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Abstract. We prove a conjecture of Griffiths on the quasi-projectivity of images of
period maps using algebraization results arising from o-minimal geometry. Specif-
ically, we first develop a theory of analytic spaces and coherent sheaves that are
definable with respect to a given o-minimal structure, and prove a GAGA-type the-
orem algebraizing definable coherent sheaves on complex algebraic spaces. We then
combine this with algebraization theorems of Artin to show that proper definable
images of complex algebraic spaces are algebraic. Applying this to period maps, we
conclude that the images of period maps are quasi-projective and that the restriction
of the Griffiths bundle is ample.

1. Introduction

Let X be a smooth complex algebraic variety supporting a pure polarized integral
variation of Hodge structures (VZ, F

•, Q). Let Ω be the associated pure polarized
period domain with generic Mumford–Tate group G, and Γ ⊂ G(Q) an arithmetic
lattice containing the image of the monodromy representation of VZ. There is a natural
action of Γ on Ω, and the quotient Γ\Ω parameterizes pure Hodge structures up to
integral framing in Γ. Associated to a variation (VZ, F

•, Q) with monodromy in Γ is a
complex analytic period map ϕ : Xan → Γ\Ω, where Xan is the analytification of X,
that is, X(C) endowed with its natural structure as a complex analytic manifold. The
period map satisfies Griffiths transversality: the derivative lands in a naturally defined
distribution on Γ\Ω (see [46, pp.224-225]). In general, for X a reduced separated
algebraic space of finite type over C, we define a period map ϕ : Xan → Γ\Ω to be a
complex analytic map which locally lifts to Ω and which satisfies Griffiths transversality
on the regular locus of Xan. The main source of such period maps (and the variations
of Hodge structures they entail) are local systems of singular cohomology groups of
smooth projective families of algebraic varieties over X.

The complex analytic variety Γ\Ω itself rarely has an algebraic structure [12, 28];
nonetheless, the closure of the image of a period map ϕ : Xan → Γ\Ω as above was
conjectured by Griffiths [26, p.259] to be a quasi-projective algebraic variety. Griffiths’
main motivation was the existence of a natural line bundle (which we call the Griffiths
bundle) L :=

⊗
i detF i which exists universally on Γ\Ω as a Q-bundle and has natural

positivity properties in Griffiths transverse directions. Aside from this, a strong piece
of evidence for the conjecture is the result of Cattani–Deligne–Kaplan [13] on the alge-
braicity of Hodge loci, which implies that the (reduced) analytic equivalence relation
Xan ×Γ\Ω X

an ⊂ Xan ×Xan defining the image of ϕ set-theoretically is algebraic.
Our main result is the following theorem, providing a solution to the conjecture:

Theorem 1.1. Let X be a reduced separated algebraic space of finite type over C and
ϕ : Xan → Γ\Ω a period map. Then

(1) ϕ factors (uniquely up to unique isomorphism) as ϕ = ι◦fan where f : X → Y
is a dominant map of (reduced) finite-type algebraic spaces and ι : Y an → Γ\Ω
is a closed immersion of analytic spaces;

(2) the Griffiths Q-bundle L restricted to Y is the analytification of an ample al-
gebraic Q-bundle, and in particular Y is a quasi-projective variety.
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Note that if the period map ϕ is proper and if X and the Griffiths bundle on X are
both defined over a subfield k of C (for example, if the variation comes from a smooth
projective family defined over k), then it follows that the first map g : X → Y ′ in

the Stein factorization X
g−→ Y ′

h−→ Y of f will also be defined over k, as this map is
given by the complete linear system of sections of a high enough power of the natural
extension of L on a log smooth compactification of X (see Theorem 6.14).

As a sample application, we have the following immediate corollary:

Corollary 1.2. Let M be a reduced separated Deligne–Mumford stack of finite type
over C admitting a quasi-finite period map. Then the coarse moduli space of M is
quasi-projective.

The existence of the coarse moduli space is a general result of Keel–Mori [34]; see §7
for a precise discussion of period maps on Deligne–Mumford stacks. Corollary 1.2 for
instance will apply to a reduced separated Deligne–Mumford moduli stack of smooth
polarized varieties with an infinitesimal Torelli theorem. This provides an alternate
approach to results of Viehweg [52] on the quasi-projectivity of (normalizations of)
coarse moduli spaces of smooth polarized varieties X without assuming any positivity
of KX . In particular, Corollary 1.2 also applies to uniruled X provided deformations
can be detected by Hodge theory (for instance, low-degree complete intersections).

The strategy of the proof of Theorem 1.1 hinges on algebraization results in o-
minimal geometry. Briefly, an o-minimal structure specifies a class of “tame” subsets of
Rn with strong finiteness properties. Such subsets are said to be definable with respect
to the structure. The resulting geometric category of complex analytic varieties that
are pieced together by finitely many definable charts (which we call definable complex
analytic varieties, see §2) on the one hand allows some of the local flexibility of the
analytic category but on the other hand behaves globally like the algebraic category.
An excellent example of this is the celebrated “definable Chow theorem” of Peterzil–
Starchenko [45, Corollary 4.5], asserting that a closed complex analytic subvariety of a
(not necessarily proper) complex algebraic variety which is definable in an o-minimal
structure is in fact algebraic.

In [3], it is shown that Γ\Ω is in this sense a definable complex analytic variety, and
that period maps are definable with respect to this structure. To prove the first part
of Theorem 1.1, we prove a “dual” version of Peterzil–Starchenko’s definable Chow
theorem, showing that images of algebraic spaces under definable proper complex
analytic maps are algebraic:

Theorem 1.3. Let X be a separated algebraic space of finite type over C, S a definable
complex analytic space, and ϕ : Xdef → S a proper definable complex analytic map.
Then ϕ : Xdef → ϕ(Xdef) is (uniquely up to unique isomorphism) the definabilization
of a morphism of algebraic spaces.

To prove Theorem 1.3 we use Artin’s theorems [2] on the algebraization of formal
modifications to inductively algebraize ϕ on strata. The category of algebraic spaces
is needed in Artin’s theorems and so is the natural setting for Theorem 1.3—even
if X is an algebraic variety, the image may not be. To apply Artin’s theorems, one
must necessarily consider nilpotent thickenings and thus deal with non-reduced spaces,
even if one is only interested primarily in varieties. In fact, the naive generalization
of Theorem 1.1 to non-reduced spaces is false, as we show in Example 6.2. One of
the benefits of working in the definable complex analytic category is that it provides
a natural admissibility condition to extend Theorem 1.1 to this setting, and we prove
the more general statement in §6.
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To algebraize the maps on nilpotent thickenings that arise when applying Artin’s
theorem, we develop a theory of coherent sheaves in the definable complex analytic
category, and a GAGA-type theorem for definable coherent sheaves:

Theorem 1.4. Let X be a separated algebraic space of finite type over C and Xdef the
associated definable complex analytic space. The “definabilization” functor Coh(X)→
Coh(Xdef) is fully faithful, exact, and its essential image is closed under subobjects
and quotients.

It follows for example that definable coherent subsheaves of algebraic coherent
sheaves are algebraic. Note that X is not required to be proper over C, but in contrast
to Serre’s classical GAGA theorem [47] (as well as most other GAGA-type theorems for
proper algebraic spaces), it is not true that every definable coherent sheaf is algebraic
(see Example 3.2).

Briefly, the proof of Theorem 1.4 is as follows. One must first develop the theory
of coherent sheaves on definable complex analytic spaces, and in particular prove an
Oka coherence theorem (on the coherence of the structure sheaf, see Theorem 2.38)
as well as a Nullstellensatz (Theorem 2.50) in this category. The key point is to
carefully keep track of the open refinements of covers needed in the classical proofs in
the complex analytic category, and to show that in fact definable (in particular finite)
refinements suffice. With the sheaf theory in place, the main claim of Theorem 1.4
(that definable coherent subsheaves of algebraic coherent sheaves are algebraic) follows
inductively using the Nullstellensatz from the fact that definable vector subbundles of
an algebraic vector bundle are algebraic, by applying Peterzil–Starchenko’s definable
Chow theorem to the associated geometric total space.

A tempting alternative to the use of Theorem 1.3 and the tameness of the period map
is provided by the result of Cattani–Deligne–Kaplan mentioned earlier: one could try to
prove that a surjective proper complex analytic map Xan → S from an algebraic variety
to an analytic variety with algebraic equivalence relation1 Xan ×S Xan ⊂ Xan ×Xan

is algebraic. This is not true at this level of generality—see Example 4.13 and the
surrounding discussion.

It is in general difficult to relate the metric positivity of the Hodge bundle to its
ampleness on Y an as the latter might be quite singular, and this has been the main
obstacle in proving the conjecture directly from the positivity. One can, however, use
it to show L is big and nef on a log resolution, and once Y an is known to be algebraic,
algebraic sections from a resolution can be descended to deduce the second statement
in Theorem 1.1.

Theorem 1.1 combined with the o-minimal algebraization results have a number of
applications, and we describe a few in the final section including:

(1) A version of the Borel algebraicity theorem for period images (section 7.1).
(2) As a concrete example of Corollary 1.2, we deduce a general result about the

quasi-projectivity of moduli spaces of complete intersections (section 7.2).
(3) A theorem showing that pure polarized integral variations of Hodge structures

over dense Zariski open subsets of compact Kähler manifolds are pulled back
from algebraic varieties (section 7.3).

(4) A version of the ampleness result in Theorem 1.1 for the Hodge bundle (section
6.5).

1.1. Previous results. Griffiths proved his conjecture in the case that the image
ϕan(Xan) is compact [27, III.9.7]. Sommese [48] proved the conjecture in the case
that the image has only isolated singularities, and later [49] proved a function field

1It is important to include the natural scheme structure on the equivalence relation.
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variant. In particular, he proved that the image of a period map admits a proper
desingularization which is quasi-projective and such that the induced meromorphic
map is rational. However, for example it does not follow from their works that period
images admit a compactification by a compact analytic space.

The subject of o-minimal sheaves and the development of a cohomology theory were
treated in [20], and this was further developed in subsequent papers. Variants of the
o-minimal Nullstellensatz and Weierstrass preparation theorems were proven by Kaiser
[32].

Kashiwara–Schapira [33] have constructed a subanalytic site as well as a theory of
subanalytic sheaves which is in general different from our construction in §2 for the
subanalytic o-minimal structure Ran—see the end of §2 for a more precise discussion.
Petit [42] has defined a “tempered analytification” functor on smooth algebraic va-
rieties and proven a conditional GAGA theorem reminiscent of Theorem 1.4 on the
subanalytic sites of smooth algebraic varieties in the sense of Kashiwara–Schapira.

1.2. Outline. In §2 we develop the theory of definable coherent sheaves and definable
complex analytic spaces. We also define and prove some basic properties of the de-
finabilization functor on algebraic spaces and the analytification functor on definable
complex analytic spaces. In §3 we prove Theorem 1.4 (see Theorem 3.1), and in section
4 we prove Theorem 1.3 (see Theorem 4.2). We prove a general quasi-projectivity cri-
terion in §5. In §6 we apply the results of §4,5 to prove a stronger version of Theorem
1.1 allowing for non-reduced bases (see Theorem 6.4 and Theorem 6.14). In §7 we
deduce some applications, including Corollary 1.2 (see Corollary 7.3).

1.3. Acknowledgements. J.T. would like to thank Vivek Shende, Jonathan Pila,
and Ryan Keast for useful conversations. B.B. would like to thank Valery Alexeev
and Johan de Jong for useful conversations. Y.B. would like to thank Olivier Benoist,
Patrick Brosnan, and Wushi Goldring for useful conversations. The authors would also
like to thank Ariyan Javanpeykar for useful remarks, specifically regarding §7.1. This
paper, and in particular §2 owes a lot to the works of Peterzil and Starchenko, who
initiated the study of o-minimal complex geometry. B.B. was partially supported by
NSF grant DMS-1702149. The authors are indebted to the referees for their careful
reading and for greatly improving the exposition.

1.4. Notation. All schemes and algebraic spaces are assumed to be separated and
of finite type over C, and all definable topological spaces, definable complex analytic
spaces, and analytic spaces are assumed to be Hausdorff. When helpful (mostly in §3,
§4, and §6), we will loosely adopt the convention that algebraic objects are denoted by
roman letters, and (definable) analytic objects by script letters.

Throughout, we fix an o-minimal structure with respect to which we will use the
word “definable”. The reader unfamiliar with these notions may assume for concrete-
ness the structure Ralg for which the definable subsets of Rn are the real semi-algebraic
subsets. For the applications to Hodge theory in §6 we restrict to the o-minimal
structure Ran,exp. For a general introduction to o-minimality, see [18], and [19] for a
discussion of o-minimality in a similar language to this paper.

2. definable complex analytic spaces

2.1. Definable topological spaces. Definable subsets U ⊂ Rn have important finite-
ness properties. To develop a theory of topological spaces which are locally modeled
on definable sets and which preserves these finiteness properties, it is important to
insist that only finite covers by open sets are used.

We begin with a straightforward definition (cf. [18, Chapter 10]):
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Definition 2.1. Let X be a topological space. A definable atlas {(Ui, ϕi)} for X is a

finite open covering {Ui} of X and homeomorphisms ϕi : Ui
∼=−→ Vi ⊂ Rni such that

(1) The Vi and the pairwise intersections Vij := ϕi(Ui ∩ Uj) are definable;

(2) The transition functions ϕij := ϕj ◦ ϕ−1
i : Vij → Vji are definable.

For topological spaces X,Y equipped with definable atlases {(Ui, ϕi)}, {(U ′i′ , ϕ′i′)}, we
say a map f : X → Y is definable if for all i and i′ the composition

ϕi(Ui ∩ f−1(U ′i′))
ϕ−1
i−−→ f−1(U ′i′)

f−→ U ′i′
ϕ′
i′−−→ V ′i′

is definable. Note that this is a condition both on the source and the map.
Finally, we say two atlases {(Ui, ϕi)}, {(U ′i′ , ϕ′i′)} on X are equivalent if the identity

id : X → X is definable with respect to {(Ui, ϕi)} on the source and {(U ′i′ , ϕ′i′)} on the
target.

Definition 2.2. A definable topological space X = (|X|, ξX) is a Hausdorff topological
space |X| with a choice of equivalence class ξX of definable atlases on |X|. A morphism
f : X → Y of definable topological spaces is a continuous map |f | : |X| → |Y |
which is definable with respect to any choice of atlases in ξX , ξY . We denote the
category of definable topological spaces by (DefTopSp), suppressing the implicit o-
minimal structure.

There is an obvious functor | · | : (DefTopSp) → (TopSp) to the category of topo-
logical spaces sending X to |X|. Given a topological space S, we refer to a lift of S
to (DefTopSp) as a definable structure on S. If X is a definable topological space, we
say a subspace T ⊂ |X| is definable (in X) if ϕi(T ∩Ui) ⊂ Rni is definable for all i. In
this case there is a natural definable structure Z on T for which the inclusion Z → X
is a morphism, and it is the unique one with this property. We refer to such a Z as
a definable subspace Z ⊂ X, and we often blur the notational distinction between
definable subspaces Z ⊂ X and subspaces Z ⊂ |X| which are definable (in X). Note
that for a definable topological space X and a choice of atlas {(Ui, ϕi)}, the open sets
Ui ⊂ |X| have natural definable structures as open definable subspaces Ui ⊂ X.

If X,Y are definable topological spaces, X×Y naturally acquires the structure of a
definable topological space, and we say a map ϕ : |X| → |Y | is definable (in X and Y )
if the graph is in X × Y . One easily shows that a morphism f : X → Y of definable
topological spaces is equivalent to a definable continuous map |f | : |X| → |Y |, and that
images and preimages of definable subsets under a morphism f : X → Y are definable.

We finish this section by studying finite maps in the definable category. Recall that
a topological space X is regular if for every point x ∈ X and open x ∈ U ⊂ X there
is an open x ∈ V ⊂ U such that the closure V of V in X is contained in U . We say a
definable topological space is regular if the underlying topological space is.

Definition 2.3. Let f : X → Y be a morphism of definable topological spaces. We
say that f is quasi-finite if |f | has finite fibers, and proper if |f | is. We say f is finite
if it is quasi-finite and proper.

Proposition 2.4. Let f : X → Y be a finite morphism of regular definable topological
spaces, and let {Xi} be a definable open cover of X. Then there is a definable open
cover {Wj} refining {Xi} and a definable open cover {Yk} of Y such that each f−1(Yk)
is a disjoint union of Wj.

Proof. By [18, Chapter 10 §1.8] X (resp. Y ) can be definably embedded as a definable
subspace of Rm (resp. Rn). Moreover, by passing to a definable cover of Y , we may
assume there is a coordinate of Rm which separates the points in each fiber of f . Thus
by projecting we may assume X ⊂ Y × R and f is the first projection.
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Recall that a definable triangulation of a definable topological space X is a definable
homeomorphism Φ : X → tot(K) for a (finite) simplicial complex K (see [18, Chapter
8]).

Lemma 2.5. Let Y ⊂ Rn be a definable set, X ⊂ Y × R a definable set such that the
first projection f : X → Y is proper. Let {Ai} be a finite set of definable subsets of X.
Then there exist definable triangulations of X and Y such that

(1) each Ai is a subcomplex of X with respect to the triangulation;
(2) for each open simplex D of Y , f−1(D) is a disjoint union of open simplices of

X, each mapping isomorphically to D;
(3) the closure of each simplex of X injects into Y .

Proof. Applying normal definable cell decomposition to X [18, Chapter 3 §2.11], we
obtain cell decompositions of X and Y such that each Ai is a union of cells of X and
each cell of X is the graph of a continuous definable function over a cell of Y . In
particular, for any cell D of Y the preimage f−1(D) is a disjoint union of cells each
mapping isomorphically to D.

By definable triangulation [18, Chapter 8 §2.9], there is a definable triangulation of
Y for which each of the above cells of Y is a subcomplex. By [18, Chapter 8 §2.8] this
triangulation lifts to X, and clearly satisfies properties (1) and (2). Note that in the
terminology of [18], the properness of f guarantees the multivalued function π2 ◦ f−1

is closed via [18, Chapter 8 §2.6], and we may reduce to the case that π2 ◦ f−1 is full
as in the proof of [18, Chapter 8 §2.9].

By taking the barycentric subdivisions of these triangulations, properties (1) and
(2) still hold, and we claim we additionally have property (3). Indeed, the closure of
each simplex of the subdivision of a simplex ∆ only intersects one face of ∆ of each
dimension, and so (3) follows from (2). �

Let {Cj} (resp. {Dk}) be the open simplices of the triangulation of X (resp. Y )
guaranteed by the lemma, taking {Ai} = {Xi}. For each C ∈ {Cj}, let X(C) be the
union of open simplicies in {Cj} having C as a face; likewise for D ∈ {Dk} define
Y (D). We claim that {Yk} = {Y (Dk)} and {Wj} = {X(Cj)} are the desired open
covers.

First, it is clear that each X(C) is definable and open in X, and likewise for each
Y (D). Moreover, if C ⊂ Xi then X(C) ⊂ Xi, so {Wj} refines {Xi}. Next, suppose
D ∈ {Dk}, and C,C ′ ∈ {Cj} are distinct open simplices in X mapping to D. By
property (3) of the lemma no open simplex has both C and C ′ as faces, so X(C) and
X(C ′) are disjoint.

We finally claim that f−1(Y (D)) is the disjoint union of X(C) for open simplices
C of X mapping to D. To see this, if is sufficient to know that if D′ is an open
simplex having D as a face, then every lift C ′ of D′ has some lift of D as a face.
This is immediate by the properness of f and property (2), and the proof is therefore
complete. �

Remark 2.6. By definable triangulation [18, Chapter 8, §2.9], any finite definable
open cover of a definable topological space can be refined by a finite cover by simply-
connected definable open subsets.

2.2. Sheaves on definable topological spaces. In this section we collect some basic
notions regarding sheaves on definable topological spaces. Because of the insistence on
finite covers, the sheaf theory requires a very mild use of Grothendieck topologies.

Definition 2.7. Let X be a definable topological space. The definable site X of X
is the site whose underlying category is the category of definable open subsets of X
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(with inclusions as morphisms) and whose coverings are finite coverings by definable
open sets.

We sometimes abusively refer to sheaves on the definable site as sheaves on X. Given
a morphism f : X → Y of definable topological spaces, there are in the usual way
adjoint functors f∗ : Ab(X)→ Ab(Y ) and f−1 : Ab(Y )→ Ab(X) on the categories of
abelian sheaves.

Remark 2.8. We remark that exactness in Ab(X) cannot be checked on stalks. See
Example 2.18. There is a space obtained by adjoining model-theoretic “generic points”
called types whose conventional category of sheaves is equivalent to sheaves on the
definable site, and this is the perspective taken by, e.g., Edmundo–Jones–Peatfield
[20]. In particular, exactness can be checked on stalks if we include these additional
points.

From Proposition 2.4 we deduce the following:

Corollary 2.9. Let f : X → Y be a finite morphism of regular definable topological
spaces. Then f∗ : Ab(X)→ Ab(Y ) is exact.

Proof. Let A → B → C be an exact sequence of sheaves on X; we want to prove
the exactness of f∗A → f∗B → f∗C. For a definable open U of Y , if a section s in
f∗B(U) = B(f−1(U)) is zero in f∗C(U), then after taking an open definable cover of
f−1(U), s is in the image of A. By Proposition 2.4 we refine our open definable cover
by components of f−1(Yk), where {Yk} is an open cover of Y . It follows that for each
k, s|Yk is in the image of f∗A(Yk), completing the proof. �

Definition 2.10. A locally C-ringed definable space (X,OX) is a definable topological
space X and a sheaf OX of C-algebras on the definable site X whose stalks are local
rings. A morphism of locally C-ringed definable spaces f : (X,OX) → (Y,OY ) is a
morphism f : X → Y of definable spaces and a morphism f ] : f−1OY → OX of
sheaves of C-algebras which is local on stalks.

Remark 2.11. In general some care must be taken to define a locally ringed site when
the site does not have enough points, see for example the discussion surrounding [50,
Tag 04EU]. For our purposes the above definition will suffice.

Remark 2.12. The notions of closed and open immersions of locally ringed spaces
naturally generalize to locally C-ringed definable spaces. See for example [50, Tag
01HK,Tag 01HE].

For X a locally C-ringed definable space, denote by Mod(OX) the abelian category
of OX -modules. Given a morphism f : X → Y of locally C-ringed definable spaces,
we naturally have a functor f∗ : Mod(OX) → Mod(OY ), and we define a functor
f∗ : Mod(OY )→ Mod(OX) via

f∗ : F 7→ OX ⊗f−1OY
f−1F

where as usual we have used the adjoint map f ] : f−1OY → OX to make OX an
f−1OY -algebra.

Definition 2.13. Let X be a locally C-ringed definable space. Given an OX -module
M , we say that M is of finite type (as an OX -module) if there exists a definable cover
Xi of X and surjections OnXi

�MXi for some positive integer n on each of those open
sets. We say M is of finite presentation (as an OX -module) if there is a definable cover
Xi of X and finite presentations

OmXi
→ OnXi

→MXi → 0.

https://stacks.math.columbia.edu/tag/04EU
https://stacks.math.columbia.edu/tag/01HK
https://stacks.math.columbia.edu/tag/01HK
https://stacks.math.columbia.edu/tag/01HE
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We say that M is coherent (as an OX -module) if it is of finite type, and given any
definable open U ⊂ X and any OU -module homomorphism ϕ : OnU →MU , the kernel
of ϕ is of finite type.

Note that it easily follows that if M is a coherent OX -module and N ⊂ M is an
OX -submodule of finite type, then N is coherent. Moreover, the kernel of any homo-
morphism M → M ′ of coherent OX -modules is of finite type and therefore coherent.
The following is also standard and we include the proof to give a flavor of the types of
arguments used.

Lemma 2.14. Let 0 → M1 → M → M2 → 0 be an exact sequence of sheaves on a
locally C-ringed definable space X. If two of {M,M1,M2} are coherent then so is the
third.

Proof.

(1) Assume M,M1 are coherent. Since M is of finite type, so is M2. Let us show
that M2 is coherent. Suppose V ⊂ X is a definable open and ϕ : OnV →M2|V is
any map. The map ϕ is determined by the image of a basis. Since M surjects
onto M2, by further restricting to a finite open cover we can assume that ϕ
lifts to a map ϕ′ : OnV →M|V .

Since M1 is coherent we may choose a surjection ψ : OmV →M1|V by further
restricting to a finite open cover. Consider ψ⊕ϕ′ : OmV ⊕OnV →M|V . Then the
kernel of ψ⊕ϕ′ is finitely generated since M is coherent, and surjects onto the
kernel of ϕ. Thus the kernel of ϕ is finitely generated, and so M2 is coherent.

(2) Assume M,M2 are coherent. Then any map to M1 is also a map to M , and
thus has finitely generated kernel. Moreover, if ϕ : OnX �M , then the kernel of
the induced map to M2 is finitely generated since M2 is coherent, and surjects
to M1.

(3) Assume M1,M2 are coherent. To see that M is of finite type, we first restrict
to a finite open covering so that one can choose surjections ϕi : OnI

X → Mi.
By further restricting, we may lift ϕ2 to a map ϕ′2 : On2

X → M . Now the map

ϕ1 ⊕ ϕ′2 : On1+n2
X →M is a surjection.

Finally, let ϕ : OmX → M be any map. When continued to M2, the kernel
K of ϕ0 : OmX � M2 is of finite type. The induced map from K to M1 has
kernel which is of finite type, and this kernel is in fact kerϕ. This completes
the proof.

�

Corollary 2.15. The full subcategory Coh(OX) ⊂ Mod(OX) of coherent OX-modules
is an extension closed abelian subcategory.

Proof. By the lemma and the remarks after Definition 2.13. �

Corollary 2.16. Assume OX is a coherent OX-module. Then:

(1) OnX is coherent for any n.
(2) An OX-module M is coherent iff it is of finite presentation.

2.3. Basic definable complex analytic spaces. Identify C = R2 using the real
and imaginary parts, and give Cn the definable structure coming from the identifi-
cation Cn = R2n. For a definable open set U ⊂ Cn we let OCn(U) be the definable
holomorphic functions on U , that is the maps U → C that are both definable and
holomorphic.

Lemma 2.17. The presheaf OCn : Cn → Ab which to U ∈ Cn associates OCn(U) is a
sheaf on Cn.
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Proof. Let U ⊂ Cn be a definable open set and let Ui be a finite definable covering of
U . If a function f ∈ OCn(U) vanishes on each Ui, it must be identically 0. Moreover, if
fi are definable holomorphic functions on Ui which agree on overlaps, they by analytic
continuation glue to a single holomorphic function f on U . Since the Ui are a finite
covering of U and each fi is definable, it follows that f is also definable and hence
f ∈ OCn(U) as required. �

Note that the stalks OCn,x := colimx∈U OCn(U) are local rings.

Example 2.18. The sheaf O(Cn)an of holomorphic functions is a sheaf on Cn. If our
structure contains Ran, then OCn ⊂ O(Cn)an have the same stalks but are not equal,
and therefore exactness on the definable site cannot be checked on stalks. Crucially, we
will show (see Corollary 2.40) that exactness in Coh(OCn) can be checked on stalks.

Definition 2.19. Given an open definable subset U ⊂ Cn and a finitely generated
ideal I of OCn(U), the vanishing locus2 X = |V (I)| is naturally a definable topological
space. We call the data of U ⊂ Cn and I a basic definable complex analytic space. We
often refer to the basic definable complex analytic space via X ⊂ U ⊂ Cn, and denote
by IX := IOU .

There is a sheaf OU/IX on U which is supported on X. We set OX to be the
restriction of OU/IX to X, and refer to the pair (X,OX) as the associated locally
C-ringed definable space.

Remark 2.20. We will eventually see in Corollary 2.34 that given two basic definable
complex analytic spaces X ⊂ U ⊂ Cn and Y ⊂ V ⊂ Cn, a morphism of the associated
locally C-ringed definable spaces (X,OX) → (Y,OY ) is, after passing to a definable
cover of X in U , the natural one induced by a definable holomorphic map f : U → V
for which f ](f−1IY ) ⊂ IX . This will allow us to glue basic definable complex analytic
spaces by gluing the C-locally ringed definable spaces.

2.4. Definable Oka coherence. In this section we prove the analog of the Oka co-
herence theorem [25, Chapter 2 §5.2] for basic definable complex analytic spaces:

Theorem 2.21. The definable structure sheaf OCn of Cn is a coherent OCn-module.

The statement of Theorem 2.21 is local. The proof will largely follow the classical
proof (e.g. [25, Chapter 2 §5]) by observing that whenever one must pass to a refine-
ment of an open cover in the classical setting, a definable refinement is sufficient in
our setting. One example is the following definable version of Weierstrass division:

Lemma 2.22. Let V ⊂ Cn be a definable open set, P ∈ OCn(V )[w] a monic polynomial
in w with coefficients that are definable holomorphic functions on V . Let U ⊂ V × C
be a definable open set containing X := |V (P )| ⊂ V × C. Then given any definable
holomorphic function f on U , one can uniquely write f = QP + R for definable
holomorphic functions Q,R on U with R ∈ OCn(V )[w] of degree less than the degree
of P .

Proof. The claimed Q,R exist uniquely in the analytic category [25, Chapter 2 §1.2], so
it suffices to prove they are definable. Let Xi be the irreducible analytic components of
X and Pi be the minimal polynomial of w over Xi. Note that the Xi are definable sets
and so each Pi is definable. Also, P must be a product of the Pi, and so by induction on
degPi it suffices to prove the theorem for each Pi one at a time. We may thus assume
that P is irreducible. Let V1 ⊂ V be the dense open set where P (w) has distinct roots,
which is definable. On V1 the coefficients of R are the a0, . . . , an−1 ∈ OCn(V1) such

2Here we use | · | to denote the vanishing locus as a definable topological space—that is, forgetting
the sheaf of functions—rather than the underlying topological space as in §2.1.



10 B. BAKKER, Y. BRUNEBARBE, AND J. TSIMERMAN

that
∑n−1

i=0 aiw
i agrees with f on X, where n = degP . Thus, it follows that R1 := R|V1

is definable. Since U1 := V1∩U is dense in U it follows that R is definable as well, since
the graph of R is the closure of the graph of R1. Hence Q is definable since Q = f−R

P ,
and the proof is complete. �

Another important input of a similar flavor is a definable version of Noether nor-
malization:

Theorem 2.23 (Peterzil–Starchenko [44, Theorem 2.14]). Given an open definable
subset U ⊂ Cn and a closed definable complex analytic subset X ⊂ U of dimension d,
there is a definable cover {Ui} of U and linear projections πi : Cn → Cd such that the
restrictions pi : Xi → πi(Ui) are finite, where Xi = X ∩ Ui.

Proof of Theorem 2.21. Following [25, Chapter 2 §5.1], we start with a coherence cri-
terion.

Lemma 2.24. The following are equivalent.

(1) For any connected open definable U ⊂ Cn and any nonzero definable holomor-
phic function f ∈ OCn(U) we have that M = OU/fOU is a coherent M -module.

(2) OCn is a coherent OCn-module.

Proof. The backward implication is immediate from Corollary 2.15. For the forward
implication, suppose U ⊂ Cn is a definable open which we may assume is connected
and ϕ : OmU → OU an OU -module homomorphism given by f1, . . . , fm ∈ OCn(U).
Evidently ker(ϕ) is finitely generated if all the fi vanish, so we may assume without
loss of generality that f = f1 is nonzero.

Consider the projection π : OU →M := OU/fOU and note we have a commutative
diagram

OmU
πm

��

ϕ
// OU

π

��

Mm ϕ
// M.

The vertical maps clearly have finitely generated kernels (as OU -modules). As M is
coherent by hypothesis, ker(ϕ) is of finite type as an M -module (and therefore also an
OU -module), and it follows by lifting the generators (possibly after passing to a finite
refinement) that ker(π◦ϕ) is a finite type OU -module. The OU -module homomorphism
s 7→ s− (ϕ(s)/f)e1 gives a section of the inclusion ker(ϕ)→ ker(π ◦ ϕ), and therefore
ker(ϕ) is of finite type. �

It therefore suffices to prove the criterion in the lemma; we do so by induction on
n, the case n = 0 being obvious. We thus assume that OCn−1 is coherent.

Let U ⊂ Cn be a connected definable open set and f ∈ OCn(U) nonzero. Let
X := |V (f)| be the zero set of f . Using Lemma 2.23, there is a covering of U by finitely
many definable open sets Ui such that for each Ui there is a linear set of coordinates
for which Xi = X ∩ Ui is finite over its projection down to Cn−1. Replacing X with
Xi we may therefore assume without loss of generality that there is a linear projection
π : U → Cn−1 whose restriction p : X → V is finite over its image V := π(U) ⊂ Cn−1.
It follows that V is a definable open set of Cn−1.

Let Wj be the irreducible components of X, and let Pj(w) ∈ O(Cn−1)an(V )[w] be
the unique irreducible polynomials whose zero-locus is Wj . Note that the coefficients
of Pj(w) are definable since it can be defined on the dense definable open W ′j ⊂ Wj

where Wj → π(Wj) is étale as Pj(v, w) =
∏

(v,t)∈W ′j
(w−t). By the analytic Weierstrass

preparation theorem, there are positive integers ki such that f∏
i Pi(w)ki

is nowhere
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vanishing, and thus must be a definable unit. Hence we may assume f = P (w) :=∏
i Pi(w)ki .
Let k = degP and let M = OU/fOU , which we consider (by restricting) as a sheaf

on X. It suffices to show that the kernel of any homomorphism ϕ : Mn → M of
M -modules is of finite type (as an M -module). By Lemma 2.22 we have p∗M ∼= OkV as
OV -modules. Thus, p∗ϕ is a homomorphism of coherent OV -modules by the inductive
hypothesis and Corollary 2.16, hence ker(p∗ϕ) is of finite type as an OV -module. By
Corollary 2.9 (any definable subspace of Rn is regular) we have p∗ ker(ϕ) = ker(p∗ϕ),
and if p∗ ker(ϕ) is of finite type as an OV -module clearly ker(ϕ) is of finite type as an
M -module. �

Corollary 2.25. For a basic definable complex analytic space X the structure sheaf
OX is a coherent OX-module.

Proof. First, for any definable open U ⊂ Cn, OU is clearly coherent. Let X = V (IX)
where U ⊂ Cn is definable open and IX ⊂ OU is a finitely generated subsheaf. Let
i : X → U be the natural injection, which is a closed immersion on locally C-ringed
definable spaces. Note that M → i∗M gives an equivalence of categories between
OX -modules on X and OU -modules on U killed by I, with inverse M → i−1M . By
definition i∗OX = OU/IX is a finitely presented OU -module and therefore coherent by
Theorem 2.21 and Corollary 2.15.

As any open subset ofX is itself a basic definable complex analytic space, it is enough
to check that for an OX -module homomorphism ϕ : OmX → OX the kernel is of finite
type. We may consider i∗ϕ : i∗OmX → i∗OX which is a map of coherent OU -modules.
Since OU is coherent, we may locally form an exact sequence OtU → i∗OmX → i∗OX .
The first map is killed by I, so we get an exact sequence i∗OtX → i∗OmX → i∗OX , and
thus an exact sequence OtX → OmX → OX as desired. �

2.5. Analytification. Given a basic definable complex analytic space X ⊂ U ⊂ Cn,
we may naturally consider X as an analytic space, which we denote Xan. We for
simplicity denote Coh(X) := Coh(OX) and Coh(Xan) := Coh(OXan). There is a
natural morphism g : (Xan,OXan)→ (X,OX) of locally C-ringed sites, and a resulting
analytification functor (−)an : Coh(X) → Coh(Xan) given by F an := OXan ⊗g−1OX

g−1F together with a natural identification Oan
X
∼= OXan .

Example 2.26. It is instructive to observe that if the underlying o-minimal structure
contains Ran, then (−)an : Coh(X)→ Coh(Xan) is just sheafification in the analytic
topology. In particular, (−)an is exact and for any x ∈ X we canonically have OX,x =
OXan,x.

Given the above example, the more contentful part of the following result is the
faithfulness statement.

Theorem 2.27. Let X be a basic definable complex analytic space and (−)an : Coh(X)→
Coh(Xan) the analytification functor. Then

(1) (−)an is exact;
(2) (−)an is faithful.

For the proof of Theorem 2.27, we first need some preliminary observations.

Lemma 2.28. For X a basic definable complex analytic space and x ∈ X, the stalk
OX,x is a Noetherian ring.

Proof. Suppose X = V (I) ⊂ U ⊂ Ck for I a finitely generated ideal. Then OX,x is a
quotient of OCn,x. Thus it is sufficient to prove OCn,x is Noetherian.
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We proceed by induction on n. Suppose 0 6= f ∈ OCn,x. As in the proof of Theorem
2.21, using Theorem 2.23 we can change coordinates such that f is a unit times a
Weierstrass polynomial P (w) ∈ OCn−1,x[w]. Thus OCn,x/(f) is finite over OCn−1,x by
Lemma 2.22. As a finite extension of a Noetherian ring is Noetherian, the result follows
by induction. �

Lemma 2.29. For X a basic definable complex analytic space and x ∈ X, the com-
pletions of OX,x and Oan

X,x are canonically isomorphic.

Proof. For X an open set in Cn the claim is clear since both completions are canonically
the formal power series ring Rn in n variables. By the Artin–Rees lemma, it follows
that tensoring with Oan

Cn,x over OCn,x is exact for finitely generated modules.

Suppose X = V (I) ⊂ U . By the above Ian
x := Ip⊗OU,x

Oan
U,x is an ideal of Oan

U,x, and
we have the isomorphisms

OX,x ∼= OU,x/Ix, and Oan
X,x
∼= Oan

U,x/I
an
x

It follows that the completions of OX,x and Oan
X,x are both isomorphic to Rn/(Ix⊗OU,x

Rn). �

Corollary 2.30. For X a basic definable complex analytic space and x ∈ X, the stalk
OX,x is an excellent ring.

Proof. As OX,x is a quotient of OCn,x, it suffices to take X = Cn [50, Tag 07QU]. The
previous two lemmas then imply that OCn,x is regular, since regularity of Noetherian
local rings can be checked on completions. Using [39, Theorem 102] and the fact that
derivatives of definable holomorphic functions are definable, the claim follows. �

Proof of Theorem 2.27. Sheafification in the analytic topology is exact and tensor
products are always right exact, so it is sufficient to prove left-exactness of the ten-
sor product. Suppose that 0 → E → F is an exact sequence of definable coherent
sheaves. Then we get an injection of stalks 0 → Ex → Fx for x ∈ X. To show
that Ean injects into F an it is sufficient to prove that Ean

x injects into F an
x . Note that

Ean
x
∼= Ex⊗OX,x

Oan
X,x. Since both OX,x and Oan

X,x are Noetherian local rings by Lemma

2.28, the completion is faithfully flat [50, Tag 00MC]. Since they have isomorphic com-
pletions by Lemma 2.29, claim (1) follows.

For the second part, we need to show that if we have E
f−→ F in Coh(X) such

that fan = 0, then f = 0. By considering the image, it is enough to show that if for
F ∈ Coh(X) we have F an = 0, then F = 0. The statement is local, so we may assume
F has a presentation

OmX
g−→ OnX → F → 0

and by part (1) we reduce to the following lemma.

Lemma 2.31. If gan is surjective then g is.

Proof. We may think of g as an n × m matrix M consisting of elements of OX(X).
Since gan admits a section at each point, at each point some n × n minor of M is
invertible. Thus on a definable cover given by the nonvanishing of these minors, a
section is given by a rational function in the entries of g, which is therefore definable.
It follows that g is surjective. �

�

Corollary 2.32. For X a basic definable complex analytic space, a sequence M ′ →
M →M ′′ of coherent OX-modules is exact if and only if it is exact on stalks (or even
analytic stalks).

https://stacks.math.columbia.edu/tag/07QU
https://stacks.math.columbia.edu/tag/00MC
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Proof. By the exactness of (−)an, it suffices to show that if Man = 0 then M = 0, but
this is exactly the faithfulness of (−)an. �

Corollary 2.33. Given coherent sheaves E ⊂ F and a section s ∈ F (X), then s ∈
E(X) if and only if (san)x ∈ (Ean)x for all x ∈ X.

In view of Remark 2.8 (and Example 2.18), Corollary 2.32 is quite strong. In
particular, it implies that basic definable complex analytic spaces can be glued as
locally C-ringed definable spaces:

Corollary 2.34. Let X ⊂ U ⊂ Cn and Y ⊂ V ⊂ Cm be basic definable complex
analytic spaces and ϕ : (X,OX) → (Y,OY ) a morphism of the associated locally C-
ringed definable spaces. Then there are definable open subsets Uj ⊂ U covering X ⊂ U
and definable holomorphic maps gj : Uj → V with g]j(g

−1
j IY ) ⊂ IX∩Uj which induce

ϕ|X∩Uj in the natural way.

Proof. The coordinates give sections z1, . . . , zm of OY (Y ) which pull back to functions
wi = ϕ]zi ∈ OX(X). By the definition of OX , there are open definable subset Uj ⊂ U
covering X on which all of the wi extend to definable holomorphic functions. Replacing
X ⊂ U with X ∩ Uj ⊂ Uj , we may therefore assume the sections wi lift to the
coordinates of a definable holomorphic function g : U → Cm. From classical theory we
know that g restricts to an analytic morphism Xan → Y an which induces ϕan. Thus,
on the level of definable topological spaces g induces ϕ. Moreover, from Corollary 2.33
we have that g](g−1IY ) ⊂ IX , and it remains to show that the induced pullback map
g] : |ϕ|−1OY → OX is the same as ϕ]. But on the one hand by Lemmas 2.28 and
2.29 both pullbacks agree on completions since they agree on the coordinates zi, and
therefore they also agree on stalks. On the other hand, sections are determined by
their stalks by Corollary 2.33, so the lemma is proved. �

2.6. Definable complex analytic spaces. Equipped with Corollary 2.34, we are in
a position to give a concise definition of global spaces locally modeled on basic definable
complex analytic spaces.

Definition 2.35. We say a locally C-ringed definable spaces (X,OX) is locally a basic
definable complex analytic space if on a definable cover it is isomorphic to the locally
C-ringed definable space associated to a basic definable complex analytic space. We
define the category of definable complex analytic spaces (DefAnSp/C) to be the full
subcategory of the category of locally C-ringed definable spaces consisting of (X,OX)
which are locally a basic definable complex analytic space.

Remark 2.36. We require the underlying definable topological space X to be Hausdorff.
In particular, as X is locally compact (as it is locally a locally closed subset of Rn), it
is regular.

Remark 2.37. As in Remark 2.12, we define closed (resp. open) immersions of definable
complex analytic spaces to be closed (resp. open) immersions on the level of C-ringed
definable spaces.

The local results of the previous sections immediately globalize; we record them here
for convenience.

Theorem 2.38. Let X be a definable complex analytic space. Then OX is a coherent
OX-module.

Denote by (AnSp/C) the category of complex analytic spaces. As in the previous sec-
tion, there is naturally an analytification functor (−)an : (DefAnSp/C) → (AnSp/C),
as well as analytification functors (−)an : Coh(X)→ Coh(Xan) on the level of sheaves
for which we have a natural identification Oan

X
∼= OXan .
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Theorem 2.39. Let X be a definable complex analytic space. Then the analytification
functor (−)an : Coh(X)→ Coh(Xan) is exact and faithful.

Corollary 2.40. For X a definable complex analytic space, a sequence M ′ → M →
M ′′ of coherent OX-modules is exact if and only if it is exact on stalks (or even analytic
stalks).

Finally, as a concrete example and sanity check, we have the following:

Lemma 2.41. Let X be a definable complex analytic space. Then elements of Γ(X,OX)
are in natural bijection with morphisms of definable complex analytic spaces f : X → C.

Proof. Given a morphism f : X → C we get a map f# : Γ(C,OC)→ Γ(C, f∗OX) and
we pullback the C-coordinate f#(z) to obtain a global section of OX .

We now define the inverse correspondence from sections s ∈ Γ(X,OX) to morphisms
s+ : X → C. It is enough to consider X a basic definable complex analytic space, as
the resulting morphisms of definable complex analytic spaces X → C glue together.
Thus suppose X = V (I) where I is a finitely generated ideal sheaf in a definable open
set U ⊂ Cn. Given s ∈ Γ(X,OX), after passing to a definable cover s extends to a
section t ∈ Γ(U,OU ), and thus to a morphism of definable complex analytic spaces
t+ : U → C which restricts to a morphism s+ : X → C. Note that if we pick a different
section lift t′ then t− t′ ∈ Γ(U, I) and we obtain the same morphism. To see this, note
that it is obvious that t+, t′+ give the same map on points |X| → C. As t+, t′+ induce
the same analytic morphism, it follows from Theorem 2.39 that they induce the same
map on the sheaf of rings. One easily check that s 7→ s+ is inverse to f 7→ f ]z. �

2.7. Reduced spaces. The goal of this section is to show that any definable com-
plex analytic space X has a canonical reduced subspace Xred which analytifies to the
analytic reduced subspace of Xan.

Definition 2.42. For X a definable complex analytic space, we define NX ⊂ OX to
be the sheaf of ideals given by nilpotent elements of OX . We say X is reduced if NX
is the zero ideal.

Note that for any x ∈ X, the stalk NX,x is the ideal of nilpotents of OX,x.

Proposition 2.43. Let X be a definable complex analytic space. Then NX is a co-
herent sheaf of ideals.

Proof. We may assume X ⊂ U ⊂ Cn is a basic definable complex analytic space. The
underlying set |X| ⊂ U is set-theoretically cut out by generators for the ideal of X in
U , so |X| is a C-analytic set in the terminology of [44]. Let I ⊂ OU be the ideal sheaf
of |X|; it suffices to prove that I is a coherent sheaf of ideals. By [44, Theorem 11.1],
up to a definable cover there is a finitely generated ideal sheaf J ⊂ I ⊂ OU which
agrees with I on stalks. By Corollary 2.40 we have J = I. �

Corollary 2.44. Let X be a definable complex analytic space. There is a unique
closed definable complex analytic subspace Xred ⊂ X for which (Xred)an = (Xan)red.
Moreover, Xred is reduced.

Proof. The uniqueness follows from Theorem 2.39. For the existence take Xred =
V (NX), which is clearly reduced. Recall that an excellent local ring is reduced if
and only the completion is [30, 7.8.3(v)]. From Corollary 2.30, Lemma 2.29, and the
excellence of analytic local rings we deduce that NX,x analytifies to the ideal NXan,x ⊂
OXan,x of nilpotents in the analytic local ring. Thus, (Xred)an = (Xan)red. �
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We call the subspace Xred ⊂ X of the corollary the reduced subspace. For the rest
of this section and subsequently, by a closed definable complex analytic subset Y ⊂ X
of a definable complex analytic space X we mean a subset Y ⊂ X on the level of points
which is simultaneously a closed analytic subset of Xan and a definable subset of the
definable topological space underlying X.

Proposition 2.45. Let X be a definable complex analytic space and Y ⊂ X a closed
definable complex analytic subset. Then Y canonically has the structure of a reduced
closed definable complex analytic subspace Y ⊂ X.

Proof. By Corollary 2.44, it suffices to find a closed definable analytic subspace Y ′ ⊂ X
whose underlying definable topological space is Y. We may assume Y is equidimen-
sional by passing to irreducible components. By passing to definable covers, we may
first assume that X = U ⊂ Cn is a definable open subset of Cn and then by Lemma
2.23 that there are linear coordinates Cn ∼= Cn−d × Cd for which projection to the
second factor π : U → Cd restricts to a finite map p : Y → V where V := π(U) ⊂ Cd.

As p is analytically étale over a dense open subset V0 ⊂ V , after possibly passing
to connected components (of V ) we obtain a definable holomorphic map f0 : V0 →
Symk Cn−d mapping v 7→ p−1(v) ⊂ Cn−d whose image is contained in the complement
W ⊂ Symk Cn−d of the diagonals. Note that Symk Cn−d is an affine complex algebraic
variety and therefore naturally a definable complex analytic space. Let Z ⊂ Cn−d ×
Symk Cn−d be the closure of the universal reduced length k subscheme of Cn−d over W ,
which is also naturally an affine complex algebraic variety. The coordinate functions
of Symk Cn−d are clearly locally bounded around V \ V0, so f0 extends to a definable
holomorphic function f : V → Symk Cn−d, and the base-change of Z along f yields
the desired Y ′. �

2.8. Noetherian induction and the Nullstellensatz.

Proposition 2.46 (Definable Noetherian induction). Let X be a definable complex an-
alytic space and F a coherent sheaf on X. Any increasing chain of coherent subsheaves
of F must stabilize.

Proof. It is enough to prove the statement on every open of a definable cover. As
F is locally a quotient of OmX , by pulling back our chain we may assume F = OmX .
The statement for OmX clearly follows from the statement for OX so we may assume
F = OX . We may take X to be a basic definable complex analytic space, and then as
OX is a quotient of OCn we assume U ⊂ Cn is an open definable set.

We now induct on n to show the claim for OU for U ⊂ Cn open. Our chain
of definable coherent subsheaves corresponds to a chain of ideal sheaves Ij . We may
assume after passing to a further cover that all of the Ij contain a function f ∈ OU (U).
As in the proof of Theorem 2.21, we may assume we have a linear projection π : Cn →
Cn−1 with V = π(U) and that f = P ∈ O(V )[w] is a Weierstrass polynomial with zero
locus X = V (P ) ⊂ U such that p = π|X : X → V is finite. Letting Qj = Ij/POX ,
the Qj are coherent sheaves supported on X and it is sufficient to show that the Qj
stabilize.

Lemma 2.47. With the above notation, the pushforward map p∗ takes coherent sheaves
to coherent sheaves.

Proof. By Lemma 2.22 we know that p∗OX ∼= OdegP
V . Let Q be a coherent sheaf. This

means that Q has a finite presentation on a definable open cover, and by Proposition
2.4 we may assume Q has a global finite presentation. By Corollary 2.9 this yields a
presentation of p∗Q. �
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By induction, the sequence p∗Qj stabilizes. The theorem will thus follow if we show
that p∗Qj = p∗Qj+1 implies that Qj = Qj+1. By Corollary 2.9 the pushforward p∗ is
exact, and thus it suffices to show that for a coherent sheaf Q, p∗Q = 0 implies that
Q = 0. This easily follows from Proposition 2.4. �

Lemma 2.48. Let X be a definable complex analytic space and F, F ′ definable coher-
ent sheaves on X. Then HomOX

(F, F ′) is a definable coherent sheaf. Moreover, if
Supp(F ) is the subspace cut out by the kernel of the natural map OX → HomOX

(F, F ),
then:

(1) Supp(F )an = Supp(F an).
(2) The underlying definable complex analytic set of Supp(F ) is the set of x ∈ X

for which Fx 6= 0.

Proof. For the first claim, we may assume F has a presentation

OnX
g−→ OmX → F → 0

in which case we have an exact sequence

0→ HomOX
(F, F ′)→ HomOX

(OmX , F ′)→ HomOX
(OnX , F ′)

and therefore HomOX
(F, F ′) is coherent. The remaining parts of the lemma follow

from Theorem 2.39 and the same statements in the analytic category. �

Corollary 2.49. Let X be a definable complex analytic space.

(1) Any decreasing chain of closed definable complex analytic subspaces stabilizes.
(2) Any decreasing chain of closed definable complex analytic sets stabilizes.

Proof. For (1), consider the corresponding chain of ideals. This also handles (2), by
endowing the subsets with the reduced induced structure provided by Proposition
2.45. Note that by the lemma a definable complex analytic set Y may be recovered by
the ideal sheaf IY defining the subspace Y with the reduced induced structure as the
underlying set of Supp(OX/IY ). �

We therefore deduce a definable Nullstellensatz:

Corollary 2.50. Let X be a definable complex analytic space and IXred ⊂ OX the
ideal sheaf of the reduced subspace Xred ⊂ X. Then In

Xred = 0 for some integer n > 0.

Proof. For each x ∈ X we have In
Xred,x

= 0 for some n, since OX,x is Noetherian. By the

previous lemma, for any inclusion of definable coherent sheaves E ⊂ E′ on X we have
Supp(E) ⊂ Supp(E′). Thus, Supp(Ik

Xred) gives a decreasing chain of definable complex
analytic subspaces which must eventually not contain any given point. Therefore, by
Corollary 2.49 we have that Supp(Ik

Xred) is eventually empty, and thus by the lemma
In
Xred = 0 for some positive integer n. �

Corollary 2.51. Let X be a definable complex analytic space and Z ⊂ X a closed
definable complex analytic subspace. Then for some integer n > 0 we have In

Zred ⊂ IZ .

2.9. Finite push-forward.

Proposition 2.52. Let f : X → Y be a finite morphism of definable complex analytic
spaces. Then f∗ takes coherent OX-modules to coherent OY -modules and commutes
with analytification.

Proof. Let X0 ⊂ X be a closed definable complex analytic subspace with a square-zero
ideal. For any coherent OX -module F we have a short exact sequence

0→ E → F → F0 → 0
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where F0 is the restriction of F to X0 and both E and F0 are coherent OX0-modules.
If f∗E and f∗F0 are coherent OY -modules which analytify to (fan)∗E

an and (fan)∗F
an
0 ,

then f∗F is coherent and analytifies to (fan)∗F
an by Corollary 2.9 and Theorem

2.39. Therefore by induction using Corollary 2.50 we may assume X is reduced. As
Xred → Y factors through the reduction of Y and the claim is obviously true for closed
immersions, we may assume Y is reduced as well.

Likewise, for any sheaf F and any irreducible component X0 of X (with its reduced
structure), we have a short exact sequence

0→ E → F → F0 → 0

where F0 is the restriction of F to X0 and E has support a subspace supported on the
union of the other irreducible components of X. By induction we may thus assume
that X (and therefore also Y ) is reduced and irreducible.

Using Proposition 2.4, we may assume X ⊂ U ⊂ Cm and Y ⊂ V ⊂ Cn are both
basic definable complex analytic spaces. By considering the graph, we reduce to the
following:

Claim. Let Y ⊂ V ⊂ Cn be a reduced and irreducible basic definable complex analytic
space and X ⊂ Cm × Y a reduced and irreducible closed definable complex analytic
subspace. Assume the second projection p : X → Y is proper. Then p∗ takes coherent
sheaves to coherent sheaves and commutes with analytification.

Proof. We proceed by induction on m, the base case being trivial. Take a linear
projection Cm → Cm−1 and consider the morphism g : X → Cm−1×Y . As g is proper,
by Remmert’s theorem the image of gan is a closed complex analytic subvariety and
obviously definable, hence by Proposition 2.45 the image canonically has the structure
of a reduced and irreducible closed complex analytic subspace Y ′ ⊂ Cm−1 × Y . By
induction, the claim is true for the push-forward along Y ′ → Y , so it is enough to
show that push-forward along X → Y ′ sends coherent sheaves to coherent sheaves and
commutes with analytification. As X ⊂ C× Y ′ is a closed definable complex analytic
subspace which is proper over Y ′, we are reduced to the following:

Lemma 2.53. Let Y be a reduced and irreducible basic definable complex analytic
space and X ⊂ C×Y a reduced and irreducible closed complex analytic subspace which
maps finitely and surjectively onto Y via the second projection π : X → Y . Then π∗
takes coherent sheaves to coherent sheaves.

Proof. Let w be the C-coordinate in C × Y . Since X,Y are irreducible and π is
surjective, the number d of pre-images (with multiplicity) is constant, and w is a root
of the polynomial P (t) :=

∏
(s,y)∈X(t− s) ∈ OY (Y )[t].

Let W be the analytic subspace cut out by P and ψ : W → Y the projection. We
claim that ψ∗OW is free over OY . When Y is a domain in Cn, this follows from Lemma
2.22 and Proposition 2.4. In the general case, we have to prove that every function g
on W can uniquely be written as a polynomial in w of degree d− 1 over OY .

To show existence, note that we can find a neighborhood V of Y which is open in
Cn such that P extends to V and cuts out a definable complex analytic space WV .
Shrinking further and using Proposition 2.4 we may assume that g extends to WV ,
and so it can be written as a polynomial in w of degree d− 1 over OV . Restricting to
Y proves existence. Uniqueness is true in the analytic category (see e.g. [25, p.56]) so
follows from Theorem 2.39.

As ψ∗OW ∼= OdY , it follows that ψ∗ takes coherent sheave to coherent sheaves (as in
Lemma 2.47) and commutes with analytification. The same is obviously true for push-
forward along the closed embedding X → W , an therefore also for the composition
π∗. �
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�

�

Corollary 2.54. Let f : X → Y be a finite morphism of definable complex analytic
spaces. Then there is a diagram of definable complex analytic spaces

X Y

Z

g

f

i

where i is a closed immersion, g is surjective on points, and OZ → g∗OX is injective.
Moreover, Z analytifies to the analytic image.

Proof. The ideal of Z is the kernel of the map OY → f∗OX which is coherent by the
proposition. The remaining statements are clear. �

2.10. Analytic factorization. The purpose of this section is to prove the following
factorization statement, which says that if h : X → Y is a “scheme”-theoretically
surjective morphism of definable complex analytic spaces, then a morphism g : X → Z
factors through h if and only if it factors analytically.

Proposition 2.55. Let X,Y, Z be definable complex analytic spaces and suppose we
have (solid) diagrams

X Y Xan Y an

Z Zan

g

h

f
gan

han

ϕ

such that h is proper, surjective on points, and OY → h∗OX is injective. Then a
unique f exists such that fan = ϕ.

In preparation, we need the following lemma:

Lemma 2.56. Let f : X → Y be a proper morphism of definable complex analytic
spaces that is surjective on points and such that OY → f∗OX is injective. Let s ∈
Γ(Y an,OY an) be such that (fan)]s ∈ Γ(X,OX). Then s ∈ Γ(Y,OY ).

Proof. The section (fan)]s corresponds to a morphism g : X → C by Lemma 2.41.
The resulting morphism h = f × g : X → Y × C is proper, so by Proposition 2.45 the
reduced analytic image is naturally a definable complex analytic subspace Z ⊂ Y ×C.
Note that the projection Z → Y is finite. Let IZ be the coherent ideal sheaf of Z in
Y ×C. The pullback (h]IZ)OX is a nilpotent coherent sheaf on X and thus some power
of it is 0 by Theorem 2.50. Say (h]IZ)kOX = 0. Set Zk ⊂ Y × C to be the definable
complex analytic space cut out by IkZ . Then the map h factors through Zk, and thus
the morphism a : Zk → Y is surjective on points, with the natural map OY → a∗OZk

being injective. By Proposition 2.52 we see that a∗OZk
is a coherent sheaf. Let w be

the C coordinate of Y × C. Then w ∈ Γ(Y, a∗OZk
) is the image of s ∈ Γ(Y an,OY an),

and so the claim follows by Corollary 2.33. �

Proof of Proposition 2.55. The uniqueness statement follows immediately from Theo-
rem 2.39 so we need only show the existence of f . By definable choice ϕ is a morphism
of definable topological spaces. Let U ⊂ Z be definable open and s ∈ OZ(U). Then
by Lemma 2.56 the section ϕ]s ∈ Γ(ϕ−1(U),OY an) is actually in Γ(ϕ−1(U),OY ). We
thus get a morphism f : Y → Z and it follows from Theorem 2.39 that g = f ◦ h. �
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2.11. Étale descent. The purpose of this section is to show that quotients by closed
étale equivalence relations exist in the category of definable complex analytic spaces.

For X a definable complex analytic space, an equivalence relation in the category
of definable complex analytic spaces is a diagram R ⇒ X such that for any defin-
able complex analytic space S, Hom(S,R) ⇒ Hom(S,X) is an equivalence relation3.
We define the big definable complex analytic site DefAnSp/C to be the category of
definable complex analytic spaces and whose covers are finite covers by open defin-
able subspaces. Given an equivalence relation R ⇒ X, we define the sheaf X/R on
DefAnSp/C to be the sheafification of

S 7→ Hom(S,X)/Hom(S,R).

We say π : X → Y is a quotient of X by R if Y is a definable complex analytic space
which represents the sheaf X/R. Concretely, this means that a morphism S → Y is
given by taking a definable cover Si of S and giving morphisms Si → X that agree on
overlaps up to the equivalence relation. A quotient is unique up to unique isomorphism
provided it exists.

We say that a morphism f : X → Y of definable complex analytic spaces is étale if
it is open and locally an isomorphism onto its image (or equivalently if it is analytically
étale, by Theorem 2.39). We say an equivalence relation R ⇒ X is étale if the two
maps are étale and closed if R→ X ×X is a closed immersion.

Proposition 2.57. Let U be a definable complex analytic space and R ⇒ U a closed
étale definable equivalence relation. Then there exist finitely many definable open sets
Ui of U such that R∩ (Ui×Ui) = ∆Ui, and such that

⋃
Ui surjects on the set-theoretic

quotient U/R.

Proof.

Step 1. By definable choice[18, Chapter 6 §1.2], we can find a definable subset T of
U which has exactly one point for each R-representative class. Let us stratify T by
submanifolds Ti[44, Theorem 6.1]. For each i let Si be the set of all points equivalent
to Ti but not actually in Ti. It is easy to see that Si is also a submanifold. Now we
will show how to further stratify such that Ti is disjoint from Si. To do this, note that
Ti ∩ Si is of smaller dimension than Ti. Thus by successively iterating in this way we
can obtain our desired stratification. By further stratifying, we can assume that the
number of R-pre-images along Ti is constant, and that each Ti is a cell and is therefore
simply-connected.

Step 2. By the argument in Proposition 2.4 we may take Vi to be a definable open
neighbourhood of Ti such that R∩ (Vi×U) consists of k étale sections over Vi—which
we denote by R0—and another piece R′ which does not intersect Ti × U .

Step 3. Pick a definable distance function d(x, y) on U × U , and pick a definable
exhaustion function E : U → R≥0. In other words, E−1([0, c]) is compact for all c ∈ R.
For a set S ⊂ U we write Sc to mean S ∩ E−1([0, c]).

Step 4. By definable choice we may let h : R2
≥0 → (0, 1) be a definable, positive function

such that: for all (c, c′), if we set set ε = h(c, c′) then R′ ∩ Bd,ε(T ci ) × Bd,ε(T c
′
i ) = ∅.

Consider the function

g(c) := min
c1,c2<c

h(c1, c2)

2
.

3That is, the resulting map Hom(S,R)→ Hom(S,X)×Hom(S,X) is the inclusion of a set-theoretic
equivalence relation
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We let f(c) be a definable positive, continuous, decreasing function strictly smaller
than g(c). Note that h(c, c′) > min(f(c), f(c′)).

Step 5. Define d′(u, Ti) := minc,t∈T c
i
d(u, t)f(c)−1. Define Wi to consist of all points

u ∈ Vi such that d′(u, Ti) < minu′∈R(u)\u d
′(u′, Ti). We claim that Wi contains an open

neighbourhood around Ti. Let t ∈ Ti. For ε > 0, consider the ball Bd′,ε(t). It is clear
that for sufficiently small ε, d′ is smaller on this ball then on R0, and d′ is smaller then
1/2. Suppose that u ∈ Bd′,ε(t), u′ ∈ R′ and d(u′, t′) ≤ f(c) for t′ ∈ T ci . It follows that

the point (u, u′) ∈ R′ ∩Bd,ε(T ci )×Bd,ε(T c
′
i ) for ε = min(f(c), f(c′)) < h(c, c′). This is

a contradiction. Setting Ui ⊂Wi to be the maximal open subset (which is a definable
condition), the proof is completed. �

Corollary 2.58. Quotients by closed étale equivalence relations exist in the category
of definable complex analytic spaces.

Proof. The quotient can be glued together from the cover provided from Proposition
2.57. �

Corollary 2.59. Let X,Y be definable complex analytic spaces and f : X → Y an
étale morphism. Then there is a definable open cover Xi of X such that the restrictions
fj : Xj → Y are open immersions.

Proof. Apply the proposition to the equivalence relation X ×Y X ⊂ X ×X. �

As an application we end this subsection with a definable version of Riemann exis-
tence.

Lemma 2.60. Let Y be a definable complex analytic space and ϕ : X → Y an a finite
étale morphism. Then ϕ is the analytification of a finite étale morphism f : X → Y
which is uniquely determined by the property that for any morphism g : Z → Y , any
analytic lift of g to X is definable.

Proof. First, the lifting property is easily seen to uniquely specify the definable struc-
ture on X . For the existence, we may assume Y (and X ) are reduced, as the struc-
ture sheaf on X is uniquely determined as the pull-back from Y . Let Ui → Y be

a definable simply-connected cover (see Remark 2.6), and denote by (U ji )an → X
the possible lifts of Uan

i → Y an to X . Let U = ti,jU ji and Uan → X the obvious
morphism. We claim the closed analytic subvariety Uan ×X Uan ⊂ Uan × Uan has a
natural definable structure R ⊂ U ×U . Indeed, Uan×X Uan → Uan×Uan is a disjoint

union of (U ji )an ×X (U j
′

i′ )
an → (U ji )an × (U j

′

i′ )
an, which is a union of components of

Uan
i ×Y an Uan

i′ → Uan
i ×Uan

i′ and therefore can be given a definable structure by taking
the union of the same components of Ui ×Y ×Ui′ → Ui × Ui′ . The quotient X of the
equivalence relation R ⊂ U × U has a finite étale morphism f : X → Y , definabilizes
to ϕ, and clearly has the lifting property. �

2.12. Definabilization. Recall that throughout by scheme (resp. algebraic space) we
mean a finite type separated scheme over C (resp. a finite type separated algebraic
space over C). If X is an affine scheme presented as SpecC[x1, . . . , xn]/I we define
the definabilization Xdef to be the definable complex analytic subspace of Cn given
by the coherent ideal sheaf IOCn . Note that the category of sheaves on the Zariski
site XZar of X is naturally equivalent to the category of sheaves on the site X fZar

only allowing finite Zariski covers, as an arbitrary cover is refined by a finite one.
It is then easy to see we obtain a functor from affine schemes to definable complex
analytic spaces which is functorial and maps finite open covers to open covers, and



O-MINIMAL GAGA AND A CONJECTURE OF GRIFFITHS 21

thereby extends uniquely to a functor from schemes to definable complex analytic
spaces (−)def : (Sch/C)→ (DefAnSp/C).

For X a scheme, the definabilization functor yields a morphism of locally C-ringed
definable spaces

g : (Xdef ,OXdef )→ (X fZar,OX)

as there is a natural map g−1OX → OXdef . Let Coh(X) be the category of coherent
sheaves on X, and Coh(Xdef) the category of definable coherent sheaves on Xdef . We
then define a definabilization functor

(−)def : Coh(X)→ Coh(Xdef) : F 7→ F def := OXdef ⊗g−1OX
g−1F.

Evidently there is a natural isomorphism (OX)def ∼= OXdef .
We now extend this picture to algebraic spaces. This level of generality is necessary

for §4 as Artin’s algebraization theorem does not hold true for schemes.

Proposition 2.61. There is a unique extension

(−)def : (AlgSp/C)→ (DefAnSp/C)

of the definabilization functor on affine schemes to algebraic spaces. Moreover, for
each algebraic space X there is a definabilization functor on sheaves

(−)def : Coh(X)→ Coh(Xdef)

which is compatible with the definabilization of sheaves on affine schemes for any affine
(étale) open of X.

Proof. Suppose that X is an algebraic space, and that we have a presentation R ⇒
U → X as the quotient of U by a closed étale equivalence relation R⇒ U where R,U
are schemes. Recall that we think of X as a sheaf on the big étale site (Sch/C)ét of
schemes, and that for X to be presented by R ⇒ U means that we have a morphism
π : U → X of sheaves on (Sch/C)ét identifying X as the quotient U/R (see §2.11).

We obtain a definable closed étale equivalence relation Rdef ⇒ Udef (using The-
orem 2.39), and by Corollary 2.58 we can define the definabilization Xdef of X to
be the quotient. We claim that this is independent of the presentation and yields a
functorial extension (−)def : (AlgSp/C) → (DefAnSp/C). It suffices to show that for
any algebraic spaces X,Y with presentations R ⇒ U and T ⇒ V and any morphism
f : X → Y we obtain a morphism fdef : Xdef → Y def and that the formation of fdef

is compatible with compositions. Both claims are clear from the universal property
satisfied by the quotient.

We finally show the existence of the definabilization functor on sheaves (−)def :
Coh(X) → Coh(Xdef). For this, given a presentation R ⇒ U → X, the category
Coh(X) is naturally equivalent via pullback to the category Desc(R ⇒ U) of descent
data [50, Tag 03M3]: pairs (F,ϕ) where F ∈ Coh(U) and ϕ : π∗1F → π∗2F is an
isomorphism such that on R×U R we have π∗13ϕ = π∗23ϕ ◦π∗12ϕ, where πi : U ×U → U
and πij : R ×U R → U × U are the natural projections. Corollary 2.58 likewise
shows that for a quotient R ⇒ U → X of a definable complex analytic space by a
closed étale equivalence relation, the natural functor Coh(X ) → Desc(R ⇒ U) is an
equivalence. With these identifications we then define (−)def : Coh(X)→ Coh(Xdef)
as (−)def : Desc(R ⇒ U) → Desc(Rdef ⇒ Udef) by (F,ϕ) 7→ (F def , ϕdef), and this is
easily seen as above to be independent of the choice of presentation and compatible
with restrictions to open subspaces. �

https://stacks.math.columbia.edu/tag/03M3
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2.13. Quotients by finite groups. The purpose of this section is to show that quo-
tients by finite group actions exist in the category of definable complex analytic spaces.
This will be used to endow Γ\Ω with a definable structure when Γ is not torsion-free.

Definition 2.62. Let X be a definable complex analytic space with a left action (in
the category of definable complex analytic spaces) by a finite group G. A geometric
quotient of X by G is definable complex analytic space Y and a morphism q : X → Y
which on the level of topological spaces is the quotient map to the set of orbits (with
the quotient topology) and such that OY = (q∗OX)G. A geometric quotient is a
categorical quotient and is therefore unique up to unique isomorphism when it exists,
in which case we will usually denote it q : X → G\X.

Proposition 2.63. Let X be a definable complex analytic space with a left action by a
finite group G. Then the geometric quotient q : X → G\X of X by G exists. Moreover,
q analytifies to the analytic geometric quotient.

Proof. We first prove a special case. Recall that for affine varieties, geometric quotients
by finite groups exist.

Lemma 2.64. Let V be an affine complex algebraic variety with a left action by a finite
group G. Then the definabilization of the algebraic geometric quotient q : V → G\V
is the definable geometric quotient.

Proof. By [43, Remark 1.6] the analytification of q : V → G\V is an analytic geometric
quotient. Thus, qdef : V def → (G\V )def is the definable quotient on the level of
topological spaces. It remains to show that O(G\V )def = (qdef

∗ OV def )G. Observe that

q is finite so qdef
∗ OV def is a coherent O(G\V )def -module by Proposition 2.52. It follows

that (qdef
∗ OV def )G is a coherent O(G\V )def -module, since it is the intersection of the

kernels of the maps g] − 1 : qdef
∗ OV def → qdef

∗ OV def for all g ∈ G. Thus by Theorem
2.39, the image of the natural morphism O(G\V )def → qdef

∗ OV def is (qdef
∗ OV def )G since

the analytifications agree. �

Lemma 2.65. Let X be a definable complex analytic space with a left action by a finite
group G and q : X → G\X the geometric quotient. Let Z ⊂ X be a closed G-invariant
definable complex analytic subspace. Then q : Z → q(Z) is a geometric quotient of Z
by G.

Proof. Note that q is finite. According to Corollary 2.54, the image q(Z) exists as a
closed definable complex analytic subspace of G\X. By Proposition 2.55 it is enough to
show that qan : Zan → q(Z)an is the analytic quotient. On the underlying topological
spaces this is clear, and the image of (qan

∗ OXan)G in qan
∗ OZan is clearly (qan

∗ OZan)G.
�

We now prove the proposition. Suppose first that X is a basic definable analytic
space, given by definable ideal sheaf I ⊂ OCn(U), where U ⊂ Cn is open and definable.
Denote by UG the |G|-fold cartesian product of U , indexed by the elements of G. There
is a natural map i : X ↪→ UG given by i(x) := (g−1x)g, which is G-equivariant.

Now UG is open inside (Cn)G which is naturally an algebraic variety. Thus the
geometric quotient G\(Cn)G exists by Lemma 2.64. It trivially follows that G\UG
also exists as it is just a definable open subspace. Thus, by Lemma 2.65 the quotient
G\X also exists.

Finally, we handle the case of general X. Note first that the quotient q : X → G\X
exists in the category of definable topological spaces by [18, Cor 10.2.18]. Pick a
covering of X by basic definable open subspaces Ui. By Lemma 2.4 we may thus pick
a covering of G\X such that the inverse image of every open is a disjoint union of opens
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subsets each of which is contained in some Ui, and hence themselves basic definable
open spaces. Since the geometric quotient is local on G\X for the definable site, the
proof is complete.

�

2.14. Previous related work. For a real analytic manifold M , Kashiwara–Schapira
[33, §7] have introduced the subanalytic site Msa of M . The objects of Msa consist
of subanalytic open subsets of M whose coverings satisfy a local finiteness condition:
for any subanalytic open set U ⊂M , any covering Ui of U in Msa, and any relatively
compact K ⊂M , the cover K ∩ Ui of K ∩ U has a finite refinement.

It is natural to compare this site to our notion of a definable topological space and its
associated definable site when working with the subanalytic o-minimal structure Ran

(see e.g. [19]). On the one hand, a compact real analytic manifold M admits a unique
structure of an Ran-definable topological space. Moreover, all coverings refine to be
finite coverings, and so in this case the Kashiwara–Schapira site and the Ran-definable
site give equivalent categories of sheaves.

On the other hand, for non-compact M the two sites end up being different in a few
important ways:

(1) If M is non-compact, then M does not have a canonical structure as an Ran-
definable topological space. This is because the classical notion of subanalyt-
icity of a subset Z ⊂ Rn (see e.g. [7]) is a local condition, which does not see
the behavior ‘at infinity’. By contrast, Ran-definability of a subset Z ⊂ Rn is
a stronger condition, which roughly says that Z is globally subanalytic up to a
finite cover.

(2) If M is non-compact, even if one equips M with the structure of an Ran-
definable space, the objects of Msa and the definable site are different. Indeed,
an open set U ⊂ Rn is definable in Ran iff its closure U ⊂ Pn(R) in real
projective space is subanalytic.

(3) The definable site only allows finite coverings, so the sheaf axiom is much less
restrictive. As a notable example, taking M to be affine space the definable
site does not allow the covering by open balls of radius ε, whereas Msa does.

As demonstrated more clearly by (3) above, the Kashiwara-Schapira site does not
restrict behaviour at infinity. As such, it is inadequate for our purposes as one of our
main motivations is to provide non-trivial global restrictions on holomorphic functions
beyond what one sees locally.

3. Definable GAGA

In this section we prove an algebraization theorem for definable coherent sheaves on
algebraic spaces. Precisely, we show:

Theorem 3.1. Let X be an algebraic space and (−)def : Coh(X) → Coh(Xdef) the
definabilization functor. Then

(1) (−)def is fully faithful and exact.
(2) The essential image of (−)def is closed under taking subobjects and quotients.

Example 3.2. (−)def is not essentially surjective. Let X = Gm and let α ∈ C.
Note that the rank one C-local system V on Xan with monodromy λ = e2πiα can be
trivialized on a definable open cover—take for instance a finite union of overlapping
angular sectors. It follows that F = V ⊗C

Xdef
OXdef is a definable coherent sheaf. Note

that the only algebraic line bundle on X is the trivial bundle OX .
We claim that F can be nontrivial as a definable coherent sheaf; in fact, if α /∈ R,

F will not be trivial in any o-minimal structure. A trivializing section is of the form
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v ⊗ f for a nowhere zero multivalued holomorphic function f on C∗ with monodromy
λ. Taking q to be the standard coordinate on Gm, after multiplying by some power
qn we may assume f = eα log q+g(q) for a holomorphic function g : C∗ → C. As f ′/f =
αq−1 + g′(q) is single-valued and definable, it cannot have essential singularities at 0
or ∞ (or else it would have infinite fibers), and therefore g is algebraic—in particular,
a polynomial in q, q−1. But restricting to positive real q, we have that

{q ∈ R>0 | f(q) ∈ R} = {q ∈ R>0 | (Im g)(q) + (Imα) log q ∈ πZ}
is definable, which is only the case if Im g is constant and Imα = 0.

We will make extensive use of the following version of the definable Chow theorem
of Peterzil–Starchenko:

Theorem 3.3 (Peterzil–Starchenko [45, Corollary 4.5]). Let Y be a reduced algebraic
space and X ⊂ Y def a closed definable complex analytic subset. Then X is algebraic.

Proof. The statement in [45, Corollary 4.5] is for Y affine; see also the version in [40,
Theorem 2.2] for Y a variety. We may deduce the same statement for algebraic spaces
using an étale cover or the fact that every algebraic space has a dense open subspace
which is a scheme [50, Tag 06NH]. �

Before the proof we make some preliminary observations.

Lemma 3.4. (−)def is faithful and exact.

Proof. By Lemma 2.39 the map (−)an : Coh(Xdef)→ Coh(Xan) is faithful and exact.
By [47, Prop. 10 a,b], the usual analytification functor (−)an ◦ (−)def is faithful and
exact. It follows that (−)def is also faithful and exact. �

Observe that a homomorphism F1 → F2 of coherent sheaves can be recovered from
its graph as a subsheaf of F1⊕F2. It follows that part (2) of Theorem 3.1 implies part
(1) using Lemma 3.4. Moreover, the first part of (2) clearly implies the second part by
considering the kernel and using the exactness part of Lemma 3.4. We therefore have:

Lemma 3.5. Let X be an algebraic space. Then Theorem 3.1 holds for X if and only
if for every algebraic coherent sheaf F on X, any definable coherent subsheaf E ⊂ F def

is the definabilization of an algebraic coherent subsheaf E ⊂ F .

The two preceding observations together imply that Theorem 3.1 holds on X if and
only if it holds on the reduction Xred:

Lemma 3.6. Let X be an algebraic space with a nilpotent sheaf of ideals I cutting out
a subspace X0. Then Theorem 3.1 holds for X0 if and only if it holds for X.

Proof. Note that for any definable complex analytic space Y and closed definable
complex analytic subspace X ⊂ Y cut out by an ideal I, Coh(X ) is naturally identified
via push-forward with the full subcategory of sheaves in Coh(Y) annihilated by I. The
if direction is therefore obvious. Let us prove the converse direction. By induction on
the order of nilpotence of I, we may assume I is square-zero.

Let F be a coherent sheaf on X and E ⊂ F def a definable coherent subsheaf. By
Lemma 3.5 it will be enough to show that E is algebraic. Using Lemma 3.4 we have
the diagram

0 // (IF )def // F def // (F/IF )def // 0

0 // IdefE //

OO

E //

OO

E/IdefE //

OO

0

https://stacks.math.columbia.edu/tag/06NH
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Note that the ideal I being square-zero, both (IF )def and IdefE are coherent OXdef
0

-

modules. Since Theorem 3.1 holds for X0, we have that IdefE = Mdef for a coherent
M ⊂ IF . But E is equal to the preimage of its image by the map F def → (F/M)def ;
we may thus replace F by F/M , and reduce to the case IdefE = 0. Likewise, E maps to
(F/IF )def and must have algebraic image Ndef for a coherent N ⊂ F/IF . Replacing
F by the inverse image of N , we may assume that E maps isomorphically to (F/IF )def .
Thus we are reduced to showing that if F → (F/IF ) has a definable section then it
is algebraic. Note that this section would have to land in P def , where P ⊂ F is the
subsheaf annihilated by I. Since both F/IF and P are both coherent sheaves on X0,
this follows from Theorem 3.1 for X0. �

Proof of Theorem 3.1. We proceed by Noetherian induction on X, assuming Theorem
3.1 holds for every proper subspace of X. By Lemma 3.6 we may assume X is reduced.
Let F be an algebraic coherent sheaf on X and E ⊂ F def a definable coherent subsheaf.
By Lemma 3.5 we must show that E is the definabilization of an algebraic coherent
subsheaf E ⊂ F .

Step 1.

Lemma 3.7. Any exact sequence

0→ E → F def → G → 0

in Coh(Xdef) for which E and G are locally free is the definabilization of an exact
sequence

0→ E → F → G→ 0

in Coh(X) where E and G are locally free.

Proof. Observe that F def (and hence F ) is locally free. It is sufficient to construct the
quotient G and then define E as the kernel of F → G → 0. By working separately
on every connected component of X, one can assume that G has constant rank r. Let
Gr(r, F ) be the Grassmannian of quotient modules of F that are locally free of rank r.
Then G corresponds to a definable section of Gr(r, F )def , which is necessarily algebraic
by Theorem 3.3, as X is reduced. �

Step 2.

Lemma 3.8. For some dense open U ⊂ X, E|U is algebraic.

Proof. On some dense open set U , F is locally free since X is reduced. The (reduced)
locus where E and F def/E have non-maximal rank is definable, analytic, and closed,
hence algebraic by Theorem 3.3. After possibly shrinking U to a smaller dense open
set, the claim then follows from the previous step. �

Step 3.

With the notation of the previous step, let EU be the algebraic sheaf on U for which

(EU )def ∼= E|U . Let Ẽ be the “closure” of EU in F , i.e. the pullback

F // j∗j
∗F

Ẽ

OO

// j∗EU

OO
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where j : U ↪→ X denotes the inclusion. The sheaf Ẽ is evidently quasi-coherent and so

it is coherent since it is a subsheaf of F . Thus, Ẽdef and E are both definable coherent
subsheaves of F def , and therefore so is their intersection G.

Let IZ be the ideal sheaf of Z = X rU with the reduced algebraic space structure,
and I = Idef

Z .

Lemma 3.9. Suppose we have definable coherent sheaves G ⊂ G′ for which G|U = G′|U .

Then for some positive integer n, InG′ ⊂ G.

Proof. Take the quotient

0→ G′ → G → Q→ 0.

By Lemma 2.50, In kills Q for some positive integer n, and thus InG ⊂ G′. �

Applying the lemma to G ⊂ Ẽdef , we have (InZẼ)def ⊂ E for some positive integer

n. The quotient E ′ is then a subsheaf of (F ′)def , where F ′ = F/InZẼ is supported on a
subspace whose reduction is Z. By the inductive hypothesis, E ′ is algebraic, and E is
the preimage in F , hence algebraic, so the proof is complete. �

As an immediate corollary to Theorem 3.1, we obtain a version of the definable
Chow theorem for arbitrary (nonreduced) algebraic spaces.

Corollary 3.10. Let Y be an algebraic space and X ⊂ Y def a closed definable complex
analytic subspace. Then X is (uniquely) the definabilization of an algebraic subspace.

Proof. We need only algebraize the quotient Odef
Y → OX , which follows from Theorem

3.1. �

Corollary 3.11. Let X,Y be algebraic spaces. Then any morphism Xdef → Y def

of definable complex analytic spaces is (uniquely) the definabilization of an algebraic
morphism.

Proof. Apply the previous corollary to the graph. �

4. Definable images

The purpose of this section is to prove an algebraization theorem for definable images
of algebraic spaces.

4.1. Main statement. For convenience we make the following definition.

Definition 4.1. A morphism f : X → Y of algebraic spaces is dominant if OY →
f∗OX is injective.

Note that a proper dominant morphism is surjective on complex points. Our goal
is to prove the following result.

Theorem 4.2. Let X be an algebraic space, S a definable complex analytic space,
and ϕ : Xdef → S a proper definable complex analytic morphism. Then there exists a
(unique) factorization

Xdef S.

Y def

ϕ

fdef
ι

where f : X → Y is dominant algebraic and ι is a definable closed immersion. More-
over, ιan(Y an) coincides with the image ϕan(Xan).
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Remark 4.3. The uniqueness property in Theorem 4.2 is the following: for any other
factorization ϕ = ι′ ◦ f ′def with f ′ : X → Y ′ dominant and ι′ : Y ′def → S a definable
closed immersion there is a unique isomorphism g : Y → Y ′ for which the following
diagram commutes.

Xdef S.

Y def

Y ′def

f ′def

ϕ

fdef

gdef

ι

ι′

Remark 4.4. We expect the theorem to hold without the properness assumption on ϕ.

4.2. First reductions in the proof of Theorem 4.2. The proof of Theorem 4.2
involves two main steps: the case that X is reduced and the reduction to this case.
In this subsection we give the proof of Theorem 4.2 assuming Propositions 4.5 and
4.6 below, which are the main steps in these two reductions. The proofs of these
propositions are given in the subsequent subsections.

For a closed algebraic subspaceX ⊂ X ′ for whichX andX ′ have the same associated
topological space, we say X ′ is a thickening of X (see for example [50, Tag 05ZK]), and
a square-zero thickening if the ideal I of X in X ′ is square-zero. Likewise for definable
complex analytic spaces and analytic spaces.

The following proposition allows us to lift algebraizations through definable thick-
enings.

Proposition 4.5. Let f : W → Z be a proper dominant morphism of algebraic spaces.
Suppose we have an algebraic square-zero thickening W → W ′, a definable closed
immersion Zdef → Z ′, and a morphism ϕ′ : W ′def → Z ′ which fits into a commutative
diagram

W def

fdef

��

// W ′def

ϕ′

��

Zdef // Z ′

Then the following are uniquely defined: an algebraic square-zero thickening Z →
Z ′′, a definable closed immersion Z ′′def → Z ′, and a (proper) dominant morphism
f ′ : W ′ → Z ′′ of algebraic spaces, such that we have commutative diagrams

W

f

��

// W ′

f ′

��

W ′def

ϕ′

""

f ′def

��

Z ′

Z // Z ′′ Z ′′def

<<

.

For an algebraic space X, let Hilb(X) be the Hilbert space (see for example [50, Tag
0D01]) of proper algebraic subspaces of X, and D(Xan) be the Douady space of com-
pact analytic subspaces of Xan [17]. Since the analytification of a flat family of proper
algebraic subspaces of X yields a flat family of compact analytic subspaces of Xan,
the universal family on Hilb(X) yields a canonical analytic map Hilb(X)an → D(Xan),

https://stacks.math.columbia.edu/tag/05ZK
https://stacks.math.columbia.edu/tag/0D01
https://stacks.math.columbia.edu/tag/0D01
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which is a bijection on points since every compact analytic subspace of Xan is alge-
braic by ordinary GAGA (or for example Theorem 3.3). As the functors represented
by Hilb(X) and D(Xan) are the same over artinian rings (since by GAGA again the
deformation spaces are the same and the algebraic obstruction clearly analytifies to
the analytic one), Hilb(X)an → D(Xan) is in fact an isomorphism.

The next proposition essentially says that whenX is reduced in the setup of Theorem
4.2, the morphism ϕ is generically algebraic.

Proposition 4.6. Let X be a smooth algebraic space, U a smooth definable complex
analytic space, and ϕ : Xdef → U a smooth proper definable analytic morphism. Then
ϕ : Xdef → U is the definabilization of an algebraic morphism f : X → U and the
associated morphism U → Hilb(X) is a closed embedding.

Proof that Propositions 4.5 and 4.6 imply Theorem 4.2. The uniqueness property fol-
lows immediately from Proposition 2.55, Corollary 3.11, and the corresponding unique-
ness property of the analytic image, so we need only prove the existence of such a
factorization.

The proof proceeds by induction on dimX, the base case being trivial. By repeatedly
applying Proposition 4.5, we may assume X is reduced. By Remmert’s theorem, the
analytic image ϕan(Xan) is an analytic subvariety of San. By Propposition 2.45 there is
a unique structure of a reduced definable complex analytic space on ϕan(Xan) through
which ϕ factors, and so replacing S with ϕan(Xan) we may assume ϕan is surjective
on points and S is reduced. By Corollary 3.11 it suffices to algebraize S.

We next reduce to the case that the analytification of ϕ is a proper modification—
that is, ϕan : Xan → San is proper and induces an isomorphism (ϕan)−1(U)→ U for a
dense analytic Zariski open subset U ⊂ San. For this reduction it is enough to assume
S is (analytically) irreducible: if Sk is the image of an irreducible component Xk of X,
and if there is a proper modification ψ : Bdef

k → Sk, then we may replace ϕ with the
proper modification tkψk : tkBk → S. We may additionally assume X is smooth and
irreducible by replacing X with a component of a resolution which dominates S.

Observe that ϕ is smooth over a dense smooth definable Zariski open subset U ⊂ S.
Indeed, the regular locus Sreg ⊂ S is a dense definable Zariski open subset, and the
smooth locus over Sreg is determined by the rank of the Jacobian. Both of these
conditions are clearly definable on covers by basic definable analytic varieties. Let
(XU )def = ϕ−1(U), which is algebraic by Theorem 3.3. Applying Proposition 4.6
we conclude that ϕU : Xdef

U → U is the definabilization of fU : X → U and that
U → Hilb(XU ) is a closed embedding. Evidently fU is the restriction of the universal
family.

Obviously Hilb(XU ) is an open subset of Hilb(X). Let B be the closure of the

image of U in Hilb(X), VB → B the restriction of the universal family, B̃ → B the

normalization, and VB̃ → B̃ the base-change of the universal family. We then have
solid diagrams

VB̃

VB B̃ (VB̃)def

X B Xdef B̃def .

S
ψ
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The compact complex analytic subspaces of Xan that are contained in a fibre of ϕan

form a closed analytic subset of D(Xan). Since it contains the image of Uan, it contains
its closure Ban. It follows that the vertical arrow V def

B̃
→ S set-theoretically factors

through B̃an, hence topologically factors through B̃an (since we get a continuous map

by precomposing with the open map V an
B̃
→ B̃an), hence analytically factors through

B̃an (since by the normality of B̃, the holomorphic functions on an open subset of B̃an

are the continuous functions that are holomorphic in restriction to the trace of (B′)an),

hence definably factors through B̃def by Proposition 2.55. The resulting morphism ψ
is a proper modification, as it is proper (since V def

B̃
→ S is proper and VB̃ → B̃ is

surjective) and an isomorphism over U .

We may therefore assume that the analytification of Xdef → S is a proper modifica-
tion. By the inductive hypothesis and Theorem 3.3, the center4 of Xdef → S can be
algebraized, so let Zdef ⊂ S be the reduced center, and W def = ϕ−1(Zdef) equipped
with its reduced induced structure. For every positive integer k let Wk be the kth
order thickening of W , and Zk the kth order thickening of Zdef in S.

By the inductive hypothesis, the induced morphism ϕk : W def
k → S factors as

W def
k

fdefk−−→ Zdef
k → S where the first map is dominant and the second map is a closed

immersion—in particular a definable thickening of Z by Theorem 3.1. Let W be the
completion of X along W and Z = colimZk, both of which are formal algebraic spaces
(see e.g. [50, Tag 0AIL]); we then have a morphism f : W → Z. Let Zan be the
completion of San along Zan, which is a formal analytic space. By the theorem on
formal functions in the analytic category (see e.g. [4, Corollary 4.5]), the natural map
(ϕan
∗ OXan)∧ → limϕ∗OW an

k
is an isomorphism, and therefore the Zan

k are cofinal in the

Zan
k . Thus, the natural map (Z)an → Zan is an isomorphism.

Lemma 4.7. The morphism f : W → Z is a formal modification.

Proof. We refer to [2, Definition (1.7)] for the notion of a formal modification. The
proof of the claim is the same word for word as in [2, Lemma (7.7)], using that Xan →
San is a proper modification, as the verification5 is entirely Zariski-local on Z. �

Remark 4.8. The reason [2, Lemma (7.7)] requires compactness is because compact
spaces have at most one algebraization, making the statement a lot cleaner. Note
that we are essentially getting around this non-uniqueness issue by working with the
ambient structure of a definable complex analytic space, which is compatible with at
most one algebraization.

By the following theorem of Artin, we then conclude from Lemma 4.7 that ϕ :
Xan → San is algebraized by f : X → S, and by Proposition 2.55 we have Sdef ∼= S.

Theorem 4.9 (Artin [2, Theorem (3.1)]). Let X be an algebraic space of finite type
over a field, and W ⊂ X be a closed subspace. Let W denote the formal completion of
X along W , and suppose that f : W → Z is a formal modification. Then there is a
modification f : X → S which is an isomorphism on the complement of W and such
that the completion of f along W is isomorphic to f .

4That is, the image of the exceptional locus in Xdef .
5Note that Artin uses the notation

X ′ // X X // S

for our

Y ′ //

OO

Y

OO

W //

OO

Z.

OO

https://stacks.math.columbia.edu/tag/0AIL
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�

4.3. Proof of Proposition 4.5. We have an exact sequence of coherent OW ′-modules
on W ′:

(1) 0→ I → OW ′ → OW → 0

where both I and OW are coherent OW -modules. Taking the analytification on W ′,
by Theorem 2.39 we get a sequence of coherent OW ′an-modules6 :

(2) 0→ Ian → OW ′an → OW an → 0.

Viewing (1) (resp. (2)) in the category of sheaves of abelian groups on W (resp.

W an), we have a natural coboundary map of sheaves f∗OW
∂−→ R1f∗I (resp. fan

∗ OW an
∂′−→

R1fan
∗ I

an). Furthermore, the sheaves f∗OW and R1f∗I (resp. fan
∗ OW an and R1fan

∗ I
an)

canonically have the structure of OZ-modules (resp. OZan-modules). Finally, we have
natural morphisms ofOZan-modules (f∗OW )an → fan

∗ OW an and (R1f∗I)an → R1fan
∗ I

an

which are isomorphisms by ordinary GAGA (see e.g. [51, Théorème 5.10] for the state-
ment for algebraic spaces—here we are using that f is compactifiable).

Observe that OZ′an surjects onto OZan by Theorem 2.39 as OZ′ surjects onto OZdef .
Thus, we have a commutative diagram of homomorphisms of OZ′an-modules with exact
rows

(3)

fan
∗ OW ′an fan

∗ OW an R1fan
∗ I

an

OZ′an OZan 0

∂′

where the first row comes from the long exact sequence associated to (2).

Lemma 4.10. The coboundary map f∗OW
∂−→ R1f∗I associated to (1) is a homomor-

phism of OZ-modules and analytifies to the coboundary map fan
∗ OW an

∂′−→ R1fan
∗ I

an

associated to (2).

Proof. Both statements are local on Z, so we replace Z with an affine (étale) open.
By the Leray spectral sequence (and the fact that affines are Stein), the canonical
C-linear maps H1(W, I)→ H0(Z,R1f∗I) and H1(W an, Ian)→ H0(Zan, R1fan

∗ I
an) are

isomorphisms. It is therefore enough to prove the corresponding two statements for
the coboundary map on global cohomology. Taking the cohomology of (1) and (2), it
follows that we have a natural diagram

(4)

H0(W,OW ) H1(W, I)

H0(W an,OW an) H1(W an, Ian).

∂

∂′

As the cohomology of algebraic and analytic coherent sheaves can both be computed
via Čech cohomology with respect to an affine (étale) cover, it follows that this diagram
commutes.

Note that for any algebraic coherent sheaf F onW , the mapH0(W,F )→ H0(W an, F an)
is injective since the maps Fw → F an

w on stalks are injective. This together with the
ordinary GAGA isomorphisms mentioned above imply both vertical maps are injec-
tive. Now, by a diagram chase in (3) we have that H0(Zan,OZan) is killed by ∂′,

6Note that the analytifications of OW , I as OW ′ -modules are naturally the analytifications as OW -
modules.
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and therefore that H0(Z,OZ) is killed by ∂. Since ∂ is a derivation, it follows that
it is a homomorphism of H0(Z,OZ)-modules, and the second claim follows from the
commutativity of (4) and the ordinary GAGA isomorphisms. �

Let F be the image of f∗OW ′ → f∗OW , which is also the kernel of f∗OW →
R1f∗I. By the preceding lemma, F is an OZ-module and analytifies to the kernel
of fan

∗ OW an → R1fan
∗ I

an. From (3), F an contains the image of OZan in fan
∗ Oan

W , and so
by faithfulness of ordinary analytification F contains the image of OZ in f∗OW . We
define the sheaf of rings R on Z as R = OZ ⊕f∗OW

f∗OW ′ . It follows that R surjects
onto OZ , with square-zero kernel J = f∗I.

Lemma 4.11. Suppose Z is an algebraic space, and J is a coherent sheaf on Z. Let
R be a sheaf of rings on the étale site Z ét of Z such that

0→ J → R→ OZ → 0

is a first order thickening7. Then (Z ét, R) is an algebraic space.

Proof. See for example [50, Tag 05ZT]. �

We thus have an algebraic thickening Z0 = (Z ét, R) and a diagram

W

��

// W ′

��

Z // Z0

where W ′ → Z0 is dominant, since f is dominant. By Proposition 2.55 we also have a
diagram

W def

��

// W ′def

��

""

Z ′

Zdef // Zdef
0

<<

Note that Zdef
0 → Z ′ may well not be immersive. We claim that the image is

algebraic. The definable complex analytic space structure on the image is defined by
the image T of the map OZ′ → Rdef , and we have a diagram with exact rows

0 // Jdef // Rdef // OZdef
// 0

0 // K

OO

// T

OO

// OZdef
// 0.

Now K is a coherent OZdef -submodule of Jdef and therefore the definabilization of an
algebraic K ⊂ J by Theorem 3.1. Letting R′ = R/K, we have another algebraic space
(Z ét, R′) by Lemma 4.11. Note that T /Kdef ∼= OZdef is a section of R′def → OZdef

which is algebraic by Theorem 3.1 as it gives an isomorphism R′def ∼= OZdef⊕(J/K)def .
It is easy to check that the sheaf of rings T = R ⊕R′ OZ definabilizes to T , and by
Lemma 4.11, Z ′′ = (Z ét, T ) is algebraic.

Since (Zdef , T ) is the image of ϕ′ by construction, this concludes the proof of Propo-
sition 4.5. �

7Recall this means that R → OZ is a homomorphisms of sheaves of rings and that J with its
induced ideal structure is of square zero.

https://stacks.math.columbia.edu/tag/05ZT
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4.4. Proof of Proposition 4.6. First observe the following:

Lemma 4.12. For a smooth proper morphism of smooth irreducible complex analytic
spaces g : Y → Z with g∗OY = OZ , the irreducible component D of D(Y) containing
the fibers of g is canonically identified with Z together with g as the universal family.

Proof. We will show the induced holomorphic map Z → D is an isomorphism.
For any z ∈ Z, and recalling that Z, Y and Yz are smooth, we have on the one hand

that the normal bundle NYz/Y of Yz in Y is canonically identified with TZ,z ⊗ OYz ,
whereas on the other hand the tangent space of D(Y) at the point corresponding to
Ys is canonically identified with H0(Ys,NYz/Y). Since g∗OY = OZ , it follows that the
holomorphic map Z → D is an isomorphism on tangent spaces. As Z is smooth, it
follows that Z → D is an isomorphism on completed local rings.

It remains to show that Z → D is bijective on points. The injectivity is clear since
there is only one reduced compact analytic space of maximal dimension contained in
a given (necessarily irreducible) fibre of g.

It follows that Z → D is an open immersion with dense image. But the compact
complex analytic subspaces of Y that are mapped to a point by g form a closed an-
alytic subset of D(Y). Therefore, the compact complex analytic subspaces of Y that
correspond to points of D are mapped to a point by g. Letting V → D be the universal
family, it follows that the composition V → Y → Z of the evaluation map V → Y with
g factors through the Stein factorization of the projection V → D′ → D by the uni-
versal property of Stein factorization (see [25, p.214]). Since the resulting composition
D′ → Z → D is D′ → D, the map Z → D is surjective on points. �

It then follows from the lemma that for d such maps gj : Yj → Z with gj∗OYj = OZ ,
letting g : Y := tjYj → Z, the irreducible component of D(Y) containing the fibres of

g is canonically identified with Zd with universal family given by

d⊔
j=1

Z × · · · × Yj × · · · × Z → Zd

where Yj is inserted in the jth slot in the jth factor.
Returning to the setup of Proposition 4.6, let Xan → U ′ → Uan be the Stein

factorization of ϕan. Since U ′ → Uan is finite étale, by Lemma 2.60 and Proposition

2.4 this diagram is the analytification of a diagram Xdef ϕ′−→ U ′ ν−→ Udef , as ϕ′ is
obtained by taking connected components of ϕ on a definable cover of U .

Let H be the component of Hilb(X) which contains the general fiber of Xdef → U ,
and V ⊂ X×H the universal subscheme with projections p1 : V → X and p2 : V → H.
We therefore obtain a cartesian diagram in the analytic category

(5)

Xan V an

Uan Han.

ϕan pan2

β

By definable Chow (Theorem 3.3), the proposition will follow if this diagram is the
analytification of a diagram of definable complex analytic spaces and moreover if β is
a closed immersion. It will be sufficient to verify that this is the case on a definable
open cover of Hdef .

Let Ui be a definable simply-connected cover of U as in Remark 2.6, and let U ′i,1, . . . ,U ′i,d
be the d = deg(U ′/U) components of ν−1(Ui). For a fixed i, consider in Han the subset
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of compact analytic subspaces of Xan which meet each component ϕ′−1(U ′i,j). This is

naturally a definable open subset Hi of Hdef , since in the diagram

(6)

V def

Xdef Hdef

U ′

p1 p2

ϕ′

it is the intersection of p2

(
(ϕ′ ◦ p1)−1(U ′i,j)

)
for j = 1, . . . , d, and p2 is flat hence open.

Moreover, β(Uan) is contained in the union of the (Hi)an.
Let Xi,j := ϕ′−1(U ′i,j) and consider

Xi :=
d⊔
j=1

U ′i,1 × · · · × Xi,j × · · · × U ′i,d → U ′
i :=

d∏
j=1

U ′i,j .

This is the analytic family of subschemes of X obtained by taking a union of fibers of
ϕ′ : Xdef → U ′ over each of the open sets U ′i,j ⊂ U ′ for j = 1, . . . , d. In particular, it is
a flat analytic family of subvarieties parametrized by Hi, and by Lemma 4.12 and the
ensuing discussion, the horizontal morphisms in the resulting cartesian diagram

(7)

X an
i (V an)Hi

(U ′
i )an Han

i

pan2

are isomorphisms. The inverse of the top map is obtained by taking a union of base-
changes of connected components of the map pdef

1 : (V def)Hi → XUi and is definable.
Thus, by Proposition 2.55, (7) is the analytification of the right part of the diagram

XUi Xi (V def)Hi

Ui U ′
i Hi.

ϕUi

∼=

pdef2

∼=

The left part of the diagram consists of the natural maps and is obviously definable, and
Ui → U ′

i is a clearly closed immersion. The outer square analytifies to (5) restricted
to Hi, thus proving the claim. �

4.5. Algebraizing analytic maps from algebraic varieties. We conclude this
section with a brief discussion of some of the subtleties involved in algebraizing a
proper analytic morphism ϕ : Xan → S from an algebraic space X without tameness
hypotheses. For simplicity assume S and X are irreducible.

The Hilbert space part of the proof in section 4.2 that Propositions 4.5and 4.6
imply Proposition 4.2 shows that if Xan → S is flat with reduced irreducible generic
fiber, then ϕ identifies S with a component of the Hilbert space of X and is therefore
algebraic. This is the same argument used by Sommese to prove [49, Proposition III
and Remark III-C] (see Theorem 7.7).

On the other hand, it is not hard to produce examples of nonalgebraizable finite flat
maps ϕ : Xan → S. The following example shows this is possible even assuming the
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“equivalence relation” Rϕ := Xan×S Xan ⊂ Xan×Xan of ϕ is the analytification of a
(possibly non-reduced) algebraic subspace, albeit for S non-normal.

Example 4.13. Let X = A2 with coordinates (x, y). Let S ⊂ C4 with coordinates
x,A,B,C be cut out by A5 = B3, AC = B2 sin(x), BC = A4 sin(x). Let Xan → S be
the map (x, y) 7→ (x, y3, y5, y7 sin(x)). First, observe that

Rϕ = V (x1 − x2, y
3
1 − y3

2, y
5
1 − y5

2) ⊂ Xan ×Xan

where (x1, y1) and (x2, y2) are the coordinates on the two factors. Indeed, we can
think of Xan as defined in S × C (with y being the last coordinate) by the ideal
(A− y3, B − y5, C − y7 sin(x)), in which case Rϕ is cut out in Xan ×C (with y2 being
the last coordinate) by the ideal (y3

1 − y3
2, y

5
1 − y5

2, (y
7
1 − y7

2) sin(x)), but

y7
1 − y7

2 = −y2
1y

2
2(y3

1 − y3
2) + (y2

1 − y2
2)(y5

1 − y5
2).

On the other hand, the rational function y on X descends to a meromorphic function
on S but cannot be rational on S with respect to any algebraic structure, since it is
nonregular along infinitely many divisors.

It seems likely to the authors that for Xan,S normal analytic varieties (in particular
irreducible and reduced), a proper analytic morphism Xan → S with connected fibers
and an algebraic equivalence relation could still be non-algebraizable, but we have not
been able to construct such an example.

5. A quasi-projectivity criterion

Recall that by convention all the algebraic spaces that we consider are of finite type
over C.

Given a line bundle L on an algebraic space X, we prove in this section two criteria
ensuring that X is a scheme and that L is ample.

Proposition 5.1. Let X be an algebraic space and L a line bundle on X. Let S ⊂
Γ∗(X,L) :=

⊕
d≥0 Γ(X,Ld) be an integrally closed graded subalgebra that separates

points of X. Then there exist an integer d ≥ 1 and a finite-dimensional subspace
V ⊂ Sd such that the corresponding morphism X → P(V ∨) is defined everywhere and
is an immersion. In particular, X is a scheme and L is ample.

In the statement, the condition that S separates points means that for any two
distinct points P and Q in X there exists a section in some Sd that vanishes on P but
not on Q.

Proof. If V is a finite-dimensional subspace of Sd for some positive integer d, and BV
is the reduced support of the cokernel of the canonical morphism of coherent OX -
modules V ⊗C OX → Ld, then we have a canonical map ϕV : X − BV → P(V ∨) such
that ϕ∗VO(1) ' (Ld)|X−BV

.
We denote by Bd the intersection of the BV ’s over all finite-dimensional V ⊂ Sd.

Observe that Bd·d′ ⊂ Bd ∩Bd′ for every integers d, d′ ≥ 1 since S is a graded algebra.
Since by assumption the intersection of the Bd, d ≥ 1, is empty, the noetherianity of
X implies that there exists d ≥ 1 and a finite-dimensional V ⊂ Sd such that BV is
empty.

Given a finite-dimensional V ⊂ Sd for some d ≥ 1 such that BV is empty, let
RV ⊂ X×X denote the reduced equivalence relation induced by ϕV . Since S separates
points, the intersection of the RV ’s over all such V ’s is equal to the reduced diagonal,
therefore by noetherianity of X there exists V such that ϕV is defined everywhere and
injective on points.
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In particular, X is in fact a scheme since it admits a quasi-finite map to a scheme [50,
Tag 0417]. Moreover, by Zariski’s main theorem [50, Tag 082K], the map ϕV : X →
P(V ∨) factors as g ◦ i for g : X ′ → P(V ∨) finite and i : X → X ′ an open immersion.
Since the pull-back of an ample line bundle by a finite map or an immersion is still
ample, we get that L is ample.

Finally, i and g induce morphisms of graded algebras:⊕
d≥0

Symd V →
⊕
d≥0

Γ(X ′, g∗OP(V ∨)(d))→
⊕
d≥0

Γ(X,Ld).

Note that we can assume without loss of generality that i(X) is dense in X ′, so that the
morphism on the right is injective. Since by construction the composition of the two
morphisms is also injective, the morphism on the left is injective too. The morphism
g being finite, it follows that the extension⊕

d≥0

Symd V →
⊕
d≥0

Γ(X ′, g∗OP(V ∨)(d))

is finite. But S is integrally closed in
⊕

d≥0 Γ(X,Ld) by assumption, hence we get that⊕
d≥0 Γ(X ′, g∗OP(V ∨)(d)) is contained in S. �

In what follows, given a reduced algebraic space Y , we say that a projective log
smooth pair (X,D) is a log-resolution of Y if, setting X := X−D, one is given a proper
morphism X → Y which is birational in restriction to any irreducible component of Y .
Existence of log-resolutions can be proved as follows. Thanks to Chow’s lemma [50,
Tag 088U], there exists a complex projective scheme W , a dense open W ⊂ W and a
proper morphism W → Y which is an isomorphism in restriction to a dense open of
Y . A log-resolution is then obtained by first replacing W with its normalization and
then applying Hironaka desingularization Theorem to its irreducible components.

Setting 5.2. Let L be a line bundle on an algebraic space Y with the following
property. For every reduced closed subspace Z ↪→ Y and any log-resolution (X,D) of
Z, the pull-back of the restriction LZ extends as a nef and big line bundle LX on X,
and this extension is functorial with respect to morphisms of log-resolutions of Z.

Definition 5.3. Assume Setting 5.2. Given a closed subscheme Z ↪→ Y , we say a
section s of LmZ vanishes at the boundary if for some log-resolution (X,D) of Z the
section s pulls backs and extends to a section of Lm

X
(−D). We let Γvan(Z,LmZ ) ⊂

Γ(Z,LmZ ) denote the linear subspace of sections vanishing at the boundary, which is

finite-dimensional as Γvan(Z,LmZ ) injects into Γ(X,Lm
X

).

Note that if the condition on s holds for one log-resolution then it holds for any

log-resolution, since any morphism of log-pairs (X
′
, D′) → (X,D) which is birational

in restriction to any irreducible component of X induces an isomorphism of C-vector

spaces Γ(X,Lm
X

(−D) → Γ(X
′
, Lm

X
′(−D′), and any two log-resolutions are dominated

by a third-one. Moreover, s vanishes at the boundary if and only if sred does. Note
finally that the ring

⊕
n Γvan(Y,LnY ) is integrally closed in

⊕
n Γ(Y,LnY ), since a mero-

morphic section s which satisfies a monic polynomial relation with coefficients that
vanish at the boundary must also vanish at the boundary.

Theorem 5.4. Assume Setting 5.2. Then Y is a scheme and L is an ample line
bundle. Moreover, for every n � 1, the natural morphism Y → P(Γvan(Y, Ln)∨) is
defined everywhere and is an immersion.

Proof. The theorem is a consequence of the following more precise result, thanks to
Proposition 5.1:

https://stacks.math.columbia.edu/tag/0417
https://stacks.math.columbia.edu/tag/082K
https://stacks.math.columbia.edu/tag/088U
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Claim. For any closed, reduced zero-dimensional subscheme P ⊂ Y , the restriction
Γvan(Y, LnY )→ Γ(P,LnP ) is surjective for some positive integer n.

Observe that all the closed subschemes of Y satisfy the assumptions of Theorem
5.4, therefore by Noetherian induction we can assume that the claim is satisfied by
any closed subscheme distinct from Y . The case where Y has dimension zero being
trivial, we assume from now on that d = dimY ≥ 1.

Step 1. We first show we may assume Y is reduced. If Y is non-reduced, then we
can write Y as a thickening of a subspace Y0 by a square-zero sheaf of ideals I. By
the induction statement and Proposition 5.1 applied to Y0, we can pick an embedding
Y0 → Pm corresponding only to sections that vanish at the boundary. Thus, we can
find a section g ∈ Γvan(Y0, L

n
Y0

) such that (Y0)g is affine and contains P . Also, we
may pick vanishing sections s1, . . . , sk of LmY0 whose image span Γ(P,LmP ). It follows

that the images of the vanishing sections g · s1, . . . , g · sk of Ln+m
Y0

span Γ(P,Ln+m
P ).

Finally, since the open subschemes (Y0)g·si are affine, the vanishing sections (g · si)r
lift to vanishing sections of Lr(n+m) for some r ≥ 1 thanks to [29, Lemme 4.5.13.1].

Step 2. By Step 1, we assume Y is reduced. Take a log-resolution (X,D) of Y . Letting
X := X −D, the corresponding morphism f : X → Y is an isomorphism outside of a
dimension d− 1 subset.

Lemma 5.5. Let X,Y be algebraic spaces and f : X → Y a proper dominant mor-
phism. Then there is an algebraic subspace S ⊂ Y supported on the locus where f is
not an isomorphism, such that for any line bundle L on Y , a section s ∈ Γ(X, f∗L) is
in the image of Γ(Y, L) if and only if its restriction s|T ∈ Γ(T, f∗L|T ) is in the image
of Γ(S,L|S), where T = S ×Y X.

Proof. Let Q be the cokernel of the map OY → f∗OX and S its scheme-theoretic
support. Then we have a diagram

0 // OY

��

// f∗OX

��

// Q // 0

OS // f∗OT // Q // 0.

Tensoring by L and taking cohomology, the result follows. �

In the present context, let S ⊂ Y and T ⊂ X be the closed subspaces guaranteed
by the lemma, and let Z be the scheme theoretic union of S and P , that is the closed
subscheme of X defined by the intersection of the two ideal sheaves defining S and P .
Likewise, let W be the scheme theoretic union of T and f−1(P ).

Step 3.

Lemma 5.6. There is a (nonzero) effective divisor E in X containing W such that for
m� 1 and for every section s ∈ Γ(E,Lm

X
(−D)|E) whose restriction s|W ∈ Γ(W,LmW )

is in the image of Γ(Z,LmZ ), there is a section t ∈ Γvan(Y, LmY ) with s|E∩X = (f∗t)|E∩X .

Proof. Let A be an ample divisor on X. The line bundle LX is big on every component

by the assumptions, so for some n there is a section α of Ln
X

(−A) whose zero locus E0

contains W . For any r > 0, setting E = rE0 we thus have an exact sequence

H0(X,Lm
X

(−D))→ H0(E,Lm
X

(−D)|E)→ H1(X,Lm−nr
X

(−D + rA)).
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The line bundle LX is nef, so by Fujita vanishing ([24, Theorem 1], see also [38,
Theorem 1.4.35]) the rightmost group is zero—and thus the first map is surjective—
for some r and any m ≥ nr. Now apply the previous step. �

Step 4.

Lemma 5.7. There is a (nonzero) effective divisor E′ of X containing W such that

for some integer k and all m � 1, denoting E
′

the closure of E′ in X, we have that

for every section s ∈ Γ(E
′
, Lm

X
(−kD)|

E
′) whose restriction s|W ∈ Γ(W,LmW ) is in the

image of Γ(Z,LmZ ), there is a section t ∈ Γvan(Y,LmY ) with s|E′ = (f∗t)|E′.

Proof. Write E = E
′
+D′ where D′ is supported on the boundary and every component

of E
′

meets X. Set E′ = E
′ ∩X. Note that we have an exact sequence

0→ O
E
′(−D′)→ OE → OD′ → 0

and so Γ(E
′
, Lm

X
(−kD)|

E
′) injects into Γ(E,Lm

X
(−D)|E) for some fixed k and all m ≥ 0.

Now apply the previous step. �

Step 5. Let F ⊂ Y be the image of E′. Applying the induction step to F , it follows
that for some positive integer n the map Γvan(F,LnF )→ Γ(P,LnP ) is surjective. Pulling

an appropriate symmetric power of these sections back to E
′

and applying Step 4, we
see that these sections extend to vanishing sections of Y , as desired. �

6. Algebraicity and quasi-projectivity of period maps

In this section we prove the Theorem 1.1. For this section we work over the
o-minimal structure Ran,exp.

6.1. Period images. For background on period domains see for example [11]. Let Ω
be a pure polarized period domain with generic Mumford–Tate group G and Γ ⊂ G(Q)
an arithmetic lattice. By [3, Theorem 1.1], if Γ is neat then Γ\Ω has a canonical
structure of a definable complex analytic variety (in fact, even over Ralg). Since every
arithmetic lattice has a normal neat subgroup Γ′, using Proposition 2.63 we can equip
Γ\Ω with a definable complex analytic space structure as the categorical quotient of
Γ′\Ω by G = Γ/Γ′.

Corollary 6.1. Let X be a reduced algebraic space, and ϕ : Xan → (Γ\Ω)an a period
map as in the introduction8. Then ϕ (uniquely) factors as ϕ = ιan ◦fan for a dominant
map f : X → Y of algebraic spaces and a closed immersion ι : Y def → Γ\Ω of definable
complex analytic varieties.

Proof. Taking a resolution, it is enough to assume X is smooth, and by a theorem of
Griffiths [27, Theorem 9.5] we may then assume that ϕ is proper. By [3, Theorem 1.3],
ϕ : Xan → (Γ\Ω)an is the analytification of a map Xdef → Γ\Ω of definable complex
analytic varieties. Now apply Theorem 4.2. �

The uniqueness of the factorization is in the same sense as in Theorem 4.2 (see
Remark 4.3). In fact, we obtain a version of Corollary 6.1 over non-reduced bases,
but as the following example illustrates we must require an admissibility condition for
period maps on non-reduced bases.

8That is, a locally liftable map satisfying Griffiths transversality on the regular locus.
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Example 6.2. Let San = Γ\Ω be a modular curve with level structure so that it is
a smooth scheme, and let Y = S ×SpecC SpecC[ε]/(ε2) be the trivial thickening of it.
Given a global holomorphic derivation D on San we can define a map ϕ : Y an → San

extending the identity map via ϕ](s) = s+ εDs. Since S is affine we can pick D to be
non-algebraic, and then the map ϕ will be non-algebraizable.

Definability provides a natural notion of admissibility for which the conclusion of
Corollary 6.1 holds true for non-reduced bases. Moreover, Proposition 6.10 below
shows that period maps associated to variations coming from algebraic families are
automatically definable.

Definition 6.3. Let X be an algebraic space (possibly non-reduced). A definable
period map of X is a locally liftable map ϕ : Xdef → Γ\Ω of definable complex
analytic spaces such that for each irreducible component Y of X equipped with its
reduced structure the associated (locally liftable definable) map ϕY : Y def → Γ\Ω
satisfies Griffiths transversality—that is, the (locally defined) map TY def → ϕ∗Y TΩ on
the tangent sheaf TY = (Ω1

Y )∨ factors through the Griffiths transverse subbundle.

Note that we do not require ϕ to be Griffiths transverse in the nilpotent tangent
directions. Moreover, note that the definition is functorial in the sense that for any
definable period map ϕ : Xdef → Γ\Ω and any map f : Y → X, we have that f ◦ϕ is a
period map. Finally, for X integral, the Griffiths transversality condition is equivalent
to the usual condition on the regular locus Xreg ⊂ X.

The local liftability condition is equivalent to ϕ factoring through the stack quotient
[Γ\Ω] which is naturally a definable complex analytic Deligne–Mumford stack using the
proof of Proposition 2.63. There are no new subtleties in the definition of a definable
complex analytic Deligne–Mumford stack, but we do not pursue these ideas here. Note
that by Remark 2.6, ϕ is definably locally liftable if and only if it is analytically locally
liftable.

With these preliminaries, we now state a more general version of Corollary 6.1, to
be proven in the next subsection.

Theorem 6.4. Let X be an algebraic space and ϕ : Xdef → Γ\Ω a definable period
map. Then ϕ (uniquely) factors as ϕ = ι ◦ fdef for a dominant map f : X → Y of
algebraic spaces and a closed immersion ι : Y def → Γ\Ω of definable complex analytic
spaces.

Definition 6.5. We refer to an algebraic space Y with a closed immersion ι : Y def →
Γ\Ω of definable complex analytic spaces arising from the theorem as a definable period
image.

Note that for a proper definable period map Xdef → Γ\Ω Theorem 6.4 holds over
an arbitrary o-minimal structure.

6.2. Algebraicity of the Hodge filtration. We make the following definition along
the same lines as in the previous subsection:

Definition 6.6. Let Y be an algebraic space (possibly non-reduced). A definable
variation of Hodge structures on Y is a triple (VZ, F

•, Q) where VZ is a local system
VZ on Y def , F • is a definable coherent locally split filtration of VZ ⊗Z OY def satisfying
Griffiths transversality (in the same sense as Definition 6.3), and Q is a quadratic form
on VZ, such that (VZ, F

•, Q) is a pure polarized integral Hodge structure fiberwise.

As above, every local system on Y an is definable by definable triangulation, see
Remark 2.6. By the following lemma, if Γ is torsion-free the triple (VZ, F

•, Q) exists
universally on Γ\Ω as a definable analytic variety, although of course it is not in general
a variation as it does not satisfy Griffiths transversality.



O-MINIMAL GAGA AND A CONJECTURE OF GRIFFITHS 39

Lemma 6.7. Suppose Γ is torsion-free and equip VZ ⊗Z OΓ\Ω with its canonical de-
finable structure. Then the Hodge filtration F • of VZ ⊗Z OΓ\Ω is by definable coherent
subsheaves.

Proof. For any definable fundamental set Ξ ⊂ Ω, letting π : Ξ→ Γ\Ω be the restriction
of the quotient map, we must check that π∗F • ⊂ VZ ⊗Z OΩ is a definable coherent
filtration, but this is obvious as it extends algebraically to Ω̌. �

When Y carries a definable variation that’s clear from context, we denote by F •
Y def

the filtered Hodge bundle. If Y is smooth (in particular reduced) with a log smooth
compactification Y and the variation has unipotent monodromy at infinity, we know
that F •Y an := (F •

Y def )
an has a canonical algebraic structure F •Y . In fact, the ambient flat

bundle VZ ⊗Z OY an has a canonical extension V (the Deligne canonical extension [15],
uniquely determined by the condition that the connection have log poles with nilpotent
residues9), in which the filtration F •Y an extends as a filtration F •

Y
an by subbundles

(which we call the Schmid extension) as a consequence of the nilpotent orbit theorem
[46, Theorem 4.12]. By ordinary GAGA, the vector bundle V has a unique algebraic
structure V , as does the filtration.

We now show the following generalization of the first claim of the second part of
Theorem 1.1:

Theorem 6.8. For Y an algebraic space with a definable variation, F •
Y def is the de-

finabilization of a (unique) algebraic filtered bundle F •Y .

Proof. For a positive integer N , let YN denote an irreducible component of the finite
étale cover of Y trivializing N -torsion in the local system VZ. The monodromy of
YN is then a subset of IdimV + N ·MdimV (Z). For N ≥ 3, the eigenvalues of such
an element cannot be roots of unity except for 1, since if (ε − 1)/N is integral and
ε is a root of unity, we must have N ≤ 3. It follows that for the pullback variation
on YN , the monodromy at infinity, which is a priori only quasi-unipotent thanks to
a well-known result of Borel [46, Lemma 4.5], must in fact be unipotent. As F •

Y def

embeds in fdef
∗ F •

Y def
N

, by Theorem 3.1 we may assume that the monodromy at infinity

is unipotent.
Let Y0 be the reduced space of Y . Then Y0 can be resolved by successive blow-ups,

and performing the same blow-ups on Y we obtain X → Y whose reduced space X0 is
smooth. By taking some compactification and again blowing up to resolve the reduced
boundary, we obtain a compactification X of X whose reduced space is log smooth.

Lemma 6.9. Let X be a proper algebraic space, and D a closed subspace such that
the reduced spaces (X0, D0) are a log smooth pair, and such that X = X r D has
a definable variation with unipotent monodromy at infinity. There is a unique map

f : X̃ → X which is an isomorphism on reductions and over X, and minimal with

respect to the following property: F •
Xdef extends as a filtered vector bundle to X̃def and

restricts to the Schmid extension on the reduced space (X0)def . Moreover, F •
Xdef is

algebraic, F •
Xdef

∼= (F •X)def , and the restriction of F •X to X0 agrees with the canonical
algebraic structure on F •X0

.

Proof. The space X
def
0 admits a definable cover by polydisks P = ∆n such that Xdef

0

is locally P ∗ = (∆∗)m × ∆n−m. Let R be the restriction of the definable structure

sheaf of X
def

to P . Since an analytic space is Stein if and only if its reduction is Stein,

9The proof in the algebraic space case is the same as that of varieties, as it relies on the existence
and uniqueness of the analytic extension and ordinary GAGA.
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(P an,Ran) is a Stein space, and so we may and do choose lifts tk of the coordinate
functions zk on the reduction (by possibly shrinking further, these lifts are also defin-
able). Note that a surjective exponential map R → R× is still well defined with kernel
Zn.

Let qk be a choice of logarithm of tk for each k, definable on vertical strips, and
N1, . . . , Nm the nilpotent monodromy logarithms. We have a definable map ϕ :
(∆∗)m × ∆n−m → Γ\Ω, and so ψ = exp(−

∑
qkNk)ϕ lifts definably to Ω̌. Thanks

to Schmid’s nilpotent orbit theorem [46, Theorem 4.12]), the map on the reduction
extends to P .

Let i : X → X and j : P ∗ → P be the inclusions, and consider the sheaf j∗j
∗R as a

sheaf of rings on P . We have a pullback map of sheaves of rings ψ−1OΩ̌def → j∗j
∗R,

and we take T to be the subsheaf of rings of j∗j
∗R generated by its image and R.

We first claim that (P, T ) has the structure of a definable complex analytic space.
Consider the pullback f ∈ j∗j∗R(P ) of an algebraic coordinate on Ω̌. As (P an,Ran)

is Stein, we may assume the reduction f0 of f lifts to a definable section f̃ of R (after

shrinking P ), and as f − f̃ is nilpotent, f satisfies a monic polynomial. Thus, R[f ]
is a definable coherent R-module, and it follows that (P,R[f ]) is a definable analytic
subspace of (P,R)×C. Adjoining the pullbacks of all algebraic coordinates we conclude
that (P, T ) is a definable complex analytic space.

The subsheaf T ⊂ j∗j
∗R is uniquely determined as the “minimal thickening” of X

such that ψ extends, so we globally obtain a well-defined definable complex analytic

space X̃ = (X0, T ). By ordinary GAGA, (X̃ )an is the analytification of an algebraic

space X̃. As (X̃ )an is proper it admits a unique Ran-definable structure, and so we

must in fact have X̃ = (X̃)def .
We can pull back the Hodge filtration on Ω̌ to get a definable filtered vector bundle

F •
X̃

on X̃ extending F •
Xdef , and X̃ is locally determined as the minimal such extension

of X over X. The gluing follows because the filtration on Ω̌ is invariant under G(C).
Once again by ordinary GAGA, (F •

X̃
)an has a unique algebraic structure F •

X̃
which

must agree with the definable structure, F •
X̃
∼= (F •

X̃
)def . The construction is evidently

functorial with respect to morphisms X → X
′

which are isomorphisms on reductions,
and for X reduced agrees with the construction of the canonical algebraic structure,
whence the last claim. �

Note that X → Y may not be dominant, but its image Y ′′ is isomorphic to Y
on a dense open set U . Let Z be a sufficiently thick nilpotent neighborhood of the
complement of U and A = Y ′′ ×Y Z. Then Y is naturally the pushout

A

��

// Y ′′

��

Z // Y

As f : X → Y ′′ is proper dominant, F •
Y ′′def

embeds in f∗(F
•
X)def , so it is the definabi-

lization of some algebraic F •Y ′′ by Theorem 3.1. Since Z has smaller dimension than

Y , by induction F •
Zdef = (F •Z)def is algebraic, and F •

Y def is the definabilization of the
pushout of F •Y ′′ and F •Z . �

Proof of Theorem 6.4. Let X be an algebraic space and ϕ : Xdef → Γ\Ω a definable
period map. The proof of the previous theorem implies we can produce a proper
X ′ → X such that the definable period map of X ′ has unipotent monodromy at infinity
and X ′ → X is dominant on some dense open set U of X. Moreover, we get a partial

compactification X
′

which admits a definable proper period map ϕ : X
′def → Γ\Ω
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restricting to that of X ′. Applying Theorem 4.2 to X
′
, we obtain X

′ → Y ′ (proper)
dominant and Y ′def → Γ\Ω a closed immersion.

Let X ′′ be the image of X ′ in X, and let W be a sufficiently thick nilpotent neighbor-
hood of the complement of U such that X is the pushout of W and X ′′. By induction
we may apply Theorem 4.2 to W to obtain a dominant W → Z and a closed immersion
Zdef → Γ\Ω. The sought for Y is then the pushout of Z and Y ′ (which exists by [50,
Tag 07VX]). �

Thanks to Lemma 6.7, every definable period map yields a definable variation by
pulling back10, and we conclude this subsection with a converse.

Proposition 6.10. Let Y be an algebraic space. An analytic period map ϕ : Y an →
(Γ\Ω)an associated to a definable variation is definable.

Proof. Again we may produce a proper X → Y such that the pull back of the variation
to X has unipotent monodromy at infinity, has smooth reduced space, and for which
X → Y is dominant on a dense open set U of Y . Let X ′ be the image of X in Y , and
let Z be a sufficiently thick nilpotent thickening of the complement of U such that Y
is the pushout of X ′ and Z. By induction we may assume the claim for Z. It will be
enough to show the claim for X, for then by Proposition 2.55 we have it for X ′, hence
for the disjoint union of X ′ and Z and finally for Y by applying again Proposition
2.55 (note that the map from the disjoint union to the pushout is dominant, see for
example [50, Tag 07VX]).

Therefore, replacing Y with X, we may assume Y has smooth reduced space Y red.
From [3], there is a definable fundamental set Ξ for Γ such that the quotient map
Ξ → Γ\Ω realizes Γ\Ω as a definable complex analytic space as the quotient of Ξ
by a closed definable equivalence relation. As above, the reduced period map ϕred :
(Y red)an → (Γ\Ω)an is definable, so there is a definable open cover Yi of Y def such
that we can choose lifts Yi → Ξ which are definable on reduced spaces. But Ω̌ is a flag
variety and maps Yi → Ω̌ are clearly definable if and only if F•|Yi is definable, and
this implies Yi → Ξ is definable. �

Thus a definable variation on Y is equivalent to a definable period map.

Corollary 6.11. Let Y be an algebraic space. A period map associated to an algebraic
subquotient of a variation Rkf∗Z for a smooth projective family f : X → Y is definable.

Proof. In this case the filtered Hodge bundle is algebraic. �

6.3. The Griffiths bundle. Let as before Ω be a pure polarized period domain with
generic Mumford–Tate group G and Γ ⊂ G(Q) an arithmetic lattice. The Hodge
filtration F • and the Griffiths line bundle L :=

⊗
i detF i exist universally on Ω.

Moreover, L descends to Γ\Ω, but only as a Q-bundle in general due to the possible
torsion in Γ. For any algebraic space Y with a definable map Y def → Γ\Ω we denote
by LY def the pullback of the Griffiths Q-bundle.

Lemma 6.12. Let Y be a definable period image. Then LY def is the definabilization
of a (unique) algebraic Q-bundle LY .

Proof. By definition there is an algebraic spaceX with a definable period map factoring
through Y def such that f : X → Y is dominant. By a similar argument as in the proof
of Theorem 6.8, by possibly thickening Y we may assume f is proper. By Theorem
6.8 the Griffiths bundle on X is the definabilization of an algebraic bundle LX . Let

10Strictly speaking, pulling back from the stack. Alternatively, one can take a definable cover by
simply-connected opens, lift to Ω, pull back and glue.

https://stacks.math.columbia.edu/tag/07VX
https://stacks.math.columbia.edu/tag/07VX
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m be a positive integer such that LmY is a bona fide line bundle. As Lm
Y def embeds in

f∗(L
m
X)def , it follows from Theorem 3.1 that Lm

Y def is the definabilization of a (unique)
algebraic line bundle. �

6.4. Quasi-projectivity of period images. Let Y be a definable period image in
Γ\Ω. From the last subsection, we know that the Griffiths Q-bundle LY is algebraic.
In this subsection we apply Theorem 5.4 to prove the second part of Theorem 1.1.

Definition 6.13. Assume Y is a definable period image. For Y reduced, we say a
section s of LmY vanishes at the boundary if the following condition holds: for some

period map Xdef → Γ\Ω factoring through Y such that X → Y is generically finite,
X is smooth, and the variation on X has unipotent monodromy at infinity, s pulls
backs to a section of Lm

X
(−D) where (X,D) is a log smooth compactification of X and

LX is the Schmid extension [46] of LX to the Deligne canonical extension [15] of the
ambient flat vector bundle. We let Γvan(Y,LmY ) ⊂ Γ(Y,LmY ) denote the linear subspace
of sections vanishing at the boundary, which is finite-dimensional as Γvan(Y,LmY ) injects

into Γ(X,Lm
X

).

Note that as in Definition 5.3, the condition is independent of (X,D): any two
X,X ′ satisfying the conditions can be dominated by a third X ′′, and for the resulting

map f : (X
′′
, D′′) → (X,D) of log smooth pairs we naturally have an isomorphism

f∗LX → L
X
′′ . Once again, s vanishes at the boundary if and only if sred does, and

the ring
⊕

n Γvan(Y, LnY ) is integrally closed in
⊕

n Γ(Y,LnY ).
We are now in a position to state the main result of this section:

Theorem 6.14. Let Y be a definable period image. Then the Griffiths Q-bundle LY
is ample on Y . Moreover, sections of some positive power LnY which vanish at the
boundary realize Y as a quasi-projective scheme.

In the proof of the theorem, the positivity of the Griffiths bundle will be deduced
from the special case of variations over smooth bases, where we have the following:

Lemma 6.15. Let X be the complement of a normal crossing divisor D in a com-
pact Kähler manifold X. Consider a polarized real variation of Hodge structure V =
(VR, F

•, Q) over X with unipotent monodromies around D and let LX be as defined
above. Then LX is a nef line bundle. Moreover, LX is big if and only if the associated
period map is generically immersive.

Proof. Letting rp = rank(F p), observe that the Griffiths bundle of V appears as the
lowest nonzero piece in the Hodge filtration of the auxiliary polarized real variation
of Hodge structure V′ := ⊗p∈Z

∧rp V, and LX is the Schmid extension of the latter.
Therefore the canonical metric h on LX induced by the polarization Q has non-negative
curvature and extends as a singular metric on LX with zero Lelong numbers, see [23,
Theorem 1.1] or [10]. Therefore the line bundle LX is nef thanks to [16, Corollary 6.4].

In particular, LX is big if and only if c1(LX)dimX > 0, cf. [9, Theorem 1.2]. Denoting
by C1(LX , h) the Chern form of the hermitian line bundle (LX , h), it follows by apply-
ing [35, Theorem 5.1] to the auxiliary variation V′ that the integral

∫
X (C1(LX , h))dimX

is convergent and that we have the equality:

c1(LX)dimX =

∫
X

(C1(LX , h))dimX .

We conclude using that the real (1, 1)-form C1(LX , h) is strictly positive at a point
x ∈ X if and only if the period map is immersive at x, cf. [27, Proposition 7.15]. �
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Proof of Theorem 6.14. We first reduce to the case that Γ is neat. Take Γ′ ⊂ Γ be a
normal, neat subgroup of finite index `, with quotient G. Let Y be the period image
of X, and Y ′ the period image of the level cover of X ′ in Γ′\Ω. Then we have a
surjective, dominant, finite map π : Y ′ → Y , and a group action G on Y ′ such that π
is G-invariant. For any section σ of LkY ′ we claim that Nm(σ) :=

∏
g∈G gσ descends to

Y as a section of Lk`Y . It is enough to work on stalks, so we may assume LY and LY ′
are trivial. Let y ∈ Y , R = Oan

Y,y and S = Oan
Y ′,π−1(y). For f ∈ S, we have that f lifts

to a section fU on some (G-invariant) open neighborhood U of π−1(y). Now Nm(fU )
is in the image of OG(Γ′\Ω)an = O(Γ\Ω)an and thus has an image r ∈ R, whose image in

S is therefore Nm(f). We therefore have norm maps

Nm : Γ(Y ′, LkY ′)→ Γ(Y,Lk`Y )

for each k. Clearly the norm of a vanishing section in the sense of Definition 6.13 is
a vanishing section. Thus, if vanishing sections of Y ′ yield an embedding of Y ′ as a
quasi-projective scheme, then by taking norms and applying Proposition 5.1 the same
will be true of Y .

We therefore assume Γ is neat, and in particular that the restriction of the variation
to any subvariety of Y has unipotent monodromy at infinity. By the above remarks
and Lemma 6.15, the Schmid extension LX satisfies the conditions in Setting 5.2 and
the two notions of vanishing sections in Definitions 5.3 and 6.13 agree. Therefore, the
claim follows from Theorem 5.4. �

6.5. An ampleness criterion for the Hodge bundle. Often in applications the
Hodge bundle (namely the determinant of the deepest piece of the Hodge filtration) is
more accessible than the Griffiths bundle, and we prove in this section an ampleness
criterion for the Hodge bundle.

Let (VZ, F
•, Q) be a pure polarized integral variation of Hodge structure on a (re-

duced) separated algebraic space X. Using that the induced connection on VOX
:=

VZ ⊗Z OX satisfies Griffiths transversality, we get for every integer p an induced OX -
linear map of OX -modules ψp : TX → HomOX

(F p/F p+1, F p−1/F p).

Theorem 6.16. Let Fn be the lowest piece of the Hodge filtration, meaning that Fn 6= 0
but Fn+1 = 0. Assume that for any germ of a curve ϕ : ∆ → X, the O∆-linear map
of O∆-modules ϕ∗(ψn) : T∆ → Hom(ϕ∗(Fn), ϕ∗(Fn−1/Fn)) is injective. Then the line
bundle det(Fn) is ample on X.

Observe that for X smooth the condition in the theorem is satisfied when the OX -
linear map of OX -modules ψn : TX → Hom(Fn, Fn−1/Fn) is injective with image a
locally split OX -submodule of Hom(Fn, Fn−1/Fn). This last condition implies that
the period map is immersive, but the converse is not true.

The proof of Theorem 6.16 is parallel to the proof of Theorem 6.14 (replace Lemma
6.15 by the lemma below). Note that in fact the latter is a particular case of the
former since one easily check that Griffiths line bundle is the lowest piece of the Hodge
filtration of the auxiliary variation ⊗p∈Z ∧rp V where rp = rkF p.

Lemma 6.17. Let X be a smooth algebraic variety, X ⊂ X a smooth compactification
such that X − X = D is a normal crossing divisor. Let (VR, F

•, Q) be a polarized
real variation of Hodge structure over X with unipotent monodromies around D. Let
Fn
X

be the Schmid extension of the lowest piece of the Hodge filtration. Then the line

bundle det(Fn
X

) is nef. Moreover, det(Fn
X

) is big if and only if the OX-linear map of

OX-modules ψn : TX → HomOX
(Fn, Fn−1/Fn) is injective.
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Proof. The polarization Q permits to define a canonical positive definite Hermitian
metric h on det(Fn). Denote by C1(det(Fn), h) the Chern form of the hermitian line
bundle (det(Fn), h). It follows from the computation of the curvature of the Hodge
bundles (see [27, Theorem 5.2] or [46, Lemma 7.18]) that C1(det(Fn), h) is a positive
real (1, 1)-form on X, and C1(det(Fn), h) is strictly positive at a point x ∈ X if
and only if the OX -linear map of OX -modules ψn : TX → HomOX

(Fn, Fn−1/Fn) is
injective at x. With this fact at hand, the rest of the proof is parallel to the proof of
Lemma 6.15. �

7. Applications

We start by making some remarks related to the first two applications below. We
may more generally speak of period maps from a separated Deligne–Mumford stack
M of finite type over C as follows. We say a period map Man → Γ\Ω consists of
an étale atlas U → M by an algebraic space and a period map ϕ : Uan → Γ\Ω for
which the resulting two compositions (U ×M U)an ⇒ Γ\Ω are equal. For example, for
a smooth projective family π : X → M, the local system Rkπ∗Z will underly such a
variation. We say that the period map is either quasi-finite or Ran,exp-definable if this
is so for the period map on the atlas, and we say the image of the period map in Γ\Ω
is the image of the period map on the atlas (since any two atlases are the same up to
an etale cover, these definitions are independent of the atlas).

Recall that the definability condition is again automatic ifM is reduced [3, Theorem
1.3], and is satisfied for all period maps arising from geometry, by Corollary 6.11.

7.1. Borel algebraicity. The following is an analog of a theorem proven by Borel [8,
Theorem 3.1] (see also [14, Theorem 5.1]) for locally symmetric varieties:

Corollary 7.1. Let M be a separated Deligne–Mumford stack of finite type over C
admitting a quasi-finite Ran,exp-definable period map, and let Z be a reduced algebraic
space. Then any analytic map Zan →Man is algebraic.

Proof. Let U → M be a finite-type étale atlas. It is enough to algebraize the base-
change of the map Zan →Man to U along with the descent data, so we may assume
M = U . Let Y be the period image of the period map Udef → Γ\Ω. The composition
Zan → Uan → (Γ\Ω)an is a period map and thus by Corollary 6.1 it follows that
Zan → Y an is Ran,exp-definable. As U → Y is quasi-finite, Zan → Uan is also Ran,exp-
definable, and therefore by Theorem 3.3 algebraic. �

Applied to a separated Deligne–Mumford moduli stack of smooth polarized varieties
with an infinitesimal Torelli theorem, for example, Corollary 7.1 implies that any
analytic family of such varieties over (the analytification) of a reduced algebraic base
Z is in fact algebraic.

Corollary 7.2. For M as above, if M is in addition reduced, then Man admits a
unique algebraic structure.

7.2. Quasi-projectivity of moduli spaces. Recall by a well-known result of Keel–
Mori [34] that a separated Deligne–Mumford stack M of finite type over C admits a
coarse moduli space M which is a separated algebraic space of finite type over C.

Corollary 7.3. Let M be a separated Deligne–Mumford stack of finite type over C
admitting a quasi-finite Ran,exp-definable period map. Then the coarse moduli space of
M is quasi-projective.

Proof. The Griffiths bundle exists on the coarse moduli space M as a Q-bundle by
general results [36, Lemma 2]. Let U →M be a finite-type étale atlas by an algebraic
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space, so that we have a definable period map ϕ : Udef → Γ\Ω. Let Y be the period
image. We claim that the map U → Y factorizes through the coarse moduli space M
ofM. LetM′ →M and U ′ → U be the étale covers corresponding to a normal finite
index neat Γ′ ⊂ Γ with quotient G. Let Y ′ be the period image of U ′ in Γ′\Ω. Then as
the variation on U ′ is pulled back from Y ′, the map U ′ → Y ′ factorizes through M′.
As U = [G\U ′] and M = [G\M′], it follows that U → [G\Y ′] factorizes through M.
Therefore, the map U → [G\Y ′]→ Y factorizes through M .

Thus we get a quasi-finite map M → Y . By Theorem 6.14, LY is ample, so we have
an immersion Y → Pn. We then have a quasi-finite map M → Pn, which by Zariski’s
main theorem factors as an open immersion and a finite map. It follows that LM is
ample. �

Remark 7.4. The construction of [G\Y ′] as in the proof can be used to construct the
algebraic image of a period map in the quotient stack [Γ\Ω]. One could also develop
the theory of definable complex analytic Deligne–Mumford stacks, although we have
not pursued this level of generality.

Corollary 7.3 applies to any (separated finite-type) smooth Deligne–Mumford stack
that is the moduli stack of smooth polarized varieties X with an infinitesimal Torelli
theorem. By work of Viehweg [52], such results are known for varieties X with a semi-
ample canonical bundle, and so the case of Fano varieties is of particular interest. For
concreteness, we deduce some new results about moduli spaces of complete intersec-
tions, on which previous work has been done for hypersurfaces by Mumford [41] and
more generally by Benoist [5, 6].

We fix a collection of integers T = (d1, · · · , dc;n) with n ≥ 1, c ≥ 1 and 2 ≤
d1 ≤ · · · ≤ dc. Recall that a complete intersection of type T is a closed subscheme of
codimension c in Pn+c

C which is the zero locus of c homogeneous polynomials of degrees
d1, · · · , dc respectively. Let H be the Zariski-open subset of the Hilbert scheme of
Pn+c
C that parametrizes the smooth complete intersections of type T . Let MT be the

moduli stack of smooth complete intersections polarized by O(1), i.e. the quotient
stack [PGLn+c+1(C)\H].

When T 6= (2;n) Benoist proved that MT is a separated smooth Deligne-Mumford
stack of finite type [5, Theorem 1.6 and 1.7], and therefore has a coarse moduli space
MT . If in addition d1 = · · · = dc then MT is an affine scheme, [6, Theorem 1.1.i)],
while if c > 1 and d2 = · · · = dc, MT is quasi-projective by [6, Corollary 1.2]. Finally,
for T = (3; 2), MT is quasi-projective by [1].

Corollary 7.5. For all T 6= (2;n), the coarse moduli space MT is quasi-projective.

Proof. This follows from Corollary 7.3 and Flenner’s infinitesimal Torelli theorem [22,
Theorem 3.1], which applies for T 6= (3; 2) and T 6= (2, 2;n) for n even—in particular,
to all remaining cases. �

7.3. A factorization result. We prove here a result which, intuitively, says that all
interesting variations of Hodge structures on compact Kähler manifolds come from
algebraic geometry.

Theorem 7.6. Let X be a dense Zariski open subset of a compact Kähler manifold
X, and let (VZ,F•, Q) be a pure polarized integral variation of Hodge structure on X.
Assume that the monodromy of VZ is torsion-free (this is always achieved by going to
a finite étale cover of X) and that X is the biggest open subset of X on which VZ
extends.

Then there exist a proper surjective holomorphic map with connected fibres π : X →
Y for a normal quasi-projective variety Y such that (VZ,F•, Q) is the pull-back by π
of a polarized integral variation of Hodge structure on Y .
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Proof. By hypothesis, the monodromy Γ of (VZ,F•, Q) is torsion-free and the associ-

ated period map ϕ : X → Γ\Ω is proper. We denote by X
π−→ Y → Γ\Ω its Stein

factorization, so that Y is a normal analytic space and π : X → Y is surjective with
connected fibres. Since Γ is torsion-free, (VZ,F•, Q) descends to Y . To finish the proof,
it remains to prove that Y , a priori only an analytic space, is in fact a quasi-projective
variety. We cannot apply directly Theorem 1.1 since X is not assumed to be algebraic.
However one can proceed as follows. First observe that thanks to the following result
of Sommese Y admits a proper modification Y ′ → Y such that Y ′ is a dense Zariski
open subset of a compact Kähler manifold Y ′.

Theorem 7.7 (Sommese [49, Proposition III and Remark III-C]). Let X be a dense
Zariski open subset in a compact Kähler manifold X, Y be a complex analytic space
and π : X → Y be a surjective proper holomorphic map with connected fibres. Then
there exists X ′ (resp. Y ′) a dense Zariski open subset in a compact Kähler manifold

X
′

(resp. Y
′
) and a commutative diagram

X X
′

X X ′

Y
′

Y Y ′

π′

α′

π

α

π′|X′

β

where α : X ′ → X (resp. β : Y ′ → Y ) are proper modifications and π′, π′|X′ are

surjective proper maps with connected fibres.

The composition Y ′ → Y → Γ\Ω endows Y ′ with a polarized integral variation of
Hodge structure. Take Γ′ ⊂ Γ neat of finite index and let Y ′′ → Y ′ be the base-change
along Γ′\Ω→ Γ\Ω. If Y ′′ denotes a compactification of Y ′′ whose boundary is a normal
crossing divisor, the polarized integral variation of Hodge structure induced on Y ′′ has
unipotent monodromy at infinity. Thanks to Lemma 6.15 the associated Griffiths line
bundle LY ′′ is big, hence Y ′′ is Moishezon. It follows that the compact Kähler manifold

Y ′ is Moishezon, hence it is in fact projective algebraic. Since Y ′ → Y is the Stein
factorization of the composition Y ′ → Y → Γ\Ω, it follows now from Theorem 1.1 and
Riemann existence theorem that Y is quasi-projective. �
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3, 1999.
[52] E. Viehweg, Quasi-projective moduli for polarized manifolds, Ergebnisse der Mathematik und

ihrer Grenzgebiete (3), vol. 30, Springer-Verlag, Berlin, 1995.

B. Bakker: Dept. of Mathematics, Statistics, and Computer Science, University of
Illinois at Chicago, Chicago, USA.

Email address: bakker.uic@gmail.com

Y. Brunebarbe: Dept. of Mathematics, Univ. Bordeaux, Talence, France.
Email address: yohan.brunebarbe@math.u-bordeaux.fr

J. Tsimerman: Dept. of Mathematics, University of Toronto, Toronto, Canada.
Email address: jacobt@math.toronto.edu

https://arxiv.org/pdf/1703.00870v1
https://arxiv.org/pdf/1703.00870v1
https://stacks.math.columbia.edu

	1. Introduction
	1.1. Previous results
	1.2. Outline
	1.3. Acknowledgements
	1.4. Notation

	2. definable complex analytic spaces
	2.1. Definable topological spaces
	2.2. Sheaves on definable topological spaces
	2.3. Basic definable complex analytic spaces
	2.4. Definable Oka coherence
	2.5. Analytification
	2.6. Definable complex analytic spaces
	2.7. Reduced spaces
	2.8. Noetherian induction and the Nullstellensatz
	2.9. Finite push-forward
	2.10. Analytic factorization.
	2.11. Étale descent
	2.12. Definabilization
	2.13. Quotients by finite groups
	2.14. Previous related work

	3. Definable GAGA
	4. Definable images
	4.1. Main statement
	4.2. First reductions in the proof of Theorem 4.2
	4.3. Proof of Proposition 4.5
	4.4. Proof of Proposition 4.6
	4.5. Algebraizing analytic maps from algebraic varieties

	5. A quasi-projectivity criterion
	6. Algebraicity and quasi-projectivity of period maps
	6.1. Period images
	6.2. Algebraicity of the Hodge filtration
	6.3. The Griffiths bundle
	6.4. Quasi-projectivity of period images
	6.5. An ampleness criterion for the Hodge bundle

	7. Applications
	7.1. Borel algebraicity
	7.2. Quasi-projectivity of moduli spaces
	7.3. A factorization result

	References

