on X,. Consider the flat bundle
underlying the filtered flat bundle RH,(L)/D* (resp. RH,(L')/%,)—we will somewhat abusively
use the same notation both for the filtered flat bundles and the underlying flat bundles. We have
that E[1/p](X) is canonically isomorphic to RH,(L') (see for eg [BST24, Lemma 3.7]). It suffices to
prove that R?H,(LL) extends to a flat bundle on D, by [OSZP24], Theorem 5.7]. We will in fact use
the fact that L is pulled back from X,, to conclude that RH,(LL)|pr is actually the trivial flat bundle
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for every closed sub—discﬁ of D" C D. Indeed, it suffices to prove that RH,(IL)|a; is the trivial flat
bundle for every integer n, where Al := A, N D’. We pick an integral model ¢/, : A}, — 2,11 — X

of the composite map g), := A, C A, M X,. By the appendix of [OSZP24], we may assume
that the irreducible components of the reduced special fiber Cp,41 (resp. CJ) of A1 (resp. A,)
consist of (two) Als and (an unspecified but finite number of) P's, with the further condition that
the there is no combinatorial monodromy. By [OSZP24, Remark A.7], there is a marked point
x; on each of the two Als in €, such that no point in the open annulus A 1 specializes to a
point in A'\ {z;}. It follows that the image of C/ in C,y; is contained in a proper (possibly
reducible) curve, and in particular, g/, extends to the compactification C’,, of C’,, whose irreducible
components are now solely P's (and there is still no combinatorial monodromy). Every F-isocrystal
on ‘C’ is trivial, and therefore g;*(E[1/p]) is trivial. Evaluating on the thickening given by 2/,
we have that g,*(E[1/p])(21,) is trivial. The result now follows from the chain of isomorphisms

1% / 1% 1%
gn (E[1/p])(A7) = gn” (E[1/p](X)) = gi” (RH,(IL)) =~ RHp(L|a;)-

A very similar argument also works in the setting of geometric period images. Indeed, let j be
the smallest integer such that the image of A, is contained in (Y7)2*. Then, there is a finite subset
= C A,, whose complement maps to (Y7)2"\ (Y7=1)a% Ag §9 — Y7 is an isomorphism away from
Y=L A, \ Z lifts to (S7)2". The fact that S7 — Y7 is proper allows us to extend this to a map
A, — (87)*. Now, the identical argument outlined above works.

7.2 The Shimura case

We have the following proposition.

Proposition 7.2. Let g : C — ., be a map where C is a curve over Fp. Suppose that g*V s is
constant on C'. Then the map g is constant.

Proof. We first replace C' by its image — note that the F-crystal remains constant. By replacing
C by an open subset, we may assume that C' is a smooth curve. We pick a smooth lift C JW.
Consider ¢g* (V, V)4r, the filtered flat bundle on S pulled back to C'. The underlying flat bundle
is obtained by taking the mod p reduction of the flat bundle (§*Veys)(C). The filtration is simply
the kernel of (powers of) Frobenius mod p. Therefore, we have that ¢* (V, V)qgr is constant as a
filtered flat bundle. This implies that the Kodaira-Spencer map is trivial on C, which contradicts

the versality of the Kodaira-Spencer map. The proposition follows. O

We are now ready to prove the one-dimensional disk case of Theorem for a Shimura variety.

Theorem 7.3. Theorem[1.1] is true for a = 1,b =0 and X a Shimura variety.

Proof. We will prove that the image of D* lands in a residue disc after suitably shrinking D — this
would yield the theorem. The proof consists of assembling the various results already proved.

We have that f*IL extends to a local system with crystalline fibers on D. By Proposition [5.1
we may shrink D and obtain an F-crystal D on A! mod p such that for any classical y € D,
Deris(Ly) = Dy. By further shrinking D, we get that the F-crystal D is constant, and therefore the
isomorphism class of Deyis(Ly) is independent of the point y.

Let A, C D be a closed annulus with outer radius 1 and inner radius p%, and let f, : A, — .7
be an integral model for the map f|a,. By [OSZP24, Appendix|, we have that the special fiber C

°In fact, we do not need to restrict to D’ for this triviality if X satisfies the property that every map A' — %,
extends to a map P' — X,. We note that .# does satisfy this property.
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of 2, is a union of two affine lines and some number of projective lines with trivial combinatorial
monodromy. It suffices to show that f,|c, is constant for every component C; of C'.

Let y € C; and let y € Qlflig(K) = A, be a point that specializes to y. We have that Vg ~
Derig(r,) and therefore we have that fj (erisV)co, is point-wise constant. Let C; be the compactifica-
tion of C;. The map C; — ¥, extends to C; — p the results of Section Therefore, the F-crystal
fi(Vais)|o,, extends to an F-crystal on Cj, and therefore the F-isocrystal must be constant — indeed
every F-isocrystal on P! is constant. We are now in the situation of a point-wise constant F-crystal

such that the underlying F-isocrystal is constant. By [Theorem 6.3, we have that f(Veis)|c, is
constant. The theorem follows by applying [Proposition 7.2} O

7.3 Period images
We have the following result.

Proposition 7.4. Fiz some integer j and consider m : S7 — Y. Let y € yj(Fp) denote some
point and let F, C S’ denote the fiber over y. Then we have that U’ |7, is point-wise constant.

cris

Further, the isomorphism class of this crystal is Dcris(Ve’typg), where § € Y(Ok) is any lift of y.
Remark 7.5. Note that this proposition assigns a canonical crystal to every y € y(F,,).

Proof. Let T(F,) denote the tube in &’ over F,. For any lift § of y, let let F; C T(F,) denote the
fiber of 77 over 4. As the stratification is uniform, there exists a lift § of y, such the specialization

map Iy — F is surjective. Let Z € T((Fy) be any point and let z € F(F),) denote its specialization.
— U’

As Uétm is crystalline, we have a canonical isomorphism of crystals Deyis (U cris s

ét,p )

Let z;, 22 € Fy. Let z; and 23 be points in Fj which specialize to z; and 2o Zrespectively. By the
above remark, it suffices to prove that Dcris(Uét,pgl) . But this follows
directly from the fact that 7/(Z;) = 7/(Z2) and that Ugy, is simply the pull-back of V¢ , under 77.
- [Uirisz'

O]

is isomorphic to Deyis (UL, oe)
P zo

The proof of the second part now follows from this and the isomorphism Deyis(U%, )
7pZ

We are now ready to prove the one-dimensional extension theorem in this setting.

Theorem 7.6. Theorem[1.1] is true for a =1,b =0 and X a geometric period image.

Proof. As in the Shimura case, we will prove that the image of D* lands in a residue disc after
suitably shrinking D. Also as in the Shimura case, we may further shrink D* such that the
isomorphism class of Deyis(Ly) is independent of the point y € D*. We let A,,, ™A, fn, and C be
as in the Shimura case. Pick some component Cy of C isomorphic to P'. Suppose that j is the
smallest integer such that f,(Co) C 7. Then, we have that Cy generically maps into 7 \ J7~!
and therefore we may lift f, to a map g, : Co — S7. By [Proposition 7.4 we have that g (U’ ) is

cris

point-wise constant. As Cj is isomorphic to to P!, we also have that the iso-crystal g;(U” . [1/p])

is constant. By we have that g;fL(Uzris) is constant. As in the Shimura case, it follows
that g;‘L(U%L) is trivial as a filtered flat bundle. Up to passing to a finite cover C of Cy, we may lift
the map g, to a map h,, : C, — T7. We therefore have that h* (¢™* (U, V)4qr’)) is trivial as a filtered
flat bundle, as (U, V)de and [U%L pull back to isomorphic filtered flat bundles on 77. Therefore,
the Griffiths bundle is trivial on C}. If f,|¢, is non-constant, we also have that Griffiths bundle on
Cy associated to g:((U, V)ar’) =~ f:((V,V)qr) is ample, and therefore the Griffiths bundle must
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be ample on C{. This is a contradiction. Therefore, f,|c, must be constant. It follows that the
map f, contracts every component isomorphic to P'. By [Bor72, Appendix Remark A.7], it follows
that the open subannulus of A, maps to a single residue disc. This holds for every n, and therefore
we have that the open punctured disc maps to a single residue disc. The theorem follows. O

8 Higher-dimensional extension theorem

In this section, we deduce the higher-dimensional extension theorem from the theorem for D*.

8.1 Preliminaries

We first prove some general statements regarding mermorphic extension. We will work in the
following setting. Let X be a quasi-projective algebraic variety over K with a projective compact-
ification X over K. We fix a closed embedding X < P’% into projective n-space. This corresponds
to the data of a very ample line bundle on X relative to K that we denote by .#, along with n + 1
generating global sections sq, ..., s, € H'(X,.Z).

Definition 8.1. We say that the compactification X C X satisfies one-dimensional Borel extension
over all finite extensions of K, if for any finite field extension F' of K, every analytic map g~ :
Dy — (X xg F)™ over F admits an analytic extension g : Dp — (X x i F)*".

Definition 8.2. Let W, Y be reduced rigid analytic spaces and Z C Y a closed subspace. We say
a morphism f : Y\Z — W extends meromorphically over Z if the (metric) closure of the graph
of finY x W is an analytic subspace. Equivalently, there is modification g : Y/ — Y and a

commutative diagram
Y/
/ \4
Y w
o~
Y\

!

where 7 is the inclusion.

The main result of this section is the following, which says that the one-dimensional Borel exten-
sion implies that analytic maps from poly-punctured disks (D*)® x D? into X extend meromoprhi-
cally.

Proposition 8.3. Suppose X C X satisfies one-dimensional Borel extension over all finite exten-
sions of K. Then, given any finite field extension F of K, and any analytic map h* : (D) x Db, —
X3, there is a closed analytic subspace Z C D‘F’b of codimension at least 2 contained in the com-
plement of (D*)® x DY such that h* extends to an analytic map h : DaFH’ \ Z — X7 . Moreover, h
extends meromorphically over Z.

We need two preparatory lemmas first. In[Lemma 8.4] we show that there are no non-trivial line
bundles on (D*)® x D, and in|Lemma 8.5, we prove that an analytic function on (D*)® x D?, whose
restriction to every one-dimensional punctured disk extends meromorphically to the disk D, must
itself extend meromorphically to D*?.

19



Lemma 8.4. Let Ag := Spa(K (z1), O (2F1)) denote the thin annulus over K at radius 1 centered
at 0. Let a,b,c be non-negative integers. Then every line bundle on (D*)* x Db x A§ is trivial. In
particular, every line bundle on (D*)® x D is trivial.

Proof. We induct on a with the base case of a = 0, being a consequence of the fact that the
affinoid algebra K (ty,...,ty, 25", ..., 2F") is a UFD (see [vdP82, Theorem 3.25]). Suppose a >
1 and € is a line bundle on (D*)* x D x A§. By the inductive hypothesis, the restriction of
£ to (D*)* 1 x Ag x D® x A¢ is trivial. We may thus glue €& with the trivial line bundle on
(D)% x (PL)* \ {|z| < 1} x D” x A§ to obtain a line bundle € on (D*)*~! x AR™ x D x A§ that
extends €. By [Sig7, Prop. 3.6] (see also [KST20, Corollary 5] for the smooth affinoid case), £ is
the pullback of a line bundle on (D*)?~! x D? x Af§. However, by the inductive hypothesis every
line bundle on (D*)?~! x D x A§ is trivial and hence so is £ and therefore so is €. O

Lemma 8.5. Let f(z,t) be an analytic function on (D*)® x D, such that for each 1 <i < a, and
each finite extension F of K, and every F-valued point P' = (c1,...,G,...,cq,7) € (DX)?1 x Db,
the specialization f(c1,...,2i,...,cq,7) € O(D}) has only finitely many zeroes on Dy.. Then f(z,t)
extends to a meromorphic function on DOP,

Proof. Fix 1 < i < a. To simplify notations, we set 2’ = (21,...,Zi,...,2,). The function f admits
a power series development

f(évt) = Z am(zlvt)zim7

meZ

for analytic functions a,,(2/,t) € O((D*)*~! x D?). By the p-adic big Picard theorem, since for
each specialization P’, the function f(z;, P') has only finitely many zeros in D, we have that for
each such P’, the function f(z;, P’) cannot have an essential singularity at z; = 0. That is to
say that ap,(P") = 0 for all m sufficiently small. In other words, there is an mgy € Z such that
P' ¢ V({a;(¢',t) : | < mg}). This being true for every classical point P’, implies that (D*)*~! x
D’ = UnezV({ai(#,t) : I < m}). By the Baire category theorem, this implies that there is an
m(i) € Z such that for I < m(i), a;(2',t) = 0. In particular, z;m(l)f(g, t), extends analytically
across the locus z; = 0 as well. The function [];;, zj_m(] ) f(z,t) thus extends analytically to
the complement inside D**t of the codimension 2 subvariety Uj<y<s<qV (2r, z5). Hence by the
non-archimedean Hartog extension theorem [Bar75|, defines an analytic function on D®*®. This
completes the proof. ]

Proof of Proposition[8.3. We may assume that FF = K. Let h* : (D*)® x D® — X?" be an
analytic map. By we may pick a trivialization ¢ : (hX)*(£*) = Opxyaxpe of
the pullback line bundle (A*)*(.£*"). We let z := (z1,...,2,) denote the coordinates on (D*)*
and t := (t1,...,1,) the coordinates on D°. Let f.(z,t) := ¢(s,) € O((D*)* x D?). On clas-
sical points (z,t) € (D*)® x D’ the map X : (D*)% x D* — X0 — PR is given in pro-

jective coordinates by [fo(z,t) : ... : fa(z,t)]. For each i € {1,...,a}, and any finite extension
F of K and an F-valued point P’ = (c1,...,G,...,¢cq,7) € (DX)!1 x D?  the analytic map
hy, : D — PR™ given by z; — [foler,. ., %, 1CasT) ¢ oot fuler,.. 2, ..., Ca, T)], by hy-

pothesis extends analytically to a map hp: : Dp — IP’?,J&H. In particular, there exist analytic func-
tions gr(z;) € F(z;) (depending on P’) with no common zeroes on Dp such that for all classical

points z; € DF, [foler, ... 2iy .o yCasT) = oot foler, oo Ziy ooy, 7)) = [g0(2i) © -o. 0 gn(20))-
This implies that for all r,s, fr(c1,...,%i...,¢Ca,T)gs(2i) = fs(er,. .y 2iy. ., Ca,T)gr(2;) as an-
alytic functions on Dy (with coordinate z;). Since the {f,(c1,...,2i,...,¢a,T)} o<r<n and the
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{gr(zi) }o<r<n have no common zeroes in Dy, this in particular implies that for each 0 < r < n,
the zero set V(fr(c1,...,%,...,¢q,T)) equals V(gr(z;)) in D5 and is thus finite. We conclude from
that there are non-negative integers {m(j) : 1 < j < a}, such that for each 0 < r < n,
F.(z,t) :== ngjSa z?(J)fr (z,1) extends analytically to D and such that for each 1 < j < a, there
is an r such that z; { F,(z,t) in O(D**?). The set of common zeroes Z := V ({F(z,t) : 0 < r < n})
has codimension at least 2 in D™, and h* extends analytically to the map h : D¢T?\ Z — P
given by (2,1) = [Fo(z, 1) ... 1 Fu(z,1)].

For the final claim, let V' C DT x P%*" be the subspace cut out by z;F; — x; F;, where the x; are
homogeneous coordinates on P’%.. This subspace is equal to the graph I' of A when intersected with
U := (D\Z) x P, There is therefore an irreducible component V; of V for which I' = U NV
([Con99, Cor. 2.2.9]), and since U NV} is metrically dense in Vp, it follows that Vj is the closure of
I. O

Remark 8.6. We remark that the meromorphicity in Proposition [8.3] is automatic for an analytic
morphism defined outside codimension 2, as in the complex analytic case:

Lemma 8.7. Let Y be a smooth connected rigid analytic space and Z C 'Y a closed subspace of
codimension > 2. Then any morphism f :Y\Z — X®" extends meromorphically over Z.

Proof. We may assume X = P’.. Since Z has codimension at least 2 in Y, the pull-back f*(O(1))
extends to a line bundle on Y (using the correspondence between line bundles and Weil divisors
and applying Remmert-Stein which allows us to extend Weil divisors outside the codimension >
2 analytic subvariety Z.) The question of whether f extends meromorphically across Z to all
of Y is local on Y. We may therefore assume that the pull-back f*O(1) is trivial. Then the
morphism f : Y \ Z — P2™ is described in homogenous coordinates by n + 1 analytic functions
y = [fo(y) i ... fu(y)] where fi(y) € O(Y \ Z) do not have any common zeroes in Y \ Z. By the
non-archimedean Hartog extension theorem, f;(y) uniquely extend to analytic functions F; € O(Y).
The subspace in Y x ]P’?(’an cut out by z; F; — x; F; contains as an irreducible component the closure
inside Y x P*" of the graph of f: Y \ Z — PR O

8.2 Higher-dimensional extension for Shimura varieties and period images

Let X denote either Shk (G, X) or a geometric period image Y as described in §1. For the reader’s
convenience we summarize here the structures that will be relevant for the proof of Theorem

o A Zy-local system Vg, on X.
e A filtered vector bundle Vgg := (V, F*) on X.

e A normal compactification XBB of X for which the kth (for some k) power of the Griffiths
bundle
Griff (Var) := (X) det F?
p

extends to an ample line bundle L. This is [BB66] in the Shimura variety case and [BEMT?25),
Thm 1.2] in the period image case.

e A log smooth proper (X', Dx/) with a modification TXN\Dy X"\Dx: — X, such that
the pullback Ugr := (U, V, F*®) of (V, F*®) admits a flat connection with respect to which
the filtration is Griffiths transverse and extends to a logarithmic flat vector bundle Ugr :=
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(U, V, F*U) such that the eigenvalues of the residues are contained in [0,1) N Q. Moreover,
TXN\Dy : X"\Dyx: — X extends to a morphism 7 : (X', Dx/) — (XBB, XBB\ X) for which

L = Griff(UdR)k.

Here, X’ is taken to be the largest stratified resolution S™ in the period image case, and S
itself in the Shimura variety case. Again, this follows from [BB66] in the Shimura variety case
and [BFMT25, Thm 1.2] in the period image case.

e We have

TR = DdR,IOg(W}k('\DX/Vét,p) (3)
via the p-adic Riemann—Hilbert correspondence of [DLLZ23, Thm 1.7]. In the period image
case the isomorphism is given over P’ by the second part of [DLLZ23, Thm 1.1], and in the
Shimura variety case by [DLLZ23, Thm 1.5].

Proposition 8.8. Let (M, Dys) be a log smooth rigid-analytic variety and f : M\Dy — X
a morphism such that M\Dy; — XBBa% egtends meromorphically over Dyr. Then it extends
regularly over Djy.

Proof. By meromorphicity and embedded resolution of singularities [Tem18, Thms 1.1.9, 1.1.13],
there is a log smooth (M’, Dj/), a modification g : (M’, Dyy) — (M, Dyy), and a diagram

(M', Dyrr) " (X', Dx)
/
M'\Dyp g T
9unpy (M, Dar) (XBB, XBB\X)
" /
M\Dy; ! X

Since (Wh)*M/\DM,V = (fgunp,, ) Vetp, we have
9" Dar,tog(f*Vep) = h* Dar og (Txn p , Vet,p)

and likewise for the Griffiths bundles. Since Griff (DdR’lOg(ﬂ'g,\ DS,Vét,p))k descends amply to X BB,

it follows that 7h factors through g, by the rigidity lemma (see e.g. [Deb01, Lemma 1.15]). O
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