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Abstract. We extend the Ax–Schanuel theorem recently proven for Shimura vari-
eties by Mok–Pila–Tsimerman to all varieties supporting a pure polarizable integral
variation of Hodge structures. In fact, Hodge theory provides a number of concep-
tual simplifications to the argument. The essential new ingredient is a volume bound
for Griffiths transverse subvarieties of period domains.

1. Introduction

1.1. History. Motivated by arithmetic considerations, much recent work has focused
on functional transcendence, specifically on generalizations of the famous Ax–Schanuel
theorem on the exponential function to the context of hyperbolic uniformizations.
Indeed, the strategy of Pila and Zannier for proving the André–Oort conjecture is
reliant on a functional transcendence result dubbed the ‘Ax–Lindemann theorem’ by
Pila. The approach originates in the celebrated paper [Pil11], where Pila used his
counting theorem with Wilkie to establish the result in the case of the Shimura variety
X(1)n, for n ≥ 1.

The Ax–Lindemann theorem was finally established in full generality for Shimura va-
rieties in [KUY16] by Klingler, Ullmo, and Yafaev, and for mixed Shimura varieties by
Gao [Gao17]. Motivated by an analogous (though much more difficult to carry out) ap-
proach to the more general Zilber–Pink conjectures, Mok, Pila, and the second author
recently proved the full Ax–Schanuel conjecture for general Shimura varieties [MPT17].
In this paper we prove the Ax–Schanuel conjecture in the more general setting of vari-
ations of (pure) Hodge structures (formulated recently by Klingler [Kli17, Conjecture
7.5]). This is motivated largely by a recent approach of Lawrence–Venkatesh [LV18] to
proving analogs of the arithmetic Shafarevich conjecture for families of varieties with
a generically immersive period map, which seems to require the theorem we prove to
work in full generality.

1.2. Statement of Results. Let S = ResC/RGm be the Deligne torus. Given a pure
polarized Hodge structure h : S → Aut(HZ, QZ), the Mumford-Tate group MTh ⊂
Aut(HZ, QZ) is the Q-Zariski closure of h(S). The associated Mumford–Tate domain
D(MTh) is the MTh(R)-orbit of h in the full period domain of polarized Hodge
structures on (HZ, QZ). By a weak Mumford–Tate domain D(M) we mean the M(R)-
orbit of h for some normal Q-algebraic subgroup M of MTh.

Let X be a smooth algebraic variety over C supporting a pure polarized integral
variation of Hodge structures HZ. Let MTHZ be the generic Mumford–Tate group, and
let Γ ⊂MTHZ(Q) be the image of the monodromy representation π1(X)→MTHZ(Q)
after possibly passing to a finite cover. Let G be the identity component of the Q-
Zariski closure of Γ. Let D = D(G) be the associated weak Mumford–Tate domain
and ϕ : X → Γ\D the period map of HZ. The compact dual Ď of D is a projective
variety containing D as an open set in the archimedean topology.
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Consider the fiber product

X ×D W⊃
ϕ̃
//

��

D

π
��

X ϕ
// Γ\D.

In this situation, for any weak Mumford–Tate subdomain D′ = D(M′) ⊂ D such
that Γ ∩M′(Q) is Q-Zariski dense, ϕ−1π(D′) is an algebraic subvariety of X by a
result of Cattani–Deligne–Kaplan [CDK95], and we refer to such subvarieties as weak
Mumford–Tate subvarieties of X.

Theorem 1.1 (Ax–Schanuel for variations of Hodge structures). In the above setup, let
V ⊂ X × Ď be an algebraic subvariety, and let U be an irreducible analytic component
of V ∩W such that

codimX×Ď(U) < codimX×Ď(V ) + codimX×Ď(W ).

Then the projection of U to X is contained in a proper weak Mumford–Tate subvariety.

Theorem 1.1 for example implies that the (analytic) locus in X where the periods
satisfy a given set of algebraic relations must be of the expected codimension unless
there is a reduction in the generic Mumford–Tate group. See [Kli17] for some related
discussions.

1.3. Outline of the proof. We follow closely the strategy of proof in [MPT17]. There
are two serious complications that have to be addressed, which are as follows:

First, we need to find a suitable fundamental domain in D for the image of X in
Γ\D. This domain has to be definable in the o-minimal structure Ran,exp, and have
certain growth properties. In the Shimura case, this is done by using a Siegel set. In
our current setup this seems more difficult, due to the absence of toroidal co-ordinates.
Instead, we use Schmid’s theory of degenerations of Hodge structures to define our
fundamental domain, which also provides a new approach in the setting of Shimura
varieties. For more details on this, see §3.

Second, the proof of Theorem 1.1 requires a volume bound on Griffiths transverse1

subvarieties X ⊂ D analogous to those proven by Hwang–To for hermitian symmetric
domains [HT02]. We prove this in §2 and the result is as follows:

Theorem 1.2. There are constants β, ρ > 0 (only depending on D) such that for any
R > ρ, any x ∈ D, and any positive-dimensional Griffiths transverse closed analytic
subvariety Z ⊂ Bx(R) ⊂ D, we have

vol(Z) ≥ eβR multx Z

where Bx(R) is the radius R ball centered at x and vol(Z) the volume with respect to
the natural left-invariant metric on D.

In §4 we establish all the required comparisons between the various height and
distance functions that show up, and §5 completes the proof.

Acknowledgements. The first author was partially supported by NSF grant DMS-
1702149. We would like to thank the referee for helpful comments and for suggestions
which improved the readability of the paper.

1It is essential to restrict to Griffiths transverse subvarieties, as the general statement is false since,
for example, D contains compact subvarieties.
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2. Volume estimates

In this section we prove Theorem 1.2; we begin with some general remarks. Without
loss of generality, we may clearly assume D is a full period domain. Further, letting H
be the upper half-plane, D×H embeds isometrically into a period domain D′ of weight
one larger by tensoring with the weight one Hodge structure of an elliptic curve, and it
therefore suffices to consider D of odd weight. We make both of these assumptions for
the remainder of this section. For general background on period domains and Hodge
structures, see for example [CMSP03].

2.1. Hodge norms. A point x ∈ D yields a Hodge structure Hx on HZ polarized by
QZ . Recall that the Hodge metric hx(v, w) = QZ(v, Cxw) is postive-definite, where Cx
is the Weil operator of Hx. For any w ∈ HC we can define the norm-squared function
h(w) : x 7→ hx(w) := hx(w,w) on D. Note that g∗h(w) = h(g−1w) for g ∈ G(R).
Recall also that a choice of point x ∈ D naturally endows the Lie algebra gR of G(R)
with a weight zero Hodge structure gx polarized by the Killing form, and that the
holomorphic tangent space at x is naturally identified with g−x , where as usual we give

gp,−px grading p. We refer to the odd part of g−x as the horizontal directions, and to g−1,1
x

as the Griffiths transverse directions. We will use the same notation h(X) : x 7→ hx(X)
for X ∈ gC for norms with respect to the induced Hodge metric on gC, as well as for
the induced Hodge metrics on all tensor, wedge, symmetric powers etc. of gC.

The following lemma calculates the derivatives of the Hodge norm function h(w).
The computation can be expressed more compactly in terms of the connection opera-
tors on D, but we prefer a more elementary approach for ease of exposition.

Lemma 2.1. For Hodge-pure horizontal (in particular Griffiths transverse) directions
X ∈ g−x , we have

∂h(w)(X) = −2hx(Xw,w)

∂∂h(w)(X,X) = 2hx(Xw) + 2hx(Xw)

Proof. Note that in C[z, z]/(z2, z2) we have

exp(−zX) exp

(
zX + zX +

|z|2

2

(
[X,X]<0 + [X,X]>0

))
=

= (1− zX)

(
1 + zX + zX +

|z|2

2

(
[X,X]<0 + [X,X]>0

)
+
|z|2

2

(
XX +XX

))
= 1 + zX + |z|2

(
−XX +

1

2

(
[X,X]<0 + [X,X]>0

)
+

1

2

(
XX +XX

))
= 1 + zX +

|z|2

2

(
−[X,X] + [X,X]<0 + [X,X]>0

)
= 1 + zX +

|z|2

2

(
−[X,X]≥0 + [X,X]>0

)
which is in the parabolic stabilizing the Hodge flag at x. Thus, modulo (z2, z2) we
have

exp(zX).x = exp
(
M(zX, zX)

)
.x
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where M(zX, zX) = zX + zX + |z|2
2

(
[X,X]<0 + [X,X]>0

)
∈ g. Hence,

∂h(w)(X) =
∂

∂z
exp(zX)∗h(w)|z=0

=
∂

∂z
hx
(
exp

(
−M(zX, zX)

)
.w
)
|z=0

= hx(−Xw,w) + hx(w,−Xw)

= −2hx(Xw,w)

where we have used that X is horizontal and thus conjugate self-adjoint with respect
to hx. Likewise,

∂∂h(w)(X,X) =
∂2

∂z∂z
exp(zX)∗h(w)|z=0

=
∂2

∂z∂z
hx
(
exp

(
−M(zX, zX)

)
.w
)
|z=0

= hx(−Xw,−Xw) + hx(−Xw,−Xw)

+ Rehx(−[X,X]<0w,w) + Rehx(−[X,X]>0w,w)

+ Rehx((XX +XX)w,w)

= 2hx(Xw) + 2hx(Xw)

where we have used that [X,X]<0 = [X,X]>0 = 0 since X is Hodge pure, as well as
the conjugate self-adjointness of X. �

2.2. Distance functions. Let π : D → DW be the projection to the associated
symmetric space by taking the Weil Jacobian Hodge structure. We briefly recall the
basic definitions, and refer to [CMSP03, §3.5] for details.

For x ∈ D and the associated Hodge structure Hx on HZ, the Weil Jacobian Hodge
structure Hπ(x) is the (pure) weight one Hodge structure on HZ given by H1,0

π(x) = Hodd
x

and H0,1
π(x) = Heven

x . For each x ∈ D, we denote by hx the Hodge structure on gC
induced by the Weil Jacobian Hodge structure Hπ(x). Note that both Hodge structures
gx and hx induce the same Hodge metric on gC. Further, hx only has (−1, 1), (0, 0),

and (1,−1) parts, so that in particular h+
x = h1,−1

x . Given a basepoint x0 ∈ D, π is
identified with G(R)/V → G(R)/K, where V is the stabilizer of x0 under G(R) and
K is the unitary subgroup of G(R) with respect to hx0 . Note that K is a maximal
compact subgroup of G(R).

Let v0 be a unit-length generator of det h+
x0 in

∧dimDW hx0 , and define a function
ϕ0 : D → R by

ϕ0(x) := log hx(v0).

Evidently, ϕ0 factors through the projection π since hx = hπ(x). Moreover, if F0 is the
fiber of π containing x0, then by the KAK decomposition of G(R), ϕ0 in fact only
depends on F0 (and not on x0) since K fixes v0 up to a phase.

Lemma 2.2. i∂∂ϕ0 is strictly positive on Griffiths transverse tangent directions at x0.

Proof. Let X ∈ g−1,1
x0 , and note that X ∈ h−1,1

x0 ⊕ h1,−1
x0 since the parity operators on

gx and hx are the same. Let X−1,1, X1,−1 be the graded pieces of X with respect to
the Weil Hodge structure. Fixing a basis Yi of h+

x0 , we see that

ad(X) (Y1 ∧ · · · ∧ Yk) =
∑
i

(−1)i−1Y1 ∧ · · · ∧ ad(X−1,1)Yi ∧ · · · ∧ Yk.
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Since the Yi are a basis for h+
x0and ad(X−1,1)Yi ∈ h−x0 it follows that the vectors on

the right-hand side are all linearly independent, so if ad(X)v0 = 0 then ad(X)h+
x0 = 0.

Likewise, if ad(X)v0 = 0, then ad(X)h−x0 = 0. Thus, if i∂∂ϕ0(X,X) = 0 then by

Lemma 2.1 ad(X) kills hodd
x0 and in particular X, but this implies X = 0 [CMSP03,

Corollary 12.6.3(iii)]. �

Define the horizontal distance from x to x0, denoted dhoriz
0 (x), to be the geodesic

distance dDW
0 (y) between y := π(x) and y0 := π(x0) with respect to the natural G(R)-

invariant metric on the symmetric space DW . Let A be an R-split torus of G(R)
that is Killing-orthogonal to K. By the KAK decomposition of G(R), the distance

dDW
0 (y) and ϕ0(x) are both determined by dDW

0 (ay0) and ϕ0(ax0), respectively, for
a ∈ A. Since Ay0 is a flat totally geodesic submanifold of DW , and the restriction of
the invariant metric is a Euclidean metric in exponential coordinates, we have

(1) dDW
0 (ay0)2 ∼

∑
i

t2i

where a = exp(
∑

i tiTi) for some chosen basis Ti of the Lie algebra a of A.

The main result of this subsection is the following comparison. Note that both dhoriz
0

and ϕ0 vanish exactly on F0.

Proposition 2.3. dhoriz
0 (x)� ϕ0(x) +O(1) and ϕ0(x)� dhoriz

0 (x) +O(1).

Proof. Griffiths–Schmid [GS69, Theorem 8.1] show that a function closely related to
our ϕ0 is an exhaustion function of D. For DW , their function is given by

ϕ′0(gy0) := log hx0(gv0)

whereas our function is ϕ0(gx0) = log hgx0(v0) = log hx0(g−1v0). Their result implies
ϕ′0 → ∞ at the boundary of DW , which is equivalent to saying that hx0(gv0) goes to
∞ as g →∞ (in the sense of escaping any compact subset of G(R)). Since g →∞ is
equivalent to g−1 →∞, it follows that ϕ0 →∞ at the boundary of D.

Now, consider the decomposition

v0 =
∑
α

vα

by a-weights. Note that as A is Killing-orthogonal to K, a is odd and therefore self

adjoint with respect to hx0 . It follows then that the decomposition of
∧dimDW gC into

a-weight spaces is orthogonal with respect to hx0 , and thus for T ∈ a,

ϕ0(exp(T )v0) = log hx0(exp(−T )v0) = log
∑
α

e−2α(T )hx0(vα).

Since ϕ0 → ∞ at the boundary, it follows that there can be no T ∈ a\{0} such that
α(T ) ≥ 0 for all α with vα 6= 0. Thus, if Ξ ⊂ a∨ is the convex hull of the α for which
vα 6= 0, we must have 0 ∈ Ξ.

For α ∈ a∨ denote by eα : A→ R the function mapping exp(T ) to eα(T ), for T ∈ a.
Choosing a basis Ti of a, it then follows from the above that

log
∑
i

(
eT
∨
i (a) + e−T

∨
i (a)

)
� ϕ0 (ax0) +O(1)

and

ϕ0 (ax0)� log
∑
i

(
eT
∨
i (a) + e−T

∨
i (a)

)
+O(1)

which imply the claim by (1). �
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2.3. Multiplicity bounds. For any r > 0 and x0 ∈ D, denote by

Bϕ0(r) := {x ∈ D | ϕ0(x) < r}

and for any Griffiths transverse analytic subvariety Z ⊂ D of dimension d,

volϕ0(Z) :=
1

d!

∫
Z

(i∂∂ϕ0)d.

Proposition 2.4. Let ω be the positive (1,1) form associated to the natural left-
invariant hermitian metric on D.

(1) i∂∂ϕ0 ≥trans 0 and i∂∂ϕ0 = Otrans(ω);
(2) |∂ϕ0|2 = Otrans(i∂∂ϕ0).

In the statement of the proposition, the notations Otrans(·) and ≥trans mean the
bound holds in Griffiths transverse tangent directions.

Proof. By definition, ωx(X,X) ∼ hx(X). For horizontal X, tr(XX) ∼ hx(X) is larger
(up to a fixed positive constant) than the maximum eigenvalue of X∗hx with respect
to hx. For X ∈ g−x Hodge-pure and horizontal, by Lemma 2.1 and the fact that for
any function f we have

∂∂f(h(w)) = f ′∂∂h(w) + f ′′|∂h(w)|2

it follows that

∂∂ϕ0(X,X) = 2

(
hx(Xv0)

hx(v0)
+
hx(Xv0)

hx(v0)

)
− 4

∣∣∣∣hx(Xv0, v0)

hx(v0)

∣∣∣∣2
which is nonnegative by Cauchy–Schwarz (using that X is conjugate-adjoint) and
bounded (up to a fixed positive constant) by the maximal eigenvalue of X∗hx with
respect to hx, so (1) follows.

The second claim follows by Lemma 2.1 and the following lemma:

Lemma 2.5. There is a β > 0 (only depending on D) such that for any x ∈ D,

w ∈ HC, and X ∈ g−1,1
x ,

hx(w) · hx(Xw) + hx(Xw)

2
≥ (1 + β) |hx(Xw,w)|2 .

Proof. Let w =
∑

iw
i,n−i be the decomposition into Hodge components at x, so that

we have Hodge decompositions Xw =
∑

iXw
i,n−i, Xw =

∑
iXw

i,n−i.
Now let

a2
i = hx(wi,n−i), b2i−1 = hx(Xwi,n−i), c2

i+1 = hx(Xwi,n−i),

and we’ll also set bn = c0 = 0. Note that since X and X are adjoint we have

hx(Xw,w) =
∑
i

hx(Xwi+1,n−i−1, wi,n−i)

and

|hx(Xwi+1,n−i−1, wi,n−i)| = |hx(wi+1,n−i−1, Xwi,n−i)| ≤ min(aibi, ai+1ci+1).

Thus it is sufficient to show that(
n∑
i=0

a2
i

)(
n−1∑
i=0

b2i +

n∑
i=1

c2
i

)
≥ (2 + δ)

(
n∑
i=0

ai(ribi + sici)

)2
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for some choice of nonnegative ri, si with ri+si+1 = 1 for 0 ≤ i ≤ n−1. By the Cauchy–

Schwartz inequality, the left-hand side is greater than or equal to
(∑n

i=0 ai

√
b2i + c2

i

)2

.

Thus, it suffices to show for each i,

b2i + c2
i ≥ (2 + δ) (ribi + sici)

2 .

Note that x2 + y2 − 2(rx+ sy)2 is positive definite if (1− 2r2)(1− 2s2) > 4r2s2.

Lemma 2.6. There exist non-negative real numbers r0, s1, r1, s2, . . . , sn−1, rn−1, sn,
with ri + si+1 = 1 for 0 ≤ i ≤ n− 1, max(r0, sn) < 1√

2
, and (1− 2r2

i )(1− 2s2
i ) > 4r2

i s
2
i

for all 1 ≤ i ≤ n− 1.

Proof. Note that at ri = si = 1
2 we get exact equality, in that (1−2r2

i )(1−2s2
i ) = 4r2

i s
2
i .

Thus, we set rj = 1
2 + δj , where δ0 = 1

9 and δj+1 is sufficiently small in terms of δj to

ensure (1− 2r2
j+1)(1− 2s2

j+1) > 4r2
j s

2
j .

�

The statement now follows by picking the ri, si from the previous lemma, and setting
(2 + δ) to be the largest number such that x2 + y2 − (2 + δ)(rix + siy)2 is positive
semi-definite for 1 ≤ i ≤ n− 1 and 1− (2 + δ)s2

0 is nonnegative.
�

�

The previous proposition implies that the exponential growth of the ϕ0-volume of a
Griffiths transverse subvariety of D:

Proposition 2.7. There is a constant β > 0 such that for any R > 0 and any positive-
dimensional Griffiths transverse closed analytic subvariety Z ⊂ Bϕ0(R),

e−βr volϕ0(Z ∩Bϕ0(r))

is a nondecreasing function in r ∈ [0, R].

Proof. Let d = dimZ. Let ψ0 = −e−βϕ0 for β the constant from Lemma 2.5. We have

i∂∂ψ0 = βe−βϕ0
(
i∂∂ϕ0 − β|∂ϕ0|2

)
which is nonnegative in Griffiths transverse directions by the proof of Proposition
2.4(ii). By Stokes’ theorem we have

volϕ(Z ∩Bϕ0(r)) =

∫
Z∩Bϕ0 (r)

(i∂∂ϕ0)d

=

∫
Z∩∂Bϕ0 (r)

dcϕ0 ∧ (i∂∂ϕ0)d−1

= β−1eβr
∫
Z∩∂Bϕ0 (r)

dcψ0 ∧ (i∂∂ϕ0)d−1

= β−1eβr
∫
Z∩Bϕ0 (r)

i∂∂ψ0 ∧ (i∂∂ϕ0)d−1

= β−deβdr
∫
Z∩Bϕ0 (r)

(i∂∂ψ0)d

which implies the claim, as ψ0|Z is plurisubharmonic. �

Combining Proposition 2.7 with the comparison in Proposition 2.3, we are now
ready to prove Theorem 1.2:
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Proof of Theorem 1.2. Choose a fixed euclidean ball B centered around x0 with respect
to some coordinate system. By a classical result Federer (see for example [Sto66]), we

have an inequality of the form voleucl(Z∩B)� multx0 Z. Choose a fixed radius r0 such
that B ⊂ Bϕ0(r0). After possibly shrinking B, i∂∂ϕ0 is comparable to the euclidean
Kähler form on B in Griffiths transverse directions by Lemma 2.2, and combining this
with the above proposition we have

(2) volϕ0(Z ∩Bϕ0(r))� eβr volϕ0(Z ∩Bϕ0(r0))� eβr multx0 Z

for all r > r0.
Now, as the fibers of π : D → DW have fixed diameter with respect to the natural

left-invariant metric on D, there is ρ > 0 such that for any R > ρ we have Bx0(R) ⊃
Bhoriz
x0 (R), where Bx0(R) (resp. Bhoriz

x0 (R)) is the radius R ball centered at x0 with

respect to the metric on D (resp. the distance function dhoriz
0 ). By Proposition 2.3,

after possible increasing ρ, there is a constant C > 0 such that

(3) Bx0(R) ⊃ Bhoriz
x0 (R) ⊃ Bϕ0(CR)

for all R > ρ. Combining (3) and (2) with Proposition 2.4(1) yields the bound in
Theorem 1.2. �

3. Definable fundamental sets

Throughout the following, by definable we mean definable with respect to the o-
minimal structure Ran,exp. Let X be a smooth algebraic variety supporting a pure

polarizable integral variation of Hodge structures HZ, and let (X,E) be a log-smooth
compactification of X. For simplicity we may assume that HZ has unipotent local
monodromy and that the associated period map ϕ : X → Γ\D is proper, although the
argument carries through without making these assumptions. We may also assume
that the monodromy Γ is torsion-free.

The structure of X as an algebraic variety canonically endows it with the structure
of a definable complex analytic manifold, and the choice of compactification (X,E)
allows us to choose a definable atlas of X of finitely many polydisks ∆k × (∆∗)`. Note
that any polydisk chart P in such an atlas {Pi} can be shrunk to yield a new such
atlas, as the complement of

⋃
Pi 6=P Pi is contained in P and has compact closure in the

interior closure of P in X. Let

exp : ∆k ×H` → ∆k × (∆∗)`

be the standard universal cover, and choose a bounded vertical strip Σ ⊂ H such that
∆k ×Σ` is a fundamental set for the action of covering transformations. By the above
remark, after shrinking a polydisk we may always restrict to a region in ∆k×Σ` where
|zi| is bounded away from 1 on the ∆ factors and Im zi is bounded away from 0 on the
Σ factors.

Choose lifts ϕ̃ : ∆k ×H` → D of the period map restricted to each chart, and let F
be the disjoint union of ∆k × Σ` over all charts. We then have a diagram

(4) F
ϕ̃
//

exp

��

D

X

and F has a natural definable structure.
Note that the embedding D ⊂ Ď as a semialgebraic set gives D a canonical definable

structure.

Lemma 3.1. Both maps in (4) are definable.
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Proof. The claim for the vertical map is obvious. By the nilpotent orbit theorem, for
each polydisk ϕ̃ = ezN ψ̃ where ψ̃ = ψ ◦ exp for some extendable holomorphic function
ψ : ∆n → D (after shrinking the polydisks). The action of G(R) on D is definable,
and ez·N is polynomial in z, so ϕ̃ : ∆k × Σ` → D is definable. �

Fix a left-invariant metric hD on D and let Φ = ϕ̃(F).

Proposition 3.2. Let Z ⊂ Ď be a closed algebraic subvariety. For all γ ∈ G(Z),
vol(Z ∩ γΦ) = O(1).

Proof. Evidently it is enough to show vol(Z ′ ∩ Φ) = O(1) for all Z ′ in the same
connected component of the Hilbert scheme of Ď as Z. Further, it suffices to show
vol(ϕ̃−1(Z ′)∩∆k ×Σ`) = O(1) for each lifted polydisk chart ϕ̃ : ∆k ×H` → D, where
the volume is computed with respect to ϕ̃∗hD.

For any holomorphic horizontal map f : M → Γ\D we have f∗hD � κM where
κM is the Kobayashi metric of M . In particular, for M = ∆k × H` the metric κM is
the maximum over the coordinate-wise Poincaré metrics. After shrinking the polydisk,
the factors in ∆k ×Σ` have finite volume with respect to the Kobayashi metric of the
larger polydisk, and thus it is enough to uniformly bound the degree of the projection
of ϕ̃−1(Z ′) to any subset of coordinates.

By definable cell decomposition, for any definable subset L ⊂ RN and any coordinate
projection RN → RM , the number of connected components in the fibers of L is
bounded. Applying this to the universal family of ϕ̃−1(Z ′) ⊂ ∆k × Σ`, the claim
follows.

�

4. Heights

Fix a basepoint x0 ∈ Φ so that we have an identification D ∼= G(R)/V for a
compact subgroup V ⊂ G(R). Thinking of D as a space of Hodge structures on the
fixed integral lattice (HZ, QZ), as before we denote by hx the induced Hodge metric
on HC corresponding to x ∈ D.

Definition 4.1. For γ ∈ G(Z) let H(γ) be the height of γ with respect to the repre-
sentation ρZ : G(Z) → GL(HZ). For g ∈ G(R), we denote by ||ρR(g)|| the maximum
archimedean size of the entries of ρR(g), so that if γ ∈ G(Z) we have H(γ) = ||ρR(γ)||.

For any R > 0 let Bx0(R) ⊂ D be the ball of radius R centered at x0. The main
goal of this section is to establish the following:

Theorem 4.2. For any R > 0, every element γ of

{γ ∈ G(Z) | B0(R) ∩ γ−1Φ 6= ∅}

has height H(γ) = eO(R).

Define d0(x) = d(x, x0). We write f � g if |f | � |g|O(1) +O(1), and f � g if f � g
and g � f .

Lemma 4.3. Let λ(x, x′) be the maximal eigenvalue of hx with respect to hx′. Then

(1) For all g ∈ G(R) we have ||ρR(g)|| � ed0(gx0);

(2) λ(x, x′) � ed(x,x′).

Proof. Choose a maximal compact subgroup K ⊂ G(R) containing V and a left-
invariant metric on the associated symmetric space G(R)/K. Note that the diameters
of the fibers of G(R)/V → G(R)/K are bounded. Choosing a K-orthogonal split
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maximal torus A ⊂ G(R) and a basis Ai of the Lie algebra a of A, we have for any
g ∈ G(R) with KAK decomposition g = k1ak2√∑

i

t2i � d0(gx0) = d0(ax0) +O(1)�
√∑

i

t2i +O(1)

where a = exp(
∑

i tiAi). As

max
i

exp(|ti|) � ρR(g) � max
i

exp(|ti|)

part (1) follows.
For part (2), note that by G(R)-invariance we may restrict to the case x′ = x0.

Setting ρ = ρR for convenience, note that tr(ρ(g)∗ρ(g)) is a sum of the eigenvalues of
hgx0 with respect to hx0 , where ρ(g)∗ is the adjoint of ρ(g) with respect to hx0 . Thus
tr(ρ(g)∗ρ(g)) � λ(gx0, x0). As tr(ρ(g)∗ρ(g)) is the sum of the squares of the entries of
ρ(g), part (2) follows from part (1).

�

We define a proximity function of the boundary by the minimal period length:

µ(x) = min
v∈HZ\{0}

hx(v).

For any v ∈ HC we have log
hx0 (v)

hx(v) � d0(x) + O(1) by part (2) of Lemma 4.3, and so

we deduce the following:

Corollary 4.4. − logµ� d0 +O(1).

Proof. There is some v ∈ HZ\{0} with log µ(x) = log hx(v) and thus

− logµ = − log hx(v)� log
hx0(v)

hx(v)
+O(1)� d0(x) +O(1)

where we have used that hx0 is comparable to a standard Hermitian metric on HC, so
that hx0(v)� 1 for any v ∈ HZ\{0}. �

When restricted to the fundamental set Φ, we in fact have a comparison in the other
direction:

Lemma 4.5. For x ∈ Φ we have d0(x)� − logµ(x) +O(1).

Proof. We may assume F is a single ∆k×Σ`. After choosing logarithms N1, . . . , N` of
the local monodromy operators of the variation over ∆k× (∆∗)`, let vi be a fixed basis
of HZ descending to a basis of the multi-graded module associated to the ` weight

filtrations, where we take each grading centered at 0. Let w
(j)
i for j = 1, . . . , ` be the

weights of vi w.r.t. Nj . By [CKS86], for every permutation π and on each region

Sπ ⊂ ∆k ×H` of the form Im zπ(1) � · · · Im zπ(`) � 1 we have

hϕ̃(z)(vi) ∼
(

Im zπ(1)

Im z2

)w(1)
i

· · ·
(

Im zπ(`−1)

Im zπ(`)

)w(`−1)
i

· (Im zπ(`))
w

(`)
i .

where “∼” means “within a bounded function of.” As the set of weights is preserved
under negation, it follows that maxi hϕ̃(z)(vi) ∼ (mini hϕ̃(z)(vi))

−1, and so by Lemma
4.3,

d0(ϕ̃(z))� max
i

log hϕ̃(z)(vi)� − logµ(ϕ̃(z)) +O(1)

uniformly on every such region. The Sπ can be made to cover the region ∆k×Σ` after
shrinking Σ, and the result follows. �
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Proof of Theorem 4.2. Suppose x ∈ B0(R) ∩ γ−1Φ for γ ∈ G(Z). Putting together
Lemma 4.5 and Corollary 4.4 we have

d0(γx)� − logµ(γx) +O(1) = − logµ(x) +O(1)� d0(x) +O(1)

and since

d0(γx0) ≤ d(γx, γx0) + d(γx, x0) ≤ d0(x) + d0(γx)

we are finished by part (1) of Lemma 4.3. �

5. The proof of Theorem 1.1

The remainder of the proof follows the same general strategy as [MPT17]. There
are sufficiently many differences, however, that we include the necessary modifications.

Recall that D sits naturally as an open subset in its compact dual Ď which has the
structure of a projective variety. Let M be the Hilbert scheme2 of all subvarieties of
X × Ď with the same Hilbert polynomial as V . Moreover let V →M be the universal
family over M , with a natural embedding V ↪→ (X × Ď)×M .

Let VW be the base-change to W ×M . The action of Γ on X×D lifts to VW , and we
define VX := Γ\VW , which is naturally an analytic variety. Note that as M is proper,
VW is proper over W , and likewise VX is proper over X.

We endow VX with a definable structure as follows. Since V is algebraic it has an
induced definable structure. By Lemma 3.1, pulling back to F×M and quotienting out
by the definable equivalence relation F → X we obtain the desired definable structure
on VX .

Suppose now for the sake of contradiction that the conclusion of Theorem 1.1 is
false in the above setup. Moreover, suppose that among all counterexamples, dimX
is minimal, and subject to that assumption, codimV + codimW − codimU is as large
as possible, and subject to that assumption, that dimU is maximal.

Define a closed analytic subvariety T ⊂ VW consisting of all pairs (p, V ′) such that
V ′∩W has dimension at least dimU around p, and let T0 be the irreducible component
containing (p, V ) for some (hence any) point p ∈ U . Let Y := Γ\T0 ⊂ VX , which is
a closed definable analytic subvariety. Now, the projection q : Y → X is defineable
and proper, so the image Z is a definable closed complex analytic subvariety of X
by Remmert’s theorem, and therefore it is also algebraic by definable Chow [PS03]
(see also [MPT17]). Moreover, it contains prX(U), and thus it contains the smallest
algebraic variety containing prX(U), so we may assume Z = X.

Consider the family F of algebraic varieties parametrized by T0. Let ΓF ⊂ Γ be
the subgroup of elements γ such that a very general3 fiber of F is stable under γ. The
stabilizer of a very general fiber of F in Γ is then exactly ΓF . Let Θ be the identity
component of the Q-Zariski closure of ΓF in G.

Lemma 5.1. Θ is a normal subgroup of G.

Proof. Let W ′ be a connected component of W which intersects X ×Φ. Note that W ′

is stable under the monodromy group Γ of X. Clearly F is stable under the image ΓY
of π1(Y )→ π1(X)→ G(Z) which is finite index in Γ, and therefore ΓY is Zariski-dense
in G by André–Deligne [And92].

Each element of ΓY sends a very general fiber of F to a very general fiber, so by
the above remark ΓF = γ ·ΓF ·γ−1 for all γ ∈ ΓY . It follows that Θ is invariant under
conjugation by ΓY and hence by the Zariski closure of ΓY as well, which is all of G.

�

2Strictly speaking, a compactification of X should be chosen.
3Recall that very general means in the complement of countably many proper closed subvarieties.
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Proposition 5.2. Θ is the identity subgroup.

Proof. Without loss of generality V is a very general fiber of F , and hence is invariant
by exactly Θ. Since Θ is a Q-group by construction, it follows that G is isogenous
to Θ1 × Θ2 with Θ2 = Θ and we have a splitting of weak Mumford–Tate domains
D = D1×D2 with Di = D(Θi). Replacing X by a finite cover we also have a splitting
of the period map [GGK12, Theorem III.A.1]

ϕ = ϕ1 × ϕ2 : X → Γ1\D1 × Γ2\D2.

Moreover, ϕ1, ϕ2 satisfy Griffiths transversality (see the proof of [GGK12, Theorem
III.A.1]). Note that V ⊂ X ×D by assumption, and as V is invariant under Θ2 it is
of the form V1 ×D2 where V1 ⊂ X ×D1.

Consider the period mapX → Γ1\D1, the resultingW1 ⊂ X×D1, and the subvariety
V1 ⊂ X × D1. Let U1 be the component of V1 ∩ W1 onto which U projects. By
assumption the theorem applies in this situation, and as U1 cannot be contained in a
proper weak Mumford–Tate subdomain (for then U would as well), we must have

codimX×D1(U1) = codimX×D1(V1) + codimX×D1(W1).

Note that the projection W →W1 has discrete fibers, so dimW = dimW1 and dimU =
dimU1, whereas codimV1 = codimV , which is a contradiction if ϕ2 is non-constant.

�

It follows that V is not invariant by any infinite subgroup of Γ. The proof of Theorem
1.1 is then completed by the following lemma, which produces a contradiction:

Lemma 5.3. V is invariant by an infinite subgroup of Γ.

Proof. Consider the definable set

I := {g ∈ G(R) | dim (gV ∩W ∩ (X × Φ)) = dimU}.

Clearly, I contains γ ∈ Γ whenever U intersects X × γ−1Φ. We may assume 1 ∈ I,
and take x0 ∈ Φ the second coordinate of a point of intersection of U and X × Φ.

For any sufficiently large R > 0, consider the ball Bx0(R) centered at x0. On the
one hand, by Theorem 1.2 we have

vol (U ∩ (X ×Bx0(R)))� eβR.

U is covered with bounded overlaps by U∩(X×γ−1Φ) for γ ∈ G(Z), so by Proposition

3.2 it follows that I has eω(R) integer points4. On the other hand, by Theorem 4.2 each
of these points has height eO(R), and it follows by the Pila–Wilkie theorem [PW06,
Theorem 1.8] that I contains a real algebraic curve C containing arbitrarily many
integer points, in particular at least 2 integer points.

If cV is constant in c ∈ C, then V is stable under C · C−1. Since C contains at
least 2 integer points, it follows that V is stabilized by a non-identity integer point,
completing the proof (since Γ is torsion free). So we assume that cV varies with c ∈ C.
Note that since C contains an integer point that ϕ̃(cV ∩W ) is not contained in a weak
Mumford-Tate subdomain for at least one c ∈ C, and thus for all but a countable
subset of C (since there are only countably many families of weak Mumford–Tate
subdomains).

We now have two cases to consider. First, suppose that U ⊂ cV for all c ∈ C. Then
we may replace V by cV ∩ c′V for a generic c, c′ ∈ C and lower dimV , contradicting
our induction hypothesis on dimV − dimU .

4Recall that for a function f(R), saying f(R) = ω(R) means that for some positive constant δ > 0
we have f(R) ≥ δR.
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On the other hand, if it is not true that U ⊂ cV for all c ∈ C then cV ∩W varies
with C, and so we may set V ′ to be the Zariski closure of C · V . This increases the
dimension of V by 1, but then dimV ′ ∩W = dimU + 1 as well, and thus we again
contradict our induction hypothesis, this time on dimU . This completes the proof.

�
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