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Abstract

We prove that Shimura varieties and geometric period images satisfy a p-adic extension
property for large enough primes p. More precisely, let D× ⊂ D denote the inclusion of the
closed punctured unit disc in the closed unit disc. Let X be either a Shimura variety or a
geometric period image with torsion-free level structure. Let F be a discretely valued p-adic
field containing the number field of definition of X, where p is a large enough prime. Then,
any rigid-analytic map f : (D×)a × Db → Xan

F defined over F whose image intersects the
good reduction locus of Xan

F (with respect to an integral canonical model) extends to a map
Da+b → Xan

F . We note that this hypothesis is vacuous if X is proper. We also deduce an
application to algebraicity of rigid-analytic maps. Our methods also apply to the more general
situation of the rigid generic fiber of formal schemes admitting Fontaine-Laffaile modules which
satisfy certain positivity conditions.

1 Introduction

The purpose of this paper is to prove p-adic extension and algebraicity theorems for exceptional
Shimura varieties and geometric period images. This result is a p-adic analogue of the following
theorems for complex Shimura varieties that Borel ([Bor72]) proved in 1972:

Theorem (Borel extension). Let ShK(G,X) be a Shimura variety with torsion-free level structure.
Let D be the complex open disc and let D× be the punctured open unit disc. Then, every holomorphic
map D×a ×Db → ShK(G,X)hol extends to a map Da+b → (ShK(G,X)BB)hol.

An immediate corollary of this extension result and GAGA is the following algebraicity theorem.

Theorem (Borel algebraicity). Let ShK(G,X) be as above, and let M be a complex algebraic
variety. Then every holomorphic map Mhol → ShK(G,X)hol is the analytification of an algebraic
map M → ShK(G,X).

Here is the main theorem of this paper.

Theorem 1.1. Let X be either a Shimura variety or a geometric period image with torsion-free
level structure. There exists an integer N with the following property. Let p be a prime that doesn’t
divide N and suppose F is a discretely valued p-adic field containing the field of definition of X.
Suppose that f : (D×)a×Db → Xan

F is a rigid-analytic map defined over F such that Im(f) intersects
the good-reduction locus of XF . Then, f extends to a map Da+b → Xan

F .

Theorem 1.1 has the following corollary.
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Theorem 1.2. Let X, p and F be as above, and let M be an algebraic variety defined over F .
Then, every rigid-analytic map f : Man → Xan defined over F such that Im(f) is contained in the
good reduction locus is the analytification of an algebraic map M → X.

Remark 1.3. 1. We define the good reduction locus precisely in Section 3, but informally, the
good reduction locus is the analytic open subspace of Xan whose classical K-points arise as
OK-points of a good integral model of X. If X is proper, then the good reduction locus is
all of Xan and therefore the good reduction hypothesis is vacuous. We expect the theorem to
hold without this hypothesis.

2. We draw the reader’s attention to the fact that the good reduction hypothesis in Theorem
1.1 has the consequence that the extension of f yields a map to X, and it is not necessary to
compactify X.

3. The setting of Shimura varieties of abelian type is addressed in [OSZP24], where the authors
prove p-adic extension and algebraicity theorems without a good reduction hypothesis and
for all primes p. However, the extension of the map from (D×)a × Db is only obtained to
the Baily-Borel compactification of X. Indeed, one may start with a map from D to the
Baily-Borel compactification with the property that D× maps to the interior and 0 maps to
the boundary.

1.1 Other results

The proofs of Theorem 1.1 and 1.2 work in a more general setting than just the case of geometric
period images and Shimura varieties. In order to not mire ourselves in unenlightening notation and
technicalities, we will state a result that is not the most general but that is the cleanest to state.

Theorem 1.4. Let X be a smooth scheme over W (Fp), and let X rig denote its rigid generic fiber.
Let L/X rig be a crystalline local system with VFL the associated Fontaine-Laffaile module. Suppose
that we are in one of the following two cases.

1. The Kodaira-Spencer map associated to the filtered flat bundle underlying VFL is everywhere
immersive.

2. The Griffiths bundle associated to VFL is an ample bundle on X .

Then, every map (D×)a × Db → X rig extends to a map Da+b → X rig

1.2 Outline of proof

The main results of [OSZP24] proved the p-adic extension and algebraization results for Shimura
varieties of abelian type parallelling Borel’s theorem in the setting of a discretely valued p-adic
field. The strategy of [OSZP24] crucially uses the existence of Rapoport-Zink ([RZ96]) spaces and
Rapoport-Zink uniformizations of Ag. This in turn of course relies on the moduli interpretation of
Ag. While there is a theory of Rapoport-Zink spaces (see [RV14]) that goes beyond the setting of
abelian varieties, it is not known (though it is certainly expected) that exceptional Shimura varieties
admit such uniformization maps. The setting of geometric period images is even more barren,
without even any expectations of p-adic uniformization maps. Our proof therefore sidesteps the
existence Rapoport-Zink uniformizations and instead make strong use of the existence of crystalline
local systems and Fontaine-Laffaile modules.
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The outline of our proof is as follows. The main step is the case of a one-dimensional disk.
For brevity, we will focus on the Shimura case. We work at a prime p at which X has an integral
canonical model (which we will denote by X in the introduction)—X is equipped with ℓ-adic local
systems and a Fontaine-Laffaille module, and X is equipped with a crystalline p-adic local system
associated to the Fontaine-Laffaille module. We first prove that any map f : D× → Xan

F has the
property that f(D×) is either entirely contained in the good reduction locus, or the bad reduction
locus. This proof is ℓ-adic and follows the arguments in [OSZP24], and uses a monodromy-theoretic
description of the good-reduction locus proved in [PST+21] for exceptional Shimura varieties. By
a recent result in [DY25], we know that the p-adic local system extends to D. We then apply
the theory of prismatic F -crystals to show that up to shrinking D, the F -crystal associated to the
crystalline Galois representation Lx is independent of the classical point x ∈ D. Now, we write
D× as an increasing union of annuli Ak, each of which admits an integral model Ak that maps to
X . We then generalize an argument of Oort ([Oor04]) to show that the F -crystal on X mod p
pulls back to Ak mod p. Finally, we use the Kodaira-Spencer map to prove that any map from a
connected variety over Fp to X mod p with the property that the F -crystal over X mod p pulls
back to something constant must in fact be the constant map. We then conclude that the map
from D× to Xan

F maps to a residue disc, and therefore extends by the Riemann extension theorem.

To deduce Theorem 1.1 for morphisms from polydisks f : (D×)a × Db → Xan
F , we show that the

existence of an extension on any one-dimensional disk implies that f extends meromorphically and
then use the p-adic Riemann–Hilbert correspondence of [DLLZ23] to show that the exceptional
fibers in the resolution of indeterminacies of f must be contracted. In fact, this part of the argu-
ment also shows that the one-dimensional disk case of Theorem 1.1 without the good reduction
assumption implies the polydisk case (without the good reduction assumption).

1.3 Previous work

There are several results prior (aside from Borel’s work) to our work that addresses the questions of
algebraicity and extension – both in the complex and p-adic settings. In the complex case, [BBT23]
and [BFMT25] prove the algebraicity and extension results for geometric period images.

As earlier mentioned, [OSZP24] treats the case of abelian Shimura varieties for all primes p,
without a good-reduction hypothesis. It also treats the case of the universal abelian scheme over
compact Shimura varieties of Hodge type, and Rapoport-Zink spaces associated to Ag,K. The
paper [OP25] proves the p-adic extension theorem for local Shimura varieties. Cherry (in [Che02])
addresses the case of genus ≥ 2 curves in the more general situation of Cp. Cherry-Ru ([CR04])
prove a p-adic big Picard style theorem, and Sun ([Sun20]) proves the Cp-analogue of the algebraicity
theorem.

1.4 Organization of the paper

In Section 2, we introduce various objects that live on Shimura varieties and period images. In
Section 3, we prove that the image of every map D× → X must either be entirely contained in the
good reduction locus or the bad reduction locus. In Section 4, we recall results about prismatic F -
crystals, and in Section 5 prove a crucial constancy result for F -crystals. In Section 6, we generalize
work of Oort to show that a pointwise constant F -crystal on P1 must be constant. In Section 7,
we prove the main theorem for D×, and prove the main theorem in general for 8.
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2 Notations and the general setup

2.1 The set-up for the Shimura case

We follow closely the notations of [BST24]. To recall, (G,X) shall denote a Shimura datum. Let
E := E(G,X) ⊂ C denote the reflex field. We let V be the adjoint representation of G, a Z-lattice
V of V , and a neat compact open subgroup K ⊂ G(Af ) that stabilizes V⊗ Ẑ ⊂ V ⊗QAf . We further
assume that K acts trivially on V/3V. Denote by ShK(G,X), the corresponding Shimura variety
over E. Associated to V ⊂ V , we have a family of Zℓ (respectively Qℓ) étale local systems on
ShK(G,X) that we denote by Vét,ℓ (resp. Vét,ℓ.) We denote by VdR := (V,∇, F •V) the associated
filtered flat vector bundle on ShK(G,X) defined over E.

We pick a large integer N as in [BST24, Theorem 1.3], so that ShK(G,X) admits a smooth model
SK(G,X) over OE [1/N ] and such that for all places v of E outside N , SK(G,X) ⊗OE [1/N ] OEv

is a canonical integral model of ShK(G,X) ⊗E Ev over the ring of integers OEv of the v-adic
completion Ev of E. Furthermore, for every place v ∤ N , SK(G,X) ⊗OE [1/N ] OEv admits a log-
smooth compactification over OEv . The Zℓ-étale local systems Vét,ℓ on ShK(G,X) ⊗E Ev, extend
to ℓ-adic étale local systems on SK(G,X) ⊗OE [1/N ] OEv [1/ℓ]. We also have that for p ∤ N , the
restriction of Vét,p to ShK(G,X) ⊗E Ev is crystalline in the sense of Faltings-Fontaine-Laffaille,
where v is a place of E dividing p. By increasing N if necessary, we may also assume that (V,∇)dR
spreads out to SK(G,X) such that the Kodaira-Spencer map is everywhere immersive.

We shall fix henceforth a rational prime p ∤ N , a place v of E above p. We shall work throughout
over the p-adic local field K := Ev. Set S := SK(G,X)⊗OE [1/N ]OEv , and S := ShK(G,X)⊗E Ev.
By a slight abuse of notation, we denote the pullbacks to S of the local systems Vét,ℓ, Vét,ℓ and the
filtered flat vector bundle VdR also by Vét,ℓ, Vét,ℓ and VdR respectively, and in the case ℓ ̸= p, their
extensions to the integral canonical model S shall also be denoted by the same. We let VFL denote
the Fontaine-Laffaile module associated to Vét,p/S on the formal p-adic completion Ŝ , and we let
Vcris denote the F -crystal on Sp := S ⊗OEv

kv, where kv is the residue field of OEv . Note that the
filtered flat bundle underlying VFL is just (V,∇)dR. We will sometimes use the symbol L to denote
the Zp-étale local system Vét,p on S We denote by ShK(G,X)BB the Baily–Borel compactification
of ShK(G,X) and set SBB := ShK(G,X)BB ⊗E Ev.

2.2 The set-up for geometric period images

Let E ⊂ C be a number field, P a smooth, connected quasi-projective algebraic variety over E, and
f : Z → P a smooth, projective E-morphism. For a fixedm, we have a polarizable integral variation
of Hodge structures (WZ, F

•) with underlying Z-local system WZ := Rmfhol
∗ (ZZhol). Denote by

G, the generic Mumford-Tate group of the variation. We shall further assume that the variation
has neat monodromy, which can always be arranged after passing to a finite étale cover of P . We
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denote by Wét,ℓ := Rmf ét
∗ (Zℓ) the associated Zℓ local system on P , and by WdR := (W,∇, F •) the

filtered flat algebraic vector bundle on P defined over E, such that WZ is the sheaf of flat sections
of the associated analytified filtered flat bundle on P hol.

We denote by Y/E the Stein factorization of the period map associated to the variation (WZ, F
•), in

the sense of [BST24, §1.4] (see also [BBT23]). Thus, Y/E is a quasi-projective algebraic variety over

E, and the associated period map ϕ : P hol
C → Γ\D, factors as a composite P hol ghol−−→ Y hol

C → Γ\D,

where the morphism Y hol
C → Γ\D is finite, and P

g−→ Y/E is an algebraic map defined over E with
geometrically connected generic fiber. There also exists a smooth partial compactification P ′ of P
defined over E and a proper map P ′ → Y , with WdR, Wét,ℓ (resp. (WZ, F

•)) extending to P ′ (resp.
P ′,hol).

Note that the variation (WZ, F
•) descends to a polarizable Z variation of Hodge structures

(VZ, F
•) on Y hol

C , as do the Zℓ-étale local systems Wét,ℓ to Zℓ-étale local systems Vét,ℓ on Y/E
(see [BST24, §2.6]). The filtered flat bundle WdR = (W,∇, F •) on P descends to a filtered vector
bundle on Y/E defined over E, denoted by VdR = (V, F •).

There is a finite set of places Σ of E such that:

• Z → P spreads out to a smooth proper family over a smooth base Z → P over OE,Σ.

• P ′ → Y spreads out to a proper map P ′ → Y over OE,Σ where P ′ is a smooth partial
compactification of P.

• The filtered flat bundle WdR/P
′ and the filtered bundle VdR/Y spread out to a filtered flat

bundle on P ′ and a filtered bundle on Y. We abusively denote the extensions by the same
notation. The Griffiths bundle of VdR on Y is ample.

• For every prime ℓ, the local system Wét,ℓ extends to an ℓ-adic local system on P ′
OE,Σℓ

where

Σℓ is the union of Σ and all primes of E dividing ℓ. We abusively denote these local system
by Wét,ℓ as well. Likewise, the Zℓ-étale local systems Vét,ℓ on Y extend to Zℓ-local systems
on YOE,Σℓ

, which we denote by the same notation.

• Y is an integral canonical model (as in [BST24]) of Y over OE,Σ.

• There is a uniform stratified resolution with boundary Sj → Yj of Y over OE,Σ as in [BST24,

Definition 4.2], and for each j, there is a smooth scheme T j/OE,Σ and maps T j tj−→ P ′ and

T j qj−→ Sj as in [BST24, Section 5.2]. For the largest-dimesnional stratum Ym = Y, we may
assume P ′ → Y factors through Sm, and that P ′ → Sm has geometrically connected fibers.

• We let Uj
ét,ℓ denote the pullback of Vét,ℓ|Yj×OE,Σℓ

to Sj × OE,Σℓ
, and let (U ,∇)dR

j be the

pullback of VdR|Yj—note that (U ,∇)dR
j is a filtered flat bundle.

The filtered flat bundle WdR/P ′ has the structure of a Fontaine-Laffaille module at a prime
v /∈ Σ and this corresponds to the local system Wet,p for v | p via the Faltings-Fontaine-Laffaile
correspondence. There are two filtered flat bundles on Sj—one is (U ,∇)dR

j , already defined. The
other one is the filtered flat bundle underlying the Fontaine-Laffaille module associated to Uj

ét,p.

We denote this Fontaine-Laffaille module by Uj
FL. We note that both these filtered flat bundles

become isomorphic when pulled back to T j . Note however that for the largest stratum Sm, these
two filtered flat vector bundles are isomorphic, since P ′ → Sm has geometrically connected fibers.
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Henceforth, we fix once and for all a finite place v /∈ Σ. Let p denote the rational prime below v.
Set K := Ev, with ring of integers OK and residue field k. We will let Y, P, VdR (resp. Y,S, T ,)
etc. also denote the basechange of the corresponding objects from E (resp. OE,Σ) to K (resp.
OK). Note that the p-adic (and ℓ-adic) local systems on all the spaces agree under pullback. We
will sometimes use the symbol L to denote our p-adic local system(s) if the base is implicit (or
unimportant). We denote by Y BB the Baily–Borel compactification of the period image Y (see
[BFMT25]).

2.3 General notations

As above, we fix a rational prime p, a p-adic field K with ring of integers OK , and residue field k.

For a complete non-archimedean field extension F of K, rigid-analytic varieties and spaces over
F shall be viewed as adic spaces over Spa(F,OF ). In particular, by a rigid-analytic variety over
F , we shall mean a quasi-separated adic space that is locally of finite type over Spa(F,OF ). For
an admissible formal OF -scheme X / Spf(OF ), we denote the associated rigid-analytic generic fiber
by X rig. For an algebraic variety X over F (respectively a morphism g : W → X of algebraic
varieties over F ), we denote by Xan the associated rigid-analytic space over Spa(F ) (resp. by
gan : W an → Xan the associated morphism of rigid-analytic spaces over F ).

For a complex algebraic variety X → Spec(C) (respectively a morphism of complex algebraic
varieties g : W → X) we denote the associated complex analytic space by Xhol (respectively the
associated morphism of complex analytic spaces by ghol).

The rigid-analytic closed unit disk over F is denoted by DF := Spa(F ⟨t⟩,OF ⟨t⟩). The punctured
closed unit disk over F is D×

F := DF \ {t = 0}.

3 Boundary and interior

Definition 3.1. Let X denote either the Shimura variety S or the period image Y , and let X
denote the integral canonical model. Let K be a discretely valued field with ring of integers OK .
We say that a point x ∈ X (K) has good reduction if its specialization lies in the interior, i.e. x is
induced by an OK-valued point of X . We say that x has bad reduction otherwise. Define the good
reduction locus Xgood of X to be the set of points of Xan whose mod p specialization with respect
to the canonical model lies in the interior. We define the bad reduction locus to be the complement
in Xan of the good reduction locus. We note that Xgood is an analytic open subspace of Xan.

We will first prove that a map f : D× → Xan must either be contained entirely in the good
reduction locus or the bad reduction locus where X is as above. This argument appears in an old
arXiv version of [BST24] (Lemma 6.4) (which is turn is essentially the same as the argument in
the abelian case [OSZP24, Theorem 3.3]) but we include it in this paper for completion.

Theorem 3.2. Let f : D× → Xan be an analytic map where X is as above. Then either f(D×) ⊆
Xgood or f(D×) ⊆ (Xan \Xgood).

The following lemma is an analogue of the Neron-Ogg-Shafarevich criterion and follows directly
by the arguments of [PST+21, Lemma 8.4].

Lemma 3.3. Let K either be F((t)) or a discretely valued p-adic field, and let x ∈ X(K) be a
point. Then x has bad reduction if and only if the action of the inertia subgroup IK ⊂ GalK on
(Vét,ℓ)x is quasi-unipotent of infinite order.
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Proof of Theorem 3.2. [OSZP24, Proposition 3.6] does what is required for thin annuli. To deduce
the result for thick annuli from thin annuli, we proceed along identical lines to the argument in
[OSZP24, Section 3.1.2]. We are reduced to proving the following result. Let g : Gm → Xp be
any map. Then, g extends to a map P1 → Xp. To prove this, it suffices to prove that the local
monodromy of g−1Vét,ℓ around the boundary points is semi-simple. To prove this, it suffices to
prove that the geometric monodromy of g−1Vét,ℓ is semisimple. By [Del80, 3.4.12], it suffices to
prove that the arithmetic local system g−1Vét,ℓ is point-wise pure—of course, this would follow
from proving that Vét,ℓ itself were pure.

In the Shimura case, this follows from the fact that Vét,ℓ is induced by the adjoint representation
of G, and is therefore an irreducible local system with finite determinant. In the case of geometric
period maps, this follows from the fact that the local system is induced by a geometric family, and
is therefore point-wise pure by [Del80].

4 Crystalline p-adic local systems and analytic prismatic F -crystals

In this section, we recall the notions of crystalline local systems and F -crystals that are used in the
article.

Definition 4.1. Let X/k be a smooth scheme. Let Xcrys denote the p-completed crystalline site
of X,1 equipped with the structure sheaf OX,crys.

(i) By a crystal over X we mean a finite locally free crystal or equivalently, a crystal of vector
bundles over X, that is, a sheaf of OX,crys-modules E such that for each PD-thickening (U, T )
in Xcrys, the induced Zariski sheaf ET is a finite locally free OT -module, such that for each
morphism g : (U ′, T ′) → (U, T ) in Xcrys, the induced map g∗ET

∼−→ ET ′ is an isomorphism.
(ii) An isocrystal over X is an object in the isogeny category of crystals of modules. All of the

isocrystals we will consider will in fact be obtained from a crystal (in vector bundles) by
inverting p.

(iii) An F -crystal (resp. F -isocrystal) over X consists of a pair (E, φ) where E is a crystal (resp.
isocrystal) over X and φ is an isomorphism

φ : F ∗
crysE[1/p]

∼−→ E[1/p]

which is compatible with the Frobenius map Fcrys on OX,crys induced by functoriality.

We write Vectφ(Xcrys) (resp. Isoc
φ(Xcrys)) for the category of F -crystals (resp. F -isocrystals) over

X.

We also need the notion of prismatic and analytic prismatic F -crystals. Let us first recall that,
given a p-adic formal scheme X/OK , its absolute prismatic site X∆ is the opposite of the category
of bounded prisms (A, I) equipped with a map Spf A/I → X, endowed with the flat topology (on
prisms). Let O∆ (resp. I∆) denote the structure sheaf (resp. the Hodge–Tate sheaf) on X∆, which
sends (A, I) 7→ A (resp. sends (A, I) 7→ I). Let φ∆ denote the Frobenius map on O∆.

Example 4.2. Let E = E(u) be an Eisenstein polynomial for a fixed uniformizer ϖ ∈ OK .

1In this article, we shall consider the absolute crystalline site of X, or equivalently, crystalline site of X over the
divided power algebra (W (k), p).
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1. The Breuil–Kisin prism (S, E) with S = W (k)[[u]] and φS(u) = up gives an object in
(Spf OK)∆ via the surjection S → OK sending u 7→ ϖ. In fact, by the argument in [BS23,
Example 2.6(1)] it covers the final object of the topos Shv((Spf OK)∆,O∆). Taking the Cech
nerve of (S, E) over the final object in this topos gives rise to a cosimplicial object

S −→−→ S(1) −→−→−→ S(2) (1)

in (Spf OK)∆. One can explicitly describe the Prisms (S(i), E) in terms of the prismatic

envelop construction. For example, we have S(1) = W [[u, v]]
{
u−v
E

}∧
(p,E)

, where {·} denotes

the prismatic envelop.

2. Let R = (OK [t])∧p be the p-adic completion of OK [t] and let R0 = (W [t0])
∧
p . Let X = Spf R

be the p-adic formal A1 over Spf OK . Let SR = R0[[u]], equipped with a δ-structure given by
φ(u) = up and φ(t0) = tp0. As in the previous example, we have a surjection SR → R sending
u 7→ ϖ and t0 7→ t, which makes (SR, E) into an object in X∆.

Lemma 4.3. In the second example above, the prism (SR, E) covers the final object in the topos
of (X∆,O∆).

Proof. Let (A, I) be a prism in the absolute prismatic site X∆, equipped with a map ι : R → A/I.

Note that A is canonically a W -algebra. Let us pick an element ϖ̃ (resp. t̃) in A which lifts the
image of ϖ (resp. of t) in A/I under ι. Let us consider the map A → (A ⊗W SR)

∧
(p,I) of δ-rings

and form the prismatic envelope (see [BS22, Proposition 3.13])

B := (A⊗W SR){
u− ϖ̃, t0 − t̃

I
}∧(p,I),

so we have a map (A, I) → (B, IB) of prisms in X∆. By [BS22, Proposition 3.13], the map A → B
is (p, I)-completely flat, and in fact (p, I)-completely faithfully flat, so (A, I) → (B, IB) forms a
cover in X∆. Finally, note that by construction we have E(u) = E(ϖ̃) = 0 mod IB, so we have
E(u) ∈ IB and thus we have a map of prisms (SR, E(u)) → (B, IB) by [BS22, Lemma 2.24]. This
finishes the proof of the lemma.

Definition 4.4. Let X/OK be a smooth p-adic formal scheme. A prismatic crystal (of vector
bundles) over X is an O∆-module E , such that there exists bounded prisms (Ai, Ii) in X∆, with
{Ui = Spf(Ai/Ii)} covering the final object of the topos of (X∆,O∆), and finite projective Ai-
modules Ei, such that E|Ui

∼= Ei ⊗Ai O∆,Ui
. A prismatic F -crystal over X is pair (E , φE), where E

is a prismatic crystal and φE is an isomorphism

φE : φ∗
∆E [1/I∆]

∼−→ E [1/I∆]

of O∆-modules. We write Vect(X∆,O∆) (resp. Vectφ(X∆,O∆)) for the category of prismatic
crystals (resp. prismatic F -crystals) over X.

Following notations from [BS23], for a given bounded prism (A, I), we write Vect(A) for the
category of finite projective A-modules. We write Vectφ(A, I) for the category of pairs (E,φE)
that consists of a finite projective A-module E together with an A-linear isomorphism φE :

φ∗
AE[1/I] ∼−→ E[1/I], with morphisms being morphisms between the finite projective A-modules
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that are compatible with Frobenius. By (p, I)-completely faithfully flat descent for vector bundles
(see [BS23, Proposition 2.7]), we have natural equivalences

Vect(X∆,O∆)
∼−→ lim

(A,I)∈X∆
Vect(A)

Vectφ(X∆,O∆)
∼−→ lim

(A,I)∈X∆
Vectφ(A, I)

In particular, to specify a prismatic F -crystal over X is equivalent to specifying a prismatic F -crystal
over each bounded prism (A, I) ∈ X∆ in a compatible fashion. If (A0, I0) ∈ X∆ is a bounded prism
that covers the final object of Shv(X∆,O∆), this is also equivalent to the data of a prismatic F -
crystal over (A0, I0) which satisfies certain the descent data coming from the Cech nerve of this
cover. We will also need the following variant.

Definition 4.5. (i) Let (A, I) be a bounded prism, we define the category of analytic prismatic
F -crystals over (A, I), denoted by Vectan,φ(A, I), to be the category of pairs (E,φE) where
E is a vector bundle over Spec(A)\V (p, I), and φE is an isomorphism φ∗

AE[1/I] ∼−→ E[1/I].
Morphisms in Vectan,φ(A, I) are morphisms between vector bundles that are compatible with
Frobenius. 2

(ii) Let X/OK be a smooth p-adic formal scheme. We define the category Vectan,φ(X∆) of analytic
prismatic F -crystals by the derived limit

Vectan,φ(X∆) := lim
(A,I)∈X∆

Vectan,φ(A, I).

We have a natural forgetful functor Vectφ(X∆) −→ Vectan,φ(X∆) from prismatic F -crystals to
analytic prismatic F -crystals. This functor is induced from the map Vectφ(A, I) → Vectan,φ(A, I)
that sends a vector bundle over SpecA to its restriction over the complement of V (p, I) for each
(A, I) ∈ X∆ and is fully faithful. Moreover, it is compatible with crystalline realizations, in the
sense that we have a commutative diagram

Vectφ(X∆) Vectan,φ(X∆)

Vectφ(Xs,crys) Isocφ(Xs,crys)

(2)

where the vertical arrows are induced by specializing to the special fiber Xs of X and identifying
the absolute prismatic site Xs,∆ of Xs with the p-completed absolute crystalline site Xs,crys of Xs

(see [BS23, Construction 4.12]). Let us consider a special case of this restriction functor in the
setting of Example 4.2.

Lemma 4.6. Let X = Spf R, where R = (OK [t])∧p . Let U = Spec(SR)\V (p,E(u)) be the open
subset of Spec(SR) and denote by j : U → Spec(SR) the open immersion. The essential image of
the fully faithful functor

Vectφ(X∆) −→ Vectan,φ(X∆)

consists of pairs (E , φE) satisfying the following condition: if we write (EU , φU ) for the vector
bundle over U obtained by evaluating (E , φE) on the prism (SR, E(u)) ∈ X∆, then j∗EU is a vector
bundle over SpecSR.

2Note that, for a prism (A, I), the Frobenius φA preserves the zero locus V (p, I) ⊂ SpecA as well as its complement.
Thus the definition above makes sense.
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Proof. This is [IKY24, Proposition 1.26].

Definition 4.7. Let X/OK be a smooth p-adic formal scheme. Let Xη/K be its adic generic fiber
and let Xs/k denote the special fiber. Let L be an étale Zp-local system on Xη. We say that L
is crystalline if there exists an F -isocrystal (E, φ) over Xs, together with a Frobenius equivariant
isomorphism of Bcrys-vector bundles

Bcrys(E) ∼−→ Bcrys ⊗Zp L.

Here Bcrys(E) is the sheaf of Bcrys-modules on the pro-étale site Xη,proét associated to (E, φ). We
denote the category of crystalline Zp-local systems on Xη by LoccrysZp

(Xη).
3

We shall need the following result in the article, due to Bhatt–Scholze [BS23] in the case of Spf OK

and to Du–Liu–Moon–Shimizu [DLMS24]/Guo–Reinecke [GR24] in general.

Theorem 4.8 ([BS23, DLMS24, GR24]). Let X/OK be a smooth p-adic formal scheme. There is
a natural equivalence of categories

Vectan,φ(X∆)
∼−→ LoccrysZp

(Xη).

In particular, this equivalence is functorial in X.

Remark 4.9. In the setting above, if L is a crystalline Zp-local system on Xη, then one can recover
the F -isocrystal over the special fiber Xs from this equivalence via the crystalline realization (see
Diagram (2)).

Example 4.10. Let us revisit Example 4.2 once again.

(i) Let (S, E) be the Breuil–Kisin prism, and let U0 = Spec(S)\V (p,E) denote the open
subscheme obtained as the complement of a closed point in SpecS. Theorem 4.8 (due to
Bhatt–Scholze in this context) says that a Zp-lattice Λ in a crystalline GalK-representation
is equivalent to the data of a vector bundle E0 over U0 = Spec(S)\V (p,E), equipped with a
Frobenius isomorphism after inverting E, as well as the descent data coming from the cosim-
plicial complex (1). Since S is a regular local scheme of dimension 2, E0 uniquely extends
to a vector bundle over SpecS, which still carries the Frobenius isomorphism after invert-
ing E, and again satisfies descent. In other words, for Spf OK , the fully faithful embedding
Vectφ((Spf OK)∆) → Vectan,φ((Spf OK)∆) is an equivalence. Moreover, via Theorem 4.8 and
this equivalence, a Zp-lattice Λ in a crystalline representation is equivalent to a Breuil–Kisin
module (M, φM) that satisfies descent along the cosimplicial complex (1), that is, equipped
with a descent isomorphism after pulling back to S(1) which satisfies a cocycle condition over
S(2).

(ii) Let R = (OK [t]∧p ) be as in Example 4.2 (2) and let X = Spf R, so Xη = D = Spa(R[1/p], R) is
the closed unit disc over K. In this case, Theorem 4.8 tells us that crystalline Zp-local system
on D is equivalent to the category of analytic prismatic F -crystals over X. In particular, it
gives rise to a vector bundle EU over U = Spec(SR)\V (p,E(u)) equipped with a Frobenius
φE (by evaluating the analytic prismatic F -crystal on the prism (SR, E(u))).

3Note that, a priori, the notion of crystallinity of local systems depends on the integral model X over OK . In fact,
this notion only only depends on the generic fiber Xη (and independent of the chosen integral model).
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5 From F -isocrystals to F -crystals

Let L be a crystalline Zp-local system on the closed unit disc D, and let E be the F -isocrystal
over the special fiber of D (which is a copy of A1

k) attached to L. Let us also recall that, if V is a
crystalline Qp-representation of the Galois group GalK with nonnegative Hodge–Tate weights, and
Λ ⊂ V is a GalK-stable Zp-lattice, then one can attach to Λ a Frobenius module

Dcrys(Λ) = (M,φM ),

which consists of a finite free W (k)-module M together with a Frobenius map φM : M → M that
becomes an isomorphism upon inverting p. This can be achieved by considering the Breuil–Kisin
module (M, φM) and base changing along the map S = W (k)[[u]] → W (k) sending u 7→ 0. We may
regard Dcrys(Λ) as an F -crystal over Spec k (see Example 4.10 and also see Diagram (2)). The goal
of this section is to show the following.

Theorem 5.1. Assume the above setup. Up to replacing D by a smaller closed disc in D if neces-
sary, there exists an F -crystal D over A1 with D[1/p] ∼= E, that is compatible with the crystalline
Zp-local system L in the following sense: for every finite extension L/K and every classical L-point
x ∈ D which specializes to a closed point x ∈ A1, there is an isomorphism D|x ∼= Dcrys(L|x) of
F -crystals over x. Consequently, up to replacing D by a smaller disc, the isomorphism class of the
F -crystal Dcris(Lx) is independent of the classical point x ∈ D.

5.1 Locally free extensions

Let T be an admissible p-adic formal scheme over SpfW , and consider the sheaf of rings OT [[u]].
4

We say T is regular if every local ring is regular. In this section we prove the following:

Proposition 5.2. Let T be a regular 2-dimensional p-adic formal scheme over SpfW and E a
finitely generated OT [[u]]-module. Then there is a sequence

T ′ = Tn → · · · → T1 = T

of formal admissible blow-ups at closed points, such that (f [[u]]∗E)∨∨ is locally free as an OT [[u]]-
module, where f : T ′ → T denotes the composition of sequence of maps above.

We begin with the following observation.

Lemma 5.3. Let O be a 3-dimensional regular local ring and E a finitely generated reflexive O-
module. Then ExtiO(E,O) = 0 for i > 1.

Proof. Every term in the double dual spectral sequence

RHomO(RHomO(E,O),O) = E

vanishes except E∨∨, Ext1O(E
∨,O), and Ext3O(Ext

1
O(E,O),O). In particular, this implies that

Ext3O(Ext
i
O(E,O),O) = 0 for i > 1, so ExtiO(E,O) = 0 by local duality.

The main step of Proposition 5.2 is the following:

4In the context of Example 4.2(2), the reader may take T = Spf R0 as a working example in this subsection.
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Lemma 5.4. Let O be a 3-dimensional regular local ring and E a finitely generated reflexive O-
module which is not free. Let f : X → SpecO be the blow-up along any regular curve. Then we
have

ℓ(Ext 1OX
((f∗E)∨,OX)) < ℓ(Ext1O(E

∨,O)),

where ℓ denotes the length of (O-)modules.

Proof. Step 1. E has a presentation of the form

0 Om On E 0A .

Proof. Consider any presentation

Om On E 0A .

We claim that N = img(A) is free. Indeed, applying RHomO(−,O) to the sequence

0 N On E 0

and using Lemma 5.3, we see that ExtiO(N,O) = 0 for i > 0.

Step 2. Let M be any nonzero finitely-generated O-module supported on (some thickening of) the
closed point x of SpecO. Then Lif∗M = 0 for i < −1 and H0(Ext 2OX

(L−1f∗M,OX)) ̸= 0.

Proof. First observe that the vanishing claim is true for M = k(x) using the Koszul resolution. In
general we may take a short exact sequence

0 M ′ M k(x) 0.

and the vanishing follows from the above observation by induction on ℓ(M).

For the second claim, again observe that the claim is true forM = k(x) since L−1f∗k(x) = OC(−1)
where C = f−1(x) ∼= P1

k(x) and Ext 2OX
(OC(−1),OX) = OC . In general, using the same sequence

we have an exact sequence

0 L−1f∗M ′ L−1f∗M OC(−1)

and the image of the rightmost map is therefore either 0 or OC(−a) for some a ≥ 1. Thus by
induction we may assume we are in the latter case. But then we have an inclusion

0 OC(a− 1) ∼= Ext 2OX
(OC(−a),OX) Ext 2OX

(L−1f∗M,OX)

whence the claim.

Taking the dual of the presentation from Step 1 we have

0 E∨ On Om Ext1O(E,O) 0.A∗

Let F = img(A∗) and Q = Ext1O(E,O).

Step 3. We have Lif∗F = 0 and Lif∗(E∨) = 0 for i < 0.
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Proof. Pulling back the sequence

0 F Om Q 0

and using the vanishing in Step 2 implies the first claim. Pulling back

0 E∨ On F 0

and using the first claim implies the second.

Step 4. There is a natural short exact sequence

0 f∗(E∨) (f∗E)∨ L−1f∗Q 0.

Proof. SinceOX is torsion-free, pulling back the presentation from Step 1 we have an exact sequence

0 Om
X On

X f∗E 0
f∗A

and therefore an exact seqeunce

0 (f∗E)∨ On
X Om

X .
f∗A∗

Now applying the previous step to the diagram with exact diagonals

0

L−1f∗Q 0

f∗F

On
X Om

X

f∗(E∨) f∗Q

L−1f∗F 0

f∗A∗

yields the claim.

Step 5. There is a natural short exact sequence

0 H1(f∗(E∨)∨) Ext1O(E
∨,O) H0(Ext 1OX

(f∗(E∨),OX)) 0.

In particular, ℓ(Ext 1OX
(f∗(E∨),OX)) ≤ ℓ(Ext1O(E

∨,O)).

Proof. Use
Rf∗(RHomOX

(Lf∗(E∨),OX)) = RHomO(E
∨, Rf∗OX)

together with Rf∗OX = O and the vanishing of Lif∗(E∨) for i < 0 from Step 3.

Step 6.
ℓ(Ext 1OX

((f∗E)∨,OX)) ≤ ℓ(Ext1O(E
∨,O))− ℓ(H0(Ext 2OX

(L−1f∗Q,OX))).
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Proof. Applying RHomOX
(−,OX) to the sequence from Step 4 and using the vanishing from

Lemma 5.3 we have an exact sequence

0 Ext 1OX
((f∗E)∨,OX) Ext 1OX

(f∗(E∨),OX) Ext 2OX
(L−1f∗Q,OX) 0.

The first term has dimension 0, so the sequence remains exact on taking global sections

0 H0(Ext 1OX
((f∗E)∨,OX)) H0(Ext 1OX

(f∗(E∨),OX)) H0(Ext 2OX
(L−1f∗Q,OX)) 0.

Combining this with Step 5, we have the claim.

Step 7. Conclusion of proof.

By the assumption on E and Lemma 5.3 we have Q ̸= 0. But then by the nonvanishing in Step
2 we have 0 ̸= ℓ(H0(Ext 2OX

(L−1f∗Q,OX))), so the claim follows from Step 6.

Proof of Proposition 5.2. Note it is equivalent to show (f [[u]]∗E)∨ is locally free. Since E∨ is a
reflexive OT [[u]]-module, we have

Ext iOT [[u]](E
∨,OT [[u]]) = 0

for i > 1 by Lemma 5.3. Moreover, Ext 1OT [[u]](E
∨,OT [[u]]) is supported at finitely many closed

points, hence has finite length ℓ. We proceed by induction on ℓ, the ℓ = 0 case being trivial. Let
x ∈ T be any point in the support, OT ,x the local ring of T at x with maximal idea mx, and let nx
be the ideal generated by mx in OT ,x[[u]]. Let

π : B → SpecOT ,x

be the blow-up at mx, and note that:

• the base-change π[[u]] : B[[u]] → Spec(OT ,x[[u]]) is the blow-up at nx, where B[[u]] denotes the
scheme theoretic base change B[[u]] := B ×Spec(OT ,x

Spec(OT ,x[[u]]);

• the p-adic completions of the local rings of B are identified with the local rings of the formal
admissible blow-up

g : T ′ → T
of T at x.

In particular, for a closed point x′ of T ′ (which we also view as a closed point in B[[u]]), the p-adic
complete local ring

(OT ′ [[u]])x′ = OT ′,x′ [[u]]

is flat over OB[[u]],x′ . Here (OT ′ [[u]])x′ denotes the stalk of the sheaf OT ′ [[u]] of the p-adic formal
scheme T ′ at x′

According to Lemma 5.4, the length of Ext 1OB[[u]],x′
((π[[u]]∗Ex)

∨,OB[[u]],x′) is strictly smaller than

ℓx := Ext 1OT ,x[[u]]
(E∨

x ,OT ,x[[u]]),

so the same is true of Ext 1(OT ′ [[u]])x′
((g[[u]]∗Ex)

∨, (OT ′ [[u]])x′). Therefore, we know that

ℓ
(
Ext 1OT ′ [[u]]((g[[u]]

∗E)∨,OT ′ [[u]])
)
< ℓ.

By induction the proof is complete.
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5.2 Existence of the Prismatic F -crystal

We are now ready to prove Theorem 5.1.

Proof of Theorem 5.1. Let X = Spf R = Spf(OK [t])∧p be an integral model of D as in the setting of
Example 4.10 (2). In particular, the crystalline local system L gives rise to a vector bundle EU over
U = Spec(SR)\V (p,E(u)), where we recall that SR = R0[[u]] and R0 = (W [t0])

∧
p . Let X0 = Spf R0

(which is another copy of the p-adic formal A1). Let E = j∗EU where j : U → SpecSR is the open
immersion, which is a reflexive module over OX0 [[u]]. By Proposition 5.2, we know that there exists
successive admissible blowups of X0 at closed points such that the pullback π[[u]]∗E is a locally free
OX′

0
[[u]]-module, where π : X′

0 → X0 is the composition of the required blowups. From the proof
of Proposition 5.2, we know that by shrinking the radius of the disc in the generic fiber at each
step of the blowup if necessary, we may without loss of generality assume that at each step we only
need to blowup at the origin. In other words, the required blowups π can be achieved by the map
πn : R0 = (W [t0])

∧
p → Rn = (W [tn])

∧
p sending t0 7→ pntn for some large enough integer n. This

means that, after replacing the disc D by its closed subdisc Dn = {|z| ≤ 1/pn}, the local system L|Dn

gives rise to a pair (En,U , φn,U ) where En,U is a vector bundle over Un = SpecRn[[u]]\V (p,E(u))
that extends to a vector bundle over SpecRn[[u]]. By Lemma 4.6, L|Dn in fact gives rise to a (unique
up to isomorphism) prismatic F -crystal (En, φn) over Spf(OK [t′])∧p where t′ = pnt. This prismatic
F -crystal is compatible with the F -crystal Dcrys(L|x) under specialization to closed points x ∈ Dn

by the functoriality of the equivalence in Theorem 4.8. This finishes the proof of the theorem.

6 Constancy of the F -crystal

In this section, we will prove that the fiber-wise F -crystal produced in Section 5 is actually constant.
Our argument is essentially Lemmas 1.10 and 1.9 of [Oor04] in the setting of F -crystals.

Lemma 6.1 (Oort, Lemma 1.10). Let D1 and D2 be two F -crystals over Fp having the same rank
and let N be a fixed integer. Then there are finitely many sub-crystals of D2 isomorphic to D1

whose co-kernel is pN torsion.

Proof. Let L = Hom(D1,D2). Consider the set S ⊂ L defined as S = {f ∈ L : Im(f) ⊃ pND2}.
Let f1, f2 ∈ S be two maps such that f1 ≡ f2 mod pN in L/pN . A direct computation shows that
Im f1 = Im f2. It follows that the number of sub-crystals is bounded by the image of the subset S
in L/pN . The lemma follows from the fact that L is a finite generated Zp module.

Definition 6.2. Let X/Fp be a scheme and D an F -(iso)crystal. Let ptX : X → SpecFp be the
map to a point, and for any point x ∈ X(Fp) let ix : SpecFp → X be the corresponding morphism.

1. We say D is constant if there is an (iso)crystal D0 on SpecFp such that if D ∼= pt∗X D0.

2. We say D is point-wise constant if there is an (iso)crystal D0 on SpecFp such that i∗xD ∼= D0

for every x ∈ X(Fp).

We are now ready to prove

Theorem 6.3. Let X be a smooth connected variety over Fp. Let D/X be a point-wise constant
F -crystal such that the F -isocrystal D[1/p] is constant. Then D itself is constant.

15



Proof. Let D0 be the F -crystal i∗xD for x ∈ X(Fp). The constancy of D[1/p] gives an isogeny
g : D → pt∗X D0. By Lemma 6.1, the set X(Fp) admits a partition into finitely many subsets
X1 . . . Xm such that for two points x, x′ ∈ Xi, we have gx(Dx) = gx′(Dx′). Without loss of generality,
suppose that X1 is Zariski dense, and let x ∈ X1 be any point. Consider the inclusion of crystals
g′ : pt∗X D0 → pt∗X D0, where g′ = pt∗X gx. We now have that Im g′ and Im g are two subcrystals of
pt∗D0 which agree on a Zariski-dense set of points. We will now show that they are the same.

We first reduce to the case that X is affine. We claim that for two crystals D1,D2 on X and
any dense Zariski open U ⊂ X, any morphism fU : D1|U → D2|U extends uniquely to a morphism
f : D1 → D2. By the uniqueness, such an extension patches, so we may assume X is affine,
and in particular lifts to a formally smooth scheme X/W (Fp) equipped with a lift of Frobenius
ϕ : X → X. Then D1 corresponds to a flat vector bundle E1 on X together with a flat morphism
ϕE1

: ϕ∗E1 → E1 for which ϕE1 [1/p] is an isomorphism; likewise for D2 and E2. Then f yields a
morphism fU : E1|U → E2|U. In characteristic 0, it is easy to see that fU[1/p] extends uniquely to a
moprhism E1|X[1/p] → E2|X[1/p]. But then the underlying morphism of vector bundles E1 → E2 is
defined outside of a set of codimension 2, hence extends uniquely, and the extension is compatible
with the connection and the Frobenius structure.

Therefore, we suppose that X = SpecA. Let Ã (cite the people Kedlaya cites!) be a p-adically
complete smooth W -algebra with a lift of Frobenius such that A = Ã mod p. Evaluating all these
crystals on Ã, we obtain two Frobenius-stable flat-subbundles of D0 ⊗ Ã which:

1. Are the same after inverting p.

2. Agree at a dense set of W -points.

Even without using F -crystal structure, the formal-smoothness of Ã implies that the these two
sub-bundles must already agree. The theorem follows.

7 Proof of the extension theorem for D×

In this section, we prove our main results for D×.

7.1 Extending crystalline local systems

The following result is Theorem 1.17 of [DY25].

Theorem 7.1 ([DY25]). Let L/D× be a Zp-local system with crystalline fibers everywhere. Then,
L extends to a crystalline local system on D.

For the sake of completeness, we will sketch a proof in the easy case where in addition there exists
a smooth formal scheme X, a crystalline Zp-local system L′/Xη, and a map g : D× → Xη such
that L = g∗L′. Let E[1/p] denote the isocrystal associated to L′ on Xp. Consider the flat bundle
underlying the filtered flat bundle RHp(L)/D× (resp. RHp(L′)/Xη)—we will somewhat abusively
use the same notation both for the filtered flat bundles and the underlying flat bundles. We have
that E[1/p](X) is canonically isomorphic to RHp(L′) (see for eg [BST24, Lemma 3.7]). It suffices to
prove that RHp(L) extends to a flat bundle on D, by [OSZP24, Theorem 5.7]. We will in fact use
the fact that L is pulled back from Xη to conclude that RHp(L)|D′ is actually the trivial flat bundle
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for every closed sub-disc5 of D′ ⊊ D. Indeed, it suffices to prove that RHp(L)|A′
n
is the trivial flat

bundle for every integer n, where A′
n := An ∩ D′. We pick an integral model g′n : A′

n → An+1 → X

of the composite map g′n := A′
n ⊊ An

g|An+1−−−−→ Xη. By the appendix of [OSZP24], we may assume
that the irreducible components of the reduced special fiber Cn+1 (resp. C ′

n) of An+1 (resp. A′
n)

consist of (two) A1s and (an unspecified but finite number of) P1s, with the further condition that
the there is no combinatorial monodromy. By [OSZP24, Remark A.7], there is a marked point
xi on each of the two A1s in Cn+1 such that no point in the open annulus A◦

n+1 specializes to a
point in A1 \ {xi}. It follows that the image of C ′

n in Cn+1 is contained in a proper (possibly
reducible) curve, and in particular, g′n extends to the compactification C̄ ′

n of C ′
n, whose irreducible

components are now solely P1s (and there is still no combinatorial monodromy). Every F -isocrystal
on ‘̄C ′

n is trivial, and therefore g′,∗n (E[1/p]) is trivial. Evaluating on the thickening given by A′
n,

we have that g′,∗n (E[1/p])(A′
n) is trivial. The result now follows from the chain of isomorphisms

g′,∗n (E[1/p])(A′
n) ≃ g′,∗n (E[1/p](X)) ≃ g′,∗n (RHp(L)) ≃ RHp(L|A′

n
).

A very similar argument also works in the setting of geometric period images. Indeed, let j be
the smallest integer such that the image of An is contained in (Y j)an. Then, there is a finite subset
Ξ ⊂ An whose complement maps to (Y j)an \ (Y j−1)an. As Sj → Y j is an isomorphism away from
Y j−1, An \ Ξ lifts to (Sj)an. The fact that Sj → Y j is proper allows us to extend this to a map
An → (Sj)an. Now, the identical argument outlined above works.

7.2 The Shimura case

We have the following proposition.

Proposition 7.2. Let g : C → Sp be a map where C is a curve over Fp. Suppose that g∗Vcris is
constant on C. Then the map g is constant.

Proof. We first replace C by its image – note that the F -crystal remains constant. By replacing
C by an open subset, we may assume that C is a smooth curve. We pick a smooth lift C̃/W .
Consider g∗ (V,∇)dR, the filtered flat bundle on S pulled back to C. The underlying flat bundle
is obtained by taking the mod p reduction of the flat bundle (g∗Vcris)(C̃). The filtration is simply
the kernel of (powers of) Frobenius mod p. Therefore, we have that g∗ (V,∇)dR is constant as a
filtered flat bundle. This implies that the Kodaira-Spencer map is trivial on C, which contradicts
the versality of the Kodaira-Spencer map. The proposition follows.

We are now ready to prove the one-dimensional disk case of Theorem 1.1 for a Shimura variety.

Theorem 7.3. Theorem 1.1 is true for a = 1, b = 0 and X a Shimura variety.

Proof. We will prove that the image of D× lands in a residue disc after suitably shrinking D – this
would yield the theorem. The proof consists of assembling the various results already proved.

We have that f∗L extends to a local system with crystalline fibers on D. By Proposition 5.1,
we may shrink D and obtain an F -crystal D on A1 mod p such that for any classical y ∈ D,
Dcris(Ly) = Dȳ. By further shrinking D, we get that the F -crystal D is constant, and therefore the
isomorphism class of Dcris(Ly) is independent of the point y.

Let An ⊂ D be a closed annulus with outer radius 1 and inner radius 1
pn , and let fn : An → S

be an integral model for the map f |An . By [OSZP24, Appendix], we have that the special fiber C

5In fact, we do not need to restrict to D′ for this triviality if X satisfies the property that every map A1 → Xp

extends to a map P1 → Xp. We note that S does satisfy this property.
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of An is a union of two affine lines and some number of projective lines with trivial combinatorial
monodromy. It suffices to show that fn|Ci is constant for every component Ci of C.

Let ȳ ∈ Ci and let y ∈ Arig
n (K) = An be a point that specializes to ȳ. We have that crisVȳ ≃

Dcris(Ly) and therefore we have that f∗
n(crisV)Ci is point-wise constant. Let C̄i be the compactifica-

tion of Ci. The map Ci → Sp extends to C̄i → Sp the results of Section 3. Therefore, the F -crystal
f∗
n(Vcris)|Cn extends to an F -crystal on C̄i, and therefore the F -isocrystal must be constant – indeed
every F -isocrystal on P1 is constant. We are now in the situation of a point-wise constant F -crystal
such that the underlying F -isocrystal is constant. By Theorem 6.3, we have that f∗

n(Vcris)|Cn is
constant. The theorem follows by applying Proposition 7.2.

7.3 Period images

We have the following result.

Proposition 7.4. Fix some integer j and consider πj : Sj → Y j. Let y ∈ Yj(Fp) denote some

point and let Fy ⊂ Sj denote the fiber over y. Then we have that Uj
cris|Fy is point-wise constant.

Further, the isomorphism class of this crystal is Dcris(Vét,pỹ), where ỹ ∈ Y (OK) is any lift of y.

Remark 7.5. Note that this proposition assigns a canonical crystal to every y ∈ Y(Fp).

Proof. Let T (Fy) denote the tube in Sj over Fy. For any lift ỹ of y, let let Fỹ ⊂ T (Fy) denote the
fiber of πj over ỹ. As the stratification is uniform, there exists a lift ỹ of y, such the specialization
map Fỹ → Fy is surjective. Let z̃ ∈ T (Fy) be any point and let z ∈ Fy(Fp) denote its specialization.

As Uj
ét,p is crystalline, we have a canonical isomorphism of crystals Dcris(Uj

ét,pz
) → Uj

crisz.

Let zi, z2 ∈ Fy. Let z̃1 and z̃2 be points in Fỹ which specialize to z1 and z2 respectively. By the

above remark, it suffices to prove that Dcris(Uj
ét,pz̃1

) is isomorphic to Dcris(Uj
ét,pz̃2

). But this follows

directly from the fact that πj(z̃1) = πj(z̃2) and that Uét,p is simply the pull-back of Vét,p under πj .

The proof of the second part now follows from this and the isomorphism Dcris(Uj
ét,pz̃

) → Uj
crisz.

We are now ready to prove the one-dimensional extension theorem in this setting.

Theorem 7.6. Theorem 1.1 is true for a = 1, b = 0 and X a geometric period image.

Proof. As in the Shimura case, we will prove that the image of D× lands in a residue disc after
suitably shrinking D. Also as in the Shimura case, we may further shrink D× such that the
isomorphism class of Dcris(Ly) is independent of the point y ∈ D×. We let An, An, fn, and C be
as in the Shimura case. Pick some component C0 of C isomorphic to P1. Suppose that j is the
smallest integer such that fn(C0) ⊂ Yj . Then, we have that C0 generically maps into Yj \ Yj−1

and therefore we may lift fn to a map gn : C0 → Sj . By Proposition 7.4, we have that g∗n(U
j
cris) is

point-wise constant. As C0 is isomorphic to to P1, we also have that the iso-crystal g∗n(U
j
cris[1/p])

is constant. By Theorem 6.3, we have that g∗n(U
j
cris) is constant. As in the Shimura case, it follows

that g∗n(U
j
FL) is trivial as a filtered flat bundle. Up to passing to a finite cover C ′

0 of C0, we may lift

the map gn to a map hn : C ′
0 → T j . We therefore have that h∗n(q

i∗((U ,∇)dR
j)) is trivial as a filtered

flat bundle, as (U ,∇)dR
j and Uj

FL pull back to isomorphic filtered flat bundles on T j . Therefore,
the Griffiths bundle is trivial on C ′

0. If fn|C0 is non-constant, we also have that Griffiths bundle on
C0 associated to g∗n((U ,∇)dR

j) ≃ f∗
n((V,∇)dR) is ample, and therefore the Griffiths bundle must
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be ample on C ′
0. This is a contradiction. Therefore, fn|C0 must be constant. It follows that the

map fn contracts every component isomorphic to P1. By [Bor72, Appendix Remark A.7], it follows
that the open subannulus of An maps to a single residue disc. This holds for every n, and therefore
we have that the open punctured disc maps to a single residue disc. The theorem follows.

8 Higher-dimensional extension theorem

In this section, we deduce the higher-dimensional extension theorem from the theorem for D×.

8.1 Preliminaries

We first prove some general statements regarding mermorphic extension. We will work in the
following setting. Let X be a quasi-projective algebraic variety over K with a projective compact-
ification X over K. We fix a closed embedding X ↪→ Pn

K into projective n-space. This corresponds
to the data of a very ample line bundle on X relative to K that we denote by L , along with n+1
generating global sections s0, . . . , sn ∈ H0(X,L ).

Definition 8.1. We say that the compactificationX ⊂ X satisfies one-dimensional Borel extension
over all finite extensions of K, if for any finite field extension F of K, every analytic map g× :

D×
F → (X ×K F )an over F admits an analytic extension g : DF → (X ×K F )an.

Definition 8.2. Let W,Y be reduced rigid analytic spaces and Z ⊂ Y a closed subspace. We say
a morphism f : Y \Z → W extends meromorphically over Z if the (metric) closure of the graph
of f in Y × W is an analytic subspace. Equivalently, there is modification g : Y ′ → Y and a
commutative diagram

Y ′

Y W

Y \Z

g

i

f

where i is the inclusion.

The main result of this section is the following, which says that the one-dimensional Borel exten-
sion implies that analytic maps from poly-punctured disks (D×)a ×Db into X extend meromoprhi-
cally.

Proposition 8.3. Suppose X ⊂ X satisfies one-dimensional Borel extension over all finite exten-
sions of K. Then, given any finite field extension F of K, and any analytic map h× : (D×

F )
a×Db

F →
Xan

F , there is a closed analytic subspace Z ⊂ Da+b
F of codimension at least 2 contained in the com-

plement of (D×)a × Db such that h× extends to an analytic map h : Da+b
F \ Z → X

an
F . Moreover, h

extends meromorphically over Z.

We need two preparatory lemmas first. In Lemma 8.4, we show that there are no non-trivial line
bundles on (D×)a×Db, and in Lemma 8.5, we prove that an analytic function on (D×)a×Db, whose
restriction to every one-dimensional punctured disk extends meromorphically to the disk D, must
itself extend meromorphically to Da+b.
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Lemma 8.4. Let A0 := Spa(K⟨z±1⟩,OK⟨z±1⟩) denote the thin annulus over K at radius 1 centered
at 0. Let a, b, c be non-negative integers. Then every line bundle on (D×)a × Db × Ac

0 is trivial. In
particular, every line bundle on (D×)a × Db is trivial.

Proof. We induct on a with the base case of a = 0, being a consequence of the fact that the
affinoid algebra K⟨t1, . . . , tb, z±1

1 , . . . , z±1
c ⟩ is a UFD (see [vdP82, Theorem 3.25]). Suppose a ≥

1 and E is a line bundle on (D×)a × Db × Ac
0. By the inductive hypothesis, the restriction of

E to (D×)a−1 × A0 × Db × Ac
0 is trivial. We may thus glue E with the trivial line bundle on

(D×)a−1× (P1
K)an \ {|z| < 1}×Db×Ac

0 to obtain a line bundle Ê on (D×)a−1×A1,an
K ×Db×Ac

0 that

extends E . By [Sig17, Prop. 3.6] (see also [KST20, Corollary 5] for the smooth affinoid case), Ê is
the pullback of a line bundle on (D×)a−1 × Db × Ac

0. However, by the inductive hypothesis every
line bundle on (D×)a−1 × Db × Ac

0 is trivial and hence so is Ê and therefore so is E .

Lemma 8.5. Let f(z, t) be an analytic function on (D×)a ×Db, such that for each 1 ≤ i ≤ a, and
each finite extension F of K, and every F -valued point P ′ = (c1, . . . , ĉi, . . . , ca, τ) ∈ (D×)a−1 ×Db,
the specialization f(c1, . . . , zi, . . . , ca, τ) ∈ O(D×

F ) has only finitely many zeroes on D×
F . Then f(z, t)

extends to a meromorphic function on Da+b.

Proof. Fix 1 ≤ i ≤ a. To simplify notations, we set z′ = (z1, . . . , ẑi, . . . , zn). The function f admits
a power series development

f(z, t) =
∑
m∈Z

am(z′, t)zmi ,

for analytic functions am(z′, t) ∈ O((D×)a−1 × Db). By the p-adic big Picard theorem, since for
each specialization P ′, the function f(zi, P

′) has only finitely many zeros in D×
F , we have that for

each such P ′, the function f(zi, P
′) cannot have an essential singularity at zi = 0. That is to

say that am(P ′) = 0 for all m sufficiently small. In other words, there is an m0 ∈ Z such that
P ′ ∈ V ({al(z′, t) : l ≤ m0}). This being true for every classical point P ′, implies that (D×)a−1 ×
Db = ∪m∈ZV ({al(z′, t) : l ≤ m}). By the Baire category theorem, this implies that there is an

m(i) ∈ Z such that for l < m(i), al(z
′, t) = 0. In particular, z

−m(i)
i f(z, t), extends analytically

across the locus zi = 0 as well. The function
∏

1≤j≤a z
−m(j)
j f(z, t) thus extends analytically to

the complement inside Da+b of the codimension 2 subvariety ∪1≤r<s≤aV (zr, zs). Hence by the
non-archimedean Hartog extension theorem [Bar75], defines an analytic function on Da+b. This
completes the proof.

Proof of Proposition 8.3. We may assume that F = K. Let h× : (D×)a × Db → Xan be an
analytic map. By Lemma 8.4, we may pick a trivialization ϕ : (h×)∗(L an)

∼−→ O(D×)a×Db of
the pullback line bundle (h×)∗(L an). We let z := (z1, . . . , za) denote the coordinates on (D×)a

and t := (t1, . . . , tb) the coordinates on Db. Let fr(z, t) := ϕ(sr) ∈ O((D×)a × Db). On clas-
sical points (z, t) ∈ (D×)a × Db, the map h× : (D×)a × Db → Xan ↪→ Pn,an

K is given in pro-
jective coordinates by [f0(z, t) : . . . : fn(z, t)]. For each i ∈ {1, . . . , a}, and any finite extension
F of K and an F -valued point P ′ = (c1, . . . , ĉi, . . . , ca, τ) ∈ (D×)a−1 × Db, the analytic map
h×P ′ : D×

F → Pn,an
F given by zi 7→ [f0(c1, . . . , zi, . . . , ca, τ) : . . . : fn(c1, . . . , zi, . . . , ca, τ)], by hy-

pothesis extends analytically to a map hP ′ : DF → Pn,an
F . In particular, there exist analytic func-

tions gr(zi) ∈ F ⟨zi⟩ (depending on P ′) with no common zeroes on DF such that for all classical
points zi ∈ D×

F , [f0(c1, . . . , zi, . . . , ca, τ) : . . . : fn(c1, . . . , zi, . . . , ca, τ)] = [g0(zi) : . . . : gn(zi)].
This implies that for all r, s, fr(c1, . . . , zi, . . . , ca, τ)gs(zi) = fs(c1, . . . , zi, . . . , ca, τ)gr(zi) as an-
alytic functions on D×

F (with coordinate zi). Since the {fr(c1, . . . , zi, . . . , ca, τ)}0≤r≤n and the
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{gr(zi)}0≤r≤n have no common zeroes in D×
F , this in particular implies that for each 0 ≤ r ≤ n,

the zero set V (fr(c1, . . . , zi, . . . , ca, τ)) equals V (gr(zi)) in D×
F and is thus finite. We conclude from

Lemma 8.5 that there are non-negative integers {m(j) : 1 ≤ j ≤ a}, such that for each 0 ≤ r ≤ n,

Fr(z, t) :=
∏

1≤j≤a z
m(j)
j fr(z, t) extends analytically to Da+b and such that for each 1 ≤ j ≤ a, there

is an r such that zj ∤ Fr(z, t) in O(Da+b). The set of common zeroes Z := V ({Fr(z, t) : 0 ≤ r ≤ n})
has codimension at least 2 in Da+b, and h× extends analytically to the map h : Da+b \ Z → Pn,an

K ,
given by (z, t) 7→ [F0(z, t) : . . . : Fn(z, t)].

For the final claim, let V ⊂ Da+b×Pn,an
K be the subspace cut out by xiFj −xjFi, where the xi are

homogeneous coordinates on Pn
K . This subspace is equal to the graph Γ of h when intersected with

U := (Da+b\Z)× Pn,an
K . There is therefore an irreducible component V0 of V for which Γ = U ∩ V0

([Con99, Cor. 2.2.9]), and since U ∩ V0 is metrically dense in V0, it follows that V0 is the closure of
Γ.

Remark 8.6. We remark that the meromorphicity in Proposition 8.3 is automatic for an analytic
morphism defined outside codimension 2, as in the complex analytic case:

Lemma 8.7. Let Y be a smooth connected rigid analytic space and Z ⊂ Y a closed subspace of
codimension ≥ 2. Then any morphism f : Y \Z → Xan extends meromorphically over Z.

Proof. We may assume X = Pn
K . Since Z has codimension at least 2 in Y , the pull-back f∗(O(1))

extends to a line bundle on Y (using the correspondence between line bundles and Weil divisors
and applying Remmert-Stein which allows us to extend Weil divisors outside the codimension ≥
2 analytic subvariety Z.) The question of whether f extends meromorphically across Z to all
of Y is local on Y . We may therefore assume that the pull-back f∗O(1) is trivial. Then the
morphism f : Y \ Z → Pn,an

K is described in homogenous coordinates by n + 1 analytic functions
y 7→ [f0(y) : . . . : fn(y)] where fi(y) ∈ O(Y \ Z) do not have any common zeroes in Y \ Z. By the
non-archimedean Hartog extension theorem, fi(y) uniquely extend to analytic functions Fi ∈ O(Y ).
The subspace in Y ×Pn,an

K cut out by xiFj −xjFi contains as an irreducible component the closure
inside Y × Pn,an

K of the graph of f : Y \ Z → Pn,an
K .

8.2 Higher-dimensional extension for Shimura varieties and period images

Let X denote either ShK(G,X) or a geometric period image Y as described in §1. For the reader’s
convenience we summarize here the structures that will be relevant for the proof of Theorem 1.1.

• A Zp-local system Vét,p on X.

• A filtered vector bundle VdR := (V, F •) on X.

• A normal compactification XBB of X for which the kth (for some k) power of the Griffiths
bundle

Griff(VdR) :=
⊗
p

detF p

extends to an ample line bundle L. This is [BB66] in the Shimura variety case and [BFMT25,
Thm 1.2] in the period image case.

• A log smooth proper (X ′, DX′) with a modification πX′\DX′ : X ′\DX′ → X, such that
the pullback UdR := (U ,∇, F •) of (V, F •) admits a flat connection with respect to which
the filtration is Griffiths transverse and extends to a logarithmic flat vector bundle ŪdR :=
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(Ū ,∇, F •Ū) such that the eigenvalues of the residues are contained in [0, 1) ∩ Q. Moreover,
πX′\DX′ : X

′\DX′ → X extends to a morphism π : (X ′, DX′) → (XBB, XBB\X) for which

π∗L ∼= Griff(ŪdR)
k.

Here, X ′ is taken to be the largest stratified resolution Sm in the period image case, and S
itself in the Shimura variety case. Again, this follows from [BB66] in the Shimura variety case
and [BFMT25, Thm 1.2] in the period image case.

• We have
Ūan
dR

∼= DdR,log(π
∗
X′\DX′Vét,p) (3)

via the p-adic Riemann–Hilbert correspondence of [DLLZ23, Thm 1.7]. In the period image
case the isomorphism is given over P ′ by the second part of [DLLZ23, Thm 1.1], and in the
Shimura variety case by [DLLZ23, Thm 1.5].

Proposition 8.8. Let (M,DM ) be a log smooth rigid-analytic variety and f : M\DM → Xan

a morphism such that M\DM → XBB,an extends meromorphically over DM . Then it extends
regularly over DM .

Proof. By meromorphicity and embedded resolution of singularities [Tem18, Thms 1.1.9, 1.1.13],
there is a log smooth (M ′, DM ′), a modification g : (M ′, DM ′) → (M,DM ), and a diagram

(M ′, DM ′) (X ′, DX′)

M ′\DM ′

(M,DM ) (XBB, XBB\X)

M\DM X

g

h

π

gM′\DM′

f

Since (πh)∗M ′\DM′
V ∼= (fgM ′\DM′ )

∗Vét,p, we have

g∗DdR,log(f
∗Vét,p) ∼= h∗DdR,log(π

∗
X′\DX′Vét,p)

and likewise for the Griffiths bundles. Since Griff(DdR,log(π
∗
S′\DS′

Vét,p))
k descends amply to XBB,

it follows that πh factors through g, by the rigidity lemma (see e.g. [Deb01, Lemma 1.15]).
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