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Abstract. We give a Hodge-theoretic proof of Hwang’s theorem, which says that if
the base of a Lagrangian fibration of an irreducible holomorphic symplectic manifold
is smooth, it must be projective space.

1. Introduction

Let X be an irreducible holomorphic symplectic manifold of dimension 2n, and let
f : X → B be a Lagrangian fibration over a base of dimension n. In this note, we
reprove the following well-known result of Hwang [Hwa08].

Theorem 1.1 (Hwang). Let f : X → B be a Lagrangian fibration of an irreducible
holomorphic symplectic manifold of dimension 2n. If B is smooth, then B ∼= Pn.

The proof that we present below is inspired by Hwang’s original argument, but per-
haps clarified by the consistent use of Hodge theory, especially the theory of variations
of Hodge structure. There are two other important inputs. The first is the following
enhancement of Mori’s characterization of projective space, due to Cho, Miyaoka, and
Shepherd-Barron [CMSB02] and Kebekus [Keb02].

Theorem 1.2 (Cho–Miyaoka–Shepherd-Barron, Kebekus). Let Y be a uniruled smooth
projective variety and suppose there is a dense Zariski open subset Y ◦ ⊆ Y such that ev-
ery nonconstant rational curve g : C → Y meeting Y ◦ satisfies −deg g∗ωY ≥ dimY +1.
Then Y is isomorphic to projective space.

The second input is a result of Voisin [Voi18] about the variation of Hodge structure
on the first cohomology of the fibers of a Lagrangian fibration. Let B◦ ⊆ B be the open
set over which the Lagrangian fibration f is smooth, and f◦ : X◦ → B◦ the base change
of f to B◦. It is known that the discriminant locus D = B \B◦ is a nonempty divisor.
We denote by V = R1f◦

∗QX◦ the polarized variation of Hodge structure of weight 1 on
B◦; by V the underlying flat vector bundle; by ∇ the Gauss-Manin connection on V;
and by F 1V = f◦

∗Ω
1
X◦/B◦ the Hodge bundle of type (1, 0).

Theorem 1.3 (Voisin). V ⊗ R is irreducible as a real variation of Hodge structure.

The anticanonical degree of a curve (as well as its deformation theory) is linked to the
variation V since contraction with the symplectic form yields a natural isomorphism
TB◦ ∼= F 1V. Work of Matsushita [Mat05] extends this to an isomorphism between
TB and the “canonical extension” of F 1V in codimension one, and this will be an
important ingredient in our approach.

It is known by [Mat99] that B is a Fano manifold (and therefore uniruled). The
strategy is to assume the condition in Theorem 1.2 is not satisfied, so that there is a low
degree rational curve meeting B◦, and conclude from this that: (1) the curve deforms
to cover B; and (2) the variation V must have a nontrivial fixed part when restricted to
C. We then obtain a nontrivial splitting of V on the universal family of curves and thus
on a finite cover of B. To finish, we show that this splitting descends to B◦, where it of
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course contradicts Theorem 1.3. In our approach, the first step is proved using a Hodge
module version of Matsushita’s result combined with a straightforward functoriality
property of Hodge modules to show that g∗TB is semi-positive (see Proposition 2.2)
and that its maximal trivial quotient comes from the fixed part of the variation (see
Proposition 2.4). As the low degree curve which is assumed to exist may a priori
not deform, it can intersect the discriminant divisor in its singular locus, and the
Hodge module perspective provides a version of Matsushita’s theorem that works in
higher codimension. The descent step is straightforward in the case that f is non-
isotrivial (using the result of [Bak22], see Remark 6.3), but we do not actually use
this. Instead, we prove the descent in general using a rather tricky argument which is
a reinterpretation of an argument from Hwang’s paper using Hodge theory to simplify
the steps. Note that the descent step must in some sense be subtle—in fact, it is the
most difficult part of our proof—as it is easy to construct examples where V splits off
a factor on a finite cover that is constant on a covering family of rational curves (see
Remark 7.1).

Remark 1.4. The recent preprint by Li and Tosatti [LT23] contains another proof of
Hwang’s theorem that follows the same overall strategy, but has a more analytic flavor.
Instead of Hodge theory, Li and Tosatti rely on the theory of special Kähler manifolds
[Fre99]. They use the curvature of the special Kähler metric on B◦ to show that the
restriction of TB to a rational curve of minimal degree is semipositive, and that any
trivial quotient of g∗TB actually comes from a subbundle that is flat with respect to
the Chern connection of the metric. For the descent step at the end of the proof,
however, they depend on one of the results from our paper.

Outline. In Section 2 we prove the results on the semipostivity of g∗TB and the
relation between the maximal trivial quotient and the fixed part of the variation. We
give two proofs: the first in the projective case is more geometric, using results of
Kollár; the second as a consequence of the functoriality of Hodge module extensions.
In Section 3 we make some general remarks relating subvariations to foliations on B. In
Section 4 we use the existence of a low degree curve to construct a nontrivial splitting of
the variation on a finite cover. In Section 5, we study the geometry of the subvarieties
swept out by connected components of the family of rational curves through a given
point. (For the sake of exposition, we reprove all the necessary results, which are due
to Araujo [Ara06] and Hwang [Hwa07], even though this makes the paper longer.) In
Section 6, we describe the main ingredient for descending the splitting to B, using
ideas from [Hwa08]. Finally, we prove Theorem 1.1 in Section 7.

Notation and terminology. By a rational curve g : C → B we always mean a
nonconstant morphism from C ∼= P1. If the image meets the open subset B◦, we
denote by g◦ : C◦ := g−1(B◦) → B◦ the restriction of g, and in general the superscript
“◦” always stands for objects that are related to B◦. We denote by VC := (g◦)∗V
the pullback of the variation, and likewise for any pullback. We typically use Roman
letters V,W to denote local systems and script letters V,W to denote the associated
flat vector bundles.

2. Restriction of the tangent bundle to rational curves

In this section, we use results from Hodge theory to analyze the splitting behavior
of the tangent bundle TB on rational curves in B that meet the smooth locus B◦ of
the Lagrangian fibration f : X → B. Here it will be more convenient to work with the
variation of Hodge structure on R2n−1f◦

∗QX◦ instead of the one on R1f◦
∗QX◦ . This

makes no essential difference, because the Hard Lefschetz theorem says that, after
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tensoring by R, the two variations are isomorphic up to a Tate twist by R(−n+1); the
isomorphism is induced by cup product with the (n− 1)-th power of a Kähler form on
X. We will therefore change the notation slightly, and—in this section only—use the
symbol V for the variation of Hodge structure on R2n−1f◦

∗QX◦ . The relevant Hodge
bundle is then FnV = Rn−1f◦

∗ωX◦/B◦ ; it is of course isomorphic to f◦
∗Ω

1
X◦/B◦ .

Our starting point is the following result by Matsushita [Mat05], which describes
the tangent bundle of B in terms of Hodge theory.

Theorem 2.1. There is an isomorphism Rn−1f∗ωX/B
∼= TB, whose restriction to B◦

is the natural isomorphism induced by the holomorphic symplectic form.

Proof. Matsushita proves that the natural isomorphism on B◦ extends to Rn−1f∗ωX
∼=

Ωn−1
B

∼= ωB⊗TB. Tensoring both sides by ω−1
B then gives the desired result. Matsushita

only states the theorem for projective X, but his proof carries over to the case where
X is a compact Kähler manifold. For an alternative proof, see [Sch23, §4]. □

Let g : C → B be a nonconstant morphism from C ∼= P1 whose image intersects B◦.
Like any vector bundle on P1, the pullback g∗TB decomposes as

g∗TB
∼= O(a1)⊕ · · · ⊕ O(an) (1)

for certain integers a1, . . . , an. Our first result is that g∗TB is semi-positive.

Proposition 2.2. The pullback g∗TB is semi-positive, in the sense that a1, . . . , an ≥ 0.

We will first present a geometric proof in the case when X is projective; afterwards,
we will give a Hodge-theoretic proof that also works when X is a compact Kähler
manifold. Let us denote by h : Y → C the base change of the Lagrangian fibration,
and let r : Ỹ → Y be a resolution of singularities of Y that is an isomorphism over the
preimage of C◦ = g−1(B◦). For dimension reasons, the composition h̃ = r ◦ h : Ỹ → C
is still flat of relative dimension n. We get a commutative diagram

Ỹ Y X

C B

r

h̃ h f

g

in which the square is Cartesian. The key step in the proof is the following lemma.

Lemma 2.3. There is a morphism of sheaves

Rn−1h̃∗ωỸ /C → g∗TB

that restricts to the natural isomorphism over the open subset C◦ = g−1(B◦).

Proof. Before giving the proof, we need to review a few facts about relative dualizing
sheaves and base change. Here we probably have to assume that X is projective
(although it is known by [Cam21] that Lagrangian fibrations are projective locally
in the analytic topology on the base). In this algebraic setting, a good reference for
duality theory is [Sta18, Tag ODWE]. To begin with, B is smooth and f is flat, and
so all fibers of f are local complete intersections in X and therefore Gorenstein. Since
f is proper and flat, it follows that the relative dualizing sheaf ωX/B is isomorphic to

ωX ⊗ f∗ω−1
B , and that the relative dualizing complex is ωX/B[n]. Moreover, in this

situation, the relative dualizing sheaf commutes with arbitrary base change.
Now we begin the proof. Flatness of f and the base change property for the relative

dualizing sheaf give us an isomorphism

g∗Rf∗ωX/B
∼= Rh∗ωY/C .

https://stacks.math.columbia.edu/tag/0DWE
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Since all the higher direct images Rif∗ωX/B are locally free (by Matsushita’s theorem),
we get in particular that

g∗TB
∼= g∗Rn−1f∗ωX/B

∼= Rn−1h∗ωY/C . (2)

Consider now the resolution of singularities r : Ỹ → Y . The trace map gives us a
morphism r∗ωỸ → ωY that is an isomorphism over the smooth locus of Y and therefore
injective. The induced morphism

Rn−1h̃∗ωỸ /C → Rn−1h∗ωY/C (3)

is of course still an isomorphism over C◦. We then get the desired morphism by
composing (3) and (2); it is clearly the natural isomorphism over C◦. □

We can now prove that g∗TB is always semi-positive.

Proof of Proposition 2.2. From Lemma 2.3, we get a short exact sequence

0 → Rn−1h̃∗ωỸ /C → g∗TB → Q → 0,

in which Q is supported on the finite set C \ C◦ and therefore a torsion sheaf. This

reduces the problem to the semi-positivity of Rn−1h̃∗ωỸ /C . Since h̃ : Ỹ → C is a

Kähler fiber space over a curve, this is the content of a classical result by Fujita [Fuj78].
Alternatively, one can argue using Kollár’s results [Kol86a] about higher direct images
of dualizing sheaves. Since C ∼= P1, we have

Rih∗ωỸ /C ⊗ O(−1) ∼= Rih∗ωỸ ⊗ O(1),

and this bundle has no higher cohomology by Kollár’s vanishing theorem (which applies
to any morphism from a compact Kähler manifold to a projective variety). But on P1,
this is only possible if Rih∗ωỸ /C is semi-positive. □

We also need to understand the trivial part in the decomposition (1), at least in the
case of generic rational curves. Let us therefore assume from now on that g : C → B
is an immersed rational curve that intersects the discriminant divisor D = B \ B◦

transversely. The preimage Y = X ×C B is then already smooth, and (2) gives us an
isomorphism

g∗TB
∼= Rn−1h∗ωY/C .

Suppose that in the decomposition (1), we have a1, . . . , ar = 0 and ar+1, . . . , an > 0.
In that case, the bundle g∗TB has a canonical trivial quotient

g∗TB → O⊕r
C .

On the open subset C◦ = g−1(B◦), we have a polarized variation of Hodge structure
of weight 2n− 1, whose underlying local system is R2n−1h◦∗QY ◦ ; here h◦ : Y ◦ → C◦ is
the restriction of h. Our next result identifies the maximal trivial quotient of g∗TB as
coming from the fixed part of the variation of Hodge structure on R2n−1h◦∗QY ◦ .

Proposition 2.4. The fixed part of the variation of Hodge structure on R2n−1h◦∗QY ◦

has rank exactly 2r, and the Hodge bundle of type (n, n − 1) of the fixed part projects
isomorphically to the maximal trivial quotient of g∗TB.

Proof. To simplify the notation, let us set VC = R2n−1h◦∗QY ◦ , and let us denote by VC

the underlying flat vector bundle, and by FnVC the Hodge bundle of type (n, n− 1).
Since h has relative dimension n, the restriction of Rn−1h∗ωY/C to the open subset C◦

is canonically isomorphic to FnVC . In fact, more is true. Let Ṽ>−1
C denote Deligne’s

canonical extension of the flat vector bundle VC ; it is uniquely characterized by the
condition that the connection on VC has logarithmic poles on Ṽ>−1

C and that the
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residues of the connection at each point of C \ C◦ have eigenvalues contained in the
interval (−1, 0]. With this notation, Kollár [Kol86a] proves that

Rn−1h∗ωY/C
∼= Ṽ>−1

C ∩ j∗(F
nVC), (4)

where j : C◦ → C is the inclusion.
The fixed part of VC is a Q-Hodge structure of type (n, n−1)+(n−1, n), and so its

dimension is an even number, say 2s. The fixed part then contributes a trivial sum-
mand of rank 2s to the canonical extension Ṽ>−1

C , and, due to (4), a trivial summand
of rank s to the bundle Rn−1h∗ωY/C . This gives r ≥ s. To prove that r = s, we need
to argue that any nontrivial morphism of the form

Rn−1h∗ωY/C → OC (5)

must come from the fixed part of VC . This is a straightforward computation with
duality. First, we observe that since C is a curve, the derived pushforward of the line
bundle ωY/C decomposes as

Rh∗ωY/C
∼=

n⊕
i=0

Rih∗ωY/C [−i]

in the derived category of coherent sheaves on C. (This kind of result is due to Kollár
[Kol86b] in general, but only needs elementary homological algebra in the case of
curves.) Consequently, Rn−1h∗ωY/C is a direct summand of Rh∗ωY/C [n− 1].

Grothendieck duality for the morphism h : Y → C yields

HomC

(
Rh∗ωY/C [n− 1],OC

)
∼= HomY

(
ωY/C [n− 1], ωY/C [n]

)
∼= H1(Y,OY ).

After substituting in the above formula for the direct image and remembering that
H1(C,OC) = 0 (because C ∼= P1), we get an isomorphism

HomC

(
Rn−1h∗ωY/C ,OC

)
∼= H1(Y,OY ).

Now Y is a compact Kähler manifold, and so by classical Hodge theory, the morphism
H1(Y,C) → H1(Y,OY ) is surjective. After some compatibility checking, it follows
that any morphism as in (5) comes about in the following way: at any point c ∈ C◦,
the restriction of (5) is the linear functional Hn,n−1(Yc) → C obtained by integration
against the restriction of a fixed class in H1(Y,C) to the fiber Yc = h−1(c). Since
restriction to the smooth fibers of h : Y → C determines a morphism of variations of
Hodge structure

H1(Y,Q)⊗R2n−1h◦∗QY ◦ → R2nh◦∗QY ◦ ∼= QC(−n),

we conclude (by the semi-simplicity of polarized variations of Hodge structure) that
the fixed part of R2n−1h◦∗QY ◦ must have rank at least 2r. □

Remark 2.5. It is possible that the construction with relative dualizing sheaves and
base change still works in the analytic setting, but we have not been able to find a
reference for the necessary technical results.

In the remainder of this chapter, we explain how one can modify the argument above
to make it work when X is just a compact Kähler manifold. The proof relies on a few
basic properties of Hodge modules [Sai88, Sai90]. Let M denote the polarized Hodge
module of weight dimB + (2n− 1) with strict support B, associated to the variation
of Hodge structure V = R2n−1f◦

∗QX◦ on B◦ by [Sai90, Thm. 3.21]. Let M denote
the (regular holonomic) left DB-module underlying M , and let F•M be its Hodge
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filtration. By Saito’s direct image theorem [Sai88, Thm. 5.3.1] (and [Sai91] for the
constant Hodge module on a compact Kähler manifold), we have F−n−1M = 0, and

ωB ⊗ F−nM ∼= Rn−1f∗ωX .

Together with Theorem 2.1, this implies that F−nM ∼= TB, and so we can also think
of the tangent sheaf as being part of a Hodge module on B. We may sometimes refer
to the coherent OB-module F−nM as the “Hodge module extension” of FnV.

There is an alternative description of the coherent sheaf F−nM using resolution of
singularities. Let µ : B̃ → B be a log resolution of the discriminant divisor D = B \B◦

that is an isomorphism over the open subset over which D is a divisor with normal
crossings, hence in particular over B◦. Let V denote the flat vector bundle underlying
the variation of Hodge structure V = R2n−1f◦

∗QX◦ , and let FnV = Rnf◦
∗ωX◦/B◦ be

the Hodge bundle of type (n, n − 1). As before, let Ṽ>−1 denote Deligne’s canonical
extension of the flat vector bundle V; this is the unique extension of V to a vector bundle
on B̃ on which the connection has logarithmic poles with residues having eigenvalues
in the interval (−1, 0]. By Schmid’s nilpotent orbit theorem, the Hodge bundle FnV
extends to a subbundle FnṼ>−1 = Ṽ>−1∩ j∗(F

nV), where j : B◦ → B̃ is the inclusion.
According to [Sai91, Thm. 2.4 and (2.2.2)], we then have

ωB ⊗ F−nM ∼= Rµ∗

(
ωB̃ ⊗ FnṼ>−1

)
. (6)

This morphism is an isomorphism over the open subset where D = B \B◦ is a divisor
with normal crossings.

We can now present the alternative proof of Proposition 2.2. Let g : C → B be a
rational curve meeting the smooth locus B◦ of the Lagrangian fibration. Let VC be
the variation of Hodge structure obtained by pulling back V = R2n−1f◦

∗QX◦ to the
open subset C◦ = g−1(B◦), and let MC be its extension to a polarized Hodge module
of weight dimC+(2n− 1) with strict support C. Let (MC , F•MC) be the underlying

filtered left DC-module. If we again write Ṽ>−1
C for Deligne’s canonical extension, then

for the same reason as above, we have

F−nMC
∼= FnṼ>−1

C , (7)

Since VC is a polarized variation of Hodge structure with quasi-unipotent local mon-
odromy on a curve, this vector bundle is known to be semi-positive [Pet84].1 Alter-
natively, using the notation from the proof of Proposition 2.2, we can observe that
FnṼ>−1

C
∼= Rn−1h∗ωỸ /C , which is semi-positive for the reason explained above. Either

way, to relate this semi-positivity to that of g∗TB, we need the following variant of
our earlier Lemma 2.3.

Lemma 2.6. There is a morphism of sheaves F−nMC → g∗
(
F−nM

)
that restricts to

the natural isomorphism over C◦ = g−1(B◦).

Proof. This kind of morphism is constructed in [Sch12, §13-14] in much greater gen-
erality. We present here a more elementary argument that reduces the input from the
theory of Hodge modules to a minimum. Recall from (6) that we have an isomorphism

Rµ∗

(
ωB̃ ⊗ FnṼ>−1

)
∼= ωB ⊗ F−nM.

The right-adjoint of the functor Rµ∗ is the exceptional inverse image functor µ! =
ωB̃ ⊗ µ∗ω−1

B ⊗Lµ∗. After applying this to the above isomorphism, we get a morphism

FnṼ>−1 → Lµ∗(F−nM
)

1Peters claims to be working with the canonical extension for the interval [0, 1), but his signs in
the formula for the Hodge norm are wrong, and so he should really be using the interval (−1, 0].
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in the derived category; since F−nM ∼= TB is locally free, this is a morphism of sheaves

FnṼ>−1 → µ∗(F−nM
)
. (8)

By construction, this morphism is an isomorphism outside the exceptional divisor of
µ, and therefore injective.

The rational curve g : C → B intersects the smooth locus B◦, and therefore lifts
uniquely to a rational curve g̃ : C → B̃, making the following diagram commute:

C B̃

B

g̃

g µ

After pulling back (8) along g̃, we obtain a morphism

g̃∗
(
FnṼ>−1

)
→ g∗

(
F−nM

)
.

The properties of the canonical extension give us a natural morphism Ṽ>−1
C → g̃∗

(
Ṽ>−1

)
that is an isomorphism over C◦. Consequently, we have a morphism

FnṼ>−1
C → g̃∗

(
FnṼ>−1

)
,

and after composing the two morphisms and remembering the identity in (7), we get
the desired morphism

F−nMC → g∗(F−nM).

By construction, it is an isomorphism over the open subset C◦ = g−1(B◦). □

This gives us an injective morphism from the semi-positive vector bundle F−nMC
∼=

FnṼ>−1
C into g∗(F−nM) ∼= g∗TB, and since this morphism is an isomorphism over C◦,

we can argue as before to finish the proof of Proposition 2.2.
Now suppose that the rational curve g : C → B intersects the discriminant divisor D

transversely. This means that it stays inside the open subset where F−nM is described
by the canonical extension, and because the intersection is transverse, the morphism

FnṼ>−1
C → g∗TB

is an isomorphism. Moreover, the fiber product Y = C ×B X is again smooth, and so
by (4), we have FnṼ>−1

C
∼= Rn−1h∗ωY/C , where h : Y → C is the base change of the

Lagrangian fibration. Proposition 2.4 therefore still applies in this setting.

3. Foliations and variations of Hodge structure

The purpose of this section is to prove a couple of small technical results that relate
the variation of Hodge structure on V = R1f◦

∗QX◦ to the theory of foliations. Here
f : X → B is again a Lagrangian fibration from a compact Kähler manifold X.

Recall that V denotes the underlying flat vector bundle, ∇ : V → Ω1
B◦⊗V the Gauss-

Manin connection, and F 1V = f◦
∗Ω

1
X◦/B◦ the Hodge bundle. We have F 1V ∼= TB◦ ,

with the isomorphism induced by contraction with the holomorphic symplectic form
σ ∈ H0(X,Ω2

X). We are going to need the following result by Freed [Fre99] that
describes the Lie bracket on the tangent bundle in terms of the connection.

Lemma 3.1. For any two holomorphic vector fields ξ, η ∈ TB◦, one has

∇ξ(η)−∇η(ξ) = [ξ, η].
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Proof. Let U ⊆ B◦ be an open subset and ξ, η ∈ H0(U,TB) be two holomorphic
vector fields. Since f◦ : X◦ → B◦ is a fiber bundle, we can lift them to smooth vector
fields ξ̃, η̃ ∈ A0

(
f−1(U),TX

)
; then [ξ̃, η̃] is a smooth lifting of the Lie bracket [ξ, η].

The isomorphism TB◦ ∼= F 1V takes the holomorphic vector field ξ to the fiberwise
cohomology class of the smooth (1, 0)-form

Ωξ̃ = int(ξ̃)(σ) ∈ A1,0
(
f−1(U)

)
,

obtained by contracting the vector field ξ̃ against the holomorphic symplectic form.
In these terms, the Gauss-Manin connection ∇ξ(η) ∈ H0(U,V) is given by taking the
fiberwise cohomology class of the smooth 1-form

int(ξ̃)(dΩη̃) ∈ A1
(
f−1(U)

)
.

Now we compute that, for any smooth vector field λ on f−1(U), one has(
int(ξ̃)(dΩη̃)− int(η̃)(dΩξ̃)

)
(λ) = dΩη̃(ξ̃, λ)− dΩξ̃(η̃, λ)

=
(
ξ̃ · σ(η̃, λ)− λ · σ(η̃, ξ̃)− σ

(
η̃, [ξ̃, λ]

))
−

(
η̃ · σ(ξ̃, λ)− λ · σ(ξ̃, η̃)− σ

(
ξ̃, [η̃, λ]

))
= σ

(
[ξ̃, η̃], λ

)
+ λ · σ(ξ̃, η̃),

using the coordinate-free formula for the exterior derivative, and the identity

0 = (dσ)(λ, ξ̃, η̃) = λ · σ(ξ̃, η̃) + ξ̃ · σ(η̃, λ) + η̃ · σ(λ, ξ̃)

+ σ
(
λ, [ξ̃, η̃]

)
+ σ

(
ξ̃, [η̃, λ]

)
+ σ

(
η̃, [λ, ξ̃]

)
.

This proves that int(ξ̃)(dΩη̃)− int(η̃)(dΩξ̃) = Ω[ξ̃,η̃] + d
(
σ(ξ̃, η̃)

)
, which then gives the

desired identity in the first cohomology of the fibers of the Lagrangian fibration. □

Remark 3.2. Since V1,0 ∼= TB◦ and V0,1 ∼= Ω1
B◦ , this also implies that the Higgs field

∇ : TB◦ ⊗ V1,0 → V0,1

is symmetric in its two arguments. This fact is a special case of the “cubic condition”
of Donagi and Markman [DM96]. The identity in Lemma 3.1 is actually equivalent to
the statement that the hermitian metric on B◦ induced by the Hodge metric on the
bundle V1,0 is a Kähler metric [Fre99].

The formula for the Lie bracket allows us to produce foliations from subvariations
of V , using the fact that F 1V ∼= TB◦ is the tangent bundle of B◦.

Lemma 3.3. Let p : U → B◦ be a holomorphic mapping that is locally biholomorphic,
and let W be a subvariation of Hodge structure of VU = p∗V . Then the distribution
given by the Hodge bundle F 1W ⊆ F 1VU is integrable, hence defines a foliation on U .

Proof. Since p is locally biholomorphic, we have F 1VU = p∗(F 1V) ∼= p∗TB◦ ∼= TU .
Because W is a subvariation of Hodge structure, the vector bundle W is preserved by
the Gauss-Manin connection on VU . From W ∩ F 1VU = F 1W, we get

[ξ, η] = ∇ξ(η)−∇η(ξ) ∈ H0(U,W) ∩H0(U,F 1VU ) = H0(U,F 1W)

for any two holomorphic vector fields ξ, η in the subspace H0(U,F 1W) ⊆ H0(U,TU ).
This proves that the distribution is integrable. □

We are also going to need the following simple fact about the integrability of the
sum of two integrable distributions.

Lemma 3.4. Let F and G be holomorphic foliations of rank d on a complex manifold,
whose sum F +G is a foliation of rank 2d. Take a leaf L of F , and form the union of
the leaves of G through points of L. Then the resulting submanifold is a leaf of F +G.
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Proof. Fix a point on L, and let S be the unique leaf of F +G through that point; then
S is a (locally defined) complex submanifold of dimension 2d, and since F ⊆ F + G,
it contains L. The restriction G|S is a foliation on S, and so S is locally the union of
leaves of G. For dimension reasons, those leaves of G|S that pass through points of L
fill up all of S, and this gives the desired result. □

Remark 3.5. The proof of the lemma shows that the construction is actually symmetric
in F and G: if we start from a leaf of G that is contained in S, and form the union of
the leaves of F through its points, we get the same submanifold S as before.

Lastly, we need to analyze the behavior of the tangent bundle at smooth points of
the discriminant locusD. It is known thatD is always a divisor in B [HO09, Prop. 3.1],
and that the local monodromy at any smooth point of D is always nontrivial [Hwa08,
Prop. 3.2]. Our proof does not actually rely on these two facts, but it is nevertheless
useful to keep them in mind. The next result says that if the local monodromy at
a smooth point of D has finite order, then it looks like the local monodromy in an
isotrivial elliptic fibration on a K3 surface.

Lemma 3.6. Suppose that, in a neighborhood of a given point b ∈ B, the discriminant
locus D is smooth of dimension n − 1, and that the local monodromy around D has
finite order. Then the local monodromy transformation has exactly two nontrivial
eigenvalues, which are a 4th or 6th root of unity and its complex conjugate.

Proof. Let U be a neighborhood of the point in question, and suppose that D ∩ U is
smooth and defined by a nontrivial holomorphic function h ∈ Γ(U,OB). Let VU denote
the restriction of the variation of Hodge structure V = R1f◦

∗QX◦ to this open subset.
By Matsushita’s theorem, the isomorphism TU◦ ∼= F 1V extends to an isomorphism

TU
∼= F 1Ṽ>−1

U

between the tangent bundle of U and the subbundle F 1Ṽ>−1
U = Ṽ>−1

U ∩ j∗(F
1VU ) of

the canonical extension of (VU ,∇) along the open embedding j : U◦ → U .
Since the monodromy transformation T has finite order, all of its eigenvalues are

roots of unity. Moreover, the weight filtration defined by the logarithm of the unipotent
part of T is trivial, and so the limiting mixed Hodge structure at b is a polarized Hodge
structure of type (1, 0) + (0, 1), and T is an automorphism of this Hodge structure
[Sch73, Thm. 6.16]. By choosing a basis that is adapted to the Hodge decomposition
and the eigenspace decomposition of T , we obtain a local frame

v1, . . . , vn, vn+1, . . . , v2n ∈ Γ
(
U, Ṽ>−1

U

)
for the canonical extension, with the property that

∇(vj) = αj
dh

h
⊗ vj ,

where α1, . . . , αn ∈ Q∩ (−1, 0]. As explained in [CK89, §2] (and in [SS22] for the case
of complex variations of Hodge structure), we can then find a collection of holomorphic
functions fj,k near the point b, such that the n sections

sj = vj +
2n∑

k=n+1

fj,kvk, j = 1, . . . , n,

define a local frame for the bundle F 1Ṽ>−1
U , after shrinking the open set U if necessary.

Because of the isomorphism TU
∼= F 1Ṽ>−1

U , we may also view s1, . . . , sn as holomorphic
vector fields on U that generate the tangent bundle TU .
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We now apply the formula for the Lie bracket in Lemma 3.1. It gives

[si, sj ] = ∇si(sj)−∇sj (si) ≡ αj
dh(si)

h
· sj − αi

dh(sj)

h
· si mod vn+1, . . . , v2n,

and because of the special shape of the sections s1, . . . , sn, the congruence is strong
enough to imply that

[si, sj ] = αj
dh(si)

h
· sj − αi

dh(sj)

h
· si. (9)

Now the left-hand side is again a holomorphic vector field on U , and so we deduce
that, for every pair of indices 1 ≤ i < j ≤ n, either αi = 0, or h divides dh(sj). This
last condition means that the vector field sj is tangent to the hypersurface D ∩ U .
Since not all the vector fields can be tangent to D, we conclude that at most one of
α1, . . . , αn can be nonzero; in fact, exactly one of them has to be nonzero, because the
monodromy transformation T is nontrivial.

To prove the remaining assertion, we observe that T is defined over Z and that
detT = 1. Therefore T has exactly two nontrivial eigenvalues, which are roots of
unity and complex conjugates of each other. By checking the possible values of Euler’s
ϕ-function, it is then easy to see that the two eigenvalues must be either 4th or 6th
roots of unity. □

Remark 3.7. Suppose that α1 ̸= 0 and α2 = · · · = αn = 0. The identity in (9) shows
that the n−1 holomorphic vector fields s2, . . . , sn are tangent to D and commute with
each other. This observation will play an important role later on.

Remark 3.8. By the same method, one can show that if T = Ts · e2πiN is the Jordan
decomposition of the monodromy transformation (with N2 = 0), then rkN ≤ 1, and
the limiting mixed Hodge structure contains a pure Hodge structure of weight 1 and
dimension ≥ 2n − 2. This is related to the classification of the general singular fiber
of a Lagrangian fibration in [HO09].

4. Deformation theory and the universal family of curves

We first explain why Proposition 2.2 and Proposition 2.4, together with some basic
deformation theory, imply that V splits off a factor universally computing the fixed
part of the variation of Hodge structure on any rational curve of minimal degree, at
least on a certain finite cover. We recommend Kollár’s book [Kol96] for the necessary
background on rational curves. Throughout, B is the smooth base of a Lagrangian
fibration, B◦ is the complement of the discriminant locus, and n = dimB.

Recall that ω∨
B = detTB is ample [Mat99]. Suppose g0 : C0 → B is a rational curve

meeting B◦ and of minimal anticanonical degree among such curves. We know from
Proposition 2.2 that g∗0TB is semi-positive; consequently, we must have

deg g∗0TB = d+ 1 (10)

for some integer d ∈ {1, . . . , n}. (If the degree is ≥ n + 2, then Mori’s Bend and
Break technique produces a rational curve of smaller degree through every point of
g0(C), contradicting minimality.) In view of Theorem 1.2, our goal will be to show
that d = n. As B is Fano, it is known that a very general rational curve of minimal
anticanonical degree deforms to cover B and moreover the pullback of the tangent
bundle decomposes as

g∗0TB
∼= O(2)⊕ O(1)⊕(d−1) ⊕ O⊕(n−d). (11)

By Proposition 2.4, the restriction of the variation of Hodge structure V to such a
curve therefore has a fixed part of rank exactly 2(n− d).
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We work with the (normalized) moduli space of rational curves RatCurvesn(B),
following Kollár’s notation [Kol96, II.2.5]. LetM be the open subset of RatCurvesn(B)
consisting of all rational curves of anticanonical degree d that intersect B◦ and belong
to the same connected component as g0. The universal family π : C → M is a P1-bundle
over M , and we denote by G : C → B the evaluation morphism. We use the notation
g : C → B for the individual curves in our family; here C is the fiber of π : C → M
over the point in question, and g = G|C .

For a point g : C → B in our moduli space M , we have an exact sequence

0 → TC
dg−→ g∗TB → Ng → 0

and the obstructions for M lie in H1(C,Ng). This group vanishes by Proposition 2.2,
and so M is smooth at such a point, of dimension

dimH0(C,Ng) = χ(C,Ng) = n+ d− 2.

Moreover, as g∗TB is globally generated and by the minimal degree condition, a generic
deformation of our initial curve g0 intersects the discriminant locus D = B \B◦ trans-
versely [Kol96, II.3.7]. Finally, for any g : C → B in the space M , and for any point
c ∈ C, we have a short exact sequence

0 H0(C,TC) TcC ⊕H0(C, g∗TB) Tc C 0
rc−dg τ

where rc is restriction to c. The map τ is naturally interpreted as the derivative of
the map ν : C × Hom(C,B) → C from the universal framed curve, and as the map
dgc + rc : TcC ⊕H0(C, g∗TB) → Tg(c)B is the derivative of the universal framed map
G ◦ ν [Kol96, II.3.4], it follows that the induced map Tc C → Tg(c)B is the derivative
of G at the point c ∈ C. Thus, again since g∗TB is globally generated, the evaluation
map G : C → B is smooth at every point of C.

Remark 4.1. The rational curves in our family are free, and so a generic curve g : C → B
is an immersion [Kol96, II.3.14], but not necessarily an embedding. Of course, we will
eventually show that B ∼= Pn and that M is the space of lines in Pn, but one has to
be careful not to make any unjustified assumptions during the proof.

Let us summarize the conclusions that we have drawn from Proposition 2.2 and the
deformation theory of rational curves.

Lemma 4.2. The moduli space M is smooth of dimension n + d − 2, the universal
curve π : C → M is a P1-bundle over M , and the evaluation morphism G : C → B is
smooth of relative dimension d− 1.

We denote by G◦ : C◦ → B◦ the base change to B◦, and by π◦ : C◦ → M the
projection to the moduli space. By our choice of d, any rational curve of anticanonical
degree d that meets B◦ must be irreducible and therefore cannot degenerate; this
implies that G◦ is proper.

Now the general idea is the following. Suppose that d < n, which means that the
variation of Hodge structure V on B◦ has a nontrivial fixed part on a general curve in
our family. We are going to argue that there is a finite covering space of B◦, constructed
from the Stein factorization of G◦ : C◦ → B◦, on which the pullback of V decomposes
in a nontrivial way. As a first step, we are going to construct such a decomposition on
the universal curve C◦ itself.

Consider the pullback VC = (G◦)∗V of the variation of Hodge structure to C◦, and
its direct image π◦

∗VC . By general theory, this is a constructible sheaf on M . Let
T ⊆ M be the (dense) Zariski open subset where this constructible sheaf is a local
system (and therefore a variation of Hodge structure) of rank 2(n − d); this includes
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all those curves g : C → B on which g∗TB decomposes as in (11). (In fact, we will
show later that this is true for every curve, and so actually T = M ; but this does not
matter for the time being.) By the semi-simplicity of polarized variations of Hodge
structure, we get a canonical splitting of rational variations of Hodge structure

VC ∼= V fix
C ⊕WC (12)

where V fix
C is the unique subvariation of Hodge structure that agrees with the pullback

(π◦)∗(π◦)∗VC on the open subset CT = (π◦)−1(T ); this exists because the fundamental

group of this open subset surjects onto that of the complex manifold C◦. Note that V fix
C

is itself a variation of Hodge structure of weight 1 and rank 2(n − d) that represents
the “universal” fixed part of the restriction to the fibers. In fact, the decomposition
in (12) descends to a finite covering of B◦, as we now explain.

The fiber G−1(b) over a point b ∈ B, or rather its image in the moduli space M ,
parametrizes all those rational curves in our family that pass through b. In the case of
projective space, the space of lines through a given point is irreducible, but this might
(a priori) not be the case here. We therefore consider the Stein factorization

C◦ Z◦ B

G◦

s◦ p◦

of the proper smooth morphism G◦ : C◦ → B◦; here s◦ is smooth with connected fibers
(of constant dimension d − 1), and p◦ is finite étale. Let s : Z → B be the unique
extension of this finite covering space to a finite morphism from a normal projective
variety Z. Because the universal curve C is smooth by Lemma 4.2, we get the following
commutative diagram:

C Z B

M

π

G

s p

(13)

Remark 4.3. The fact that every rational curve g : C → B in our family factors through
the finite morphism p : Z → B means that the fundamental group of C◦ does not
generate the fundamental group of B◦ if the degree of p is positive, unlike in the case
of lines on projective space.

We again summarize all the relevant facts about the commutative diagram.

Lemma 4.4. With the notation introduced above, the following is true:

(1) The variety Z is smooth at every point of the open subset s(C), and the map
p : Z → B is étale there.

(2) There is a splitting of variations of Hodge structure

VZ := (p◦)∗V = V fix
Z ⊕WZ (14)

of weight 1 that pulls back to (12).
(3) The decomposition in (14) induces a decomposition of the tangent bundle

Ts(C) ∼= T fix
s(C) ⊕ T pos

s(C)

on s(C), and the two summands define foliations of rank n− d respectively d.
(4) All fibers of π : C → M are tangent to the foliation T pos

s(C).
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Proof. (1) follows from the fact thatG : C → B is smooth. For (2), observe that because
C◦ and Z◦ are smooth, the composition π1(C◦

T ) → π1(C◦) → π1(Z
◦) is surjective; this

implies the claim. The restriction of p : Z → B to the open subset s(C) is étale, and so

Ts(C) ∼= (p∗TB)|s(C).

Because TB is the Hodge module extension of F 1V, it follows that Ts(C) is the Hodge

module extension of F 1VZ . The decomposition of the variation of Hodge structure
therefore induces a decomposition of TZ into a vector bundle of rank n − d and a
vector bundle of rank d. The two summands are foliations on s(C) by Lemma 3.3.

It remains to prove (4). By construction, the pullback of T fix
s(C) to a general curve

g : C → B in our moduli space is a trivial bundle of rank n− d. Since g∗TB is always
semipositive, it follows (by the deformation invariance of the degree) that the pullback

of T fix
s(C) is trivial for every curve in M . For degree reasons, TC

∼= O(2) must therefore

be contained in the pullback of the other summand, and so all curves in the universal
family are indeed tangent to the foliation T pos

s(C). □

5. Connected components of the family of rational curves

We are going to need two additional results about the connected components of the
family of rational curves through a given point. We keep the notation introduced in
(13). At least generically, the fibers of p : Z → B represent the different connected
components of the family of rational curves through a point. (This interpretation is
slightly handicapped by the fact that a generic rational curve in our family can a priori
have nodes.) Indeed, a point z ∈ Z◦ can be thought of as the point p(z) ∈ B◦, together
with the connected component s−1(z) of the fiber G−1

(
p(z)

)
; of course, the connected

component of the family of curves through b is really the image Mz = π(s−1(z)) in the
moduli space M . For any z ∈ Z, we denote by

Pz := s
(
π−1(Mz)

)
⊆ Z (15)

the locus in Z swept out by the curves in the given component.2 By construction,
z ∈ Pz. The following result, which is mostly due to Araujo [Ara06], shows that Pz is
generically a projective space.

Lemma 5.1. For any z ∈ Z◦, the following is true:

(1) The subvariety Pz ⊆ Z is isomorphic to Pd, and its normal bundle in Z is a
trivial bundle of rank n− d.

(2) At any point z′ ∈ Pz ∩ Z◦, the isomorphism

Tz′Z ∼= Tp(z′)B ∼= F 1V|p(z′) ∼= F 1VZ |z′

maps the tangent space Tz′Pz isomorphically to the fiber F 1WZ |z′.
(3) Two subvarieties Pz and Pz′ are either equal or disjoint.

Proof. Since G◦ : C◦ → B◦ is proper, it is clear that Pz is projective. Let us first show
that dimPz = d. Since π : C → M is a P1-bundle, the subvariety s−1(z) must be finite
over its image Mz in M (because otherwise G would be constant along the curve in
question). Therefore dimMz = d − 1 and dimπ−1(Mz) = d. Now observe that the
projection from π−1(Mz) to Pz is finite away from p−1(z). Indeed, if the fiber over
a point z′ ∈ Pz with p(z′) ̸= p(z) had positive dimension, we would get a nontrivial
family of rational curves through the two fixed points p(z) and p(z′), and by by Mori’s
Bend and Break technique, this would produce a rational curve through p(z) of smaller
anticanonical degree, contradicting our initial choice.

2This notation is different from Hwang’s notation in [Hwa08].
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By construction, we have Pz ⊆ s(C). From Lemma 4.4, we get a decomposition

Ts(C) ∼= T fix
s(C) ⊕ T pos

s(C),

and the summand T pos
s(C) is a foliation of rank d. Since Pz is a union of curves that

are tangent to this foliation, it follows that the tangent space to Pz at each point is
contained in the fiber of T pos

s(C). For dimension reasons, this means that Pz is smooth

and Tz′Pz = T pos
s(C)

∣∣
z′

for every z′ ∈ Pz, which gives (2). We also get

TPz
∼= T pos

s(C)
∣∣
Pz

and NPz |Z
∼= T fix

s(C)
∣∣
Pz
.

Moreover, any two leaves Pz and Pz′ are either equal or disjoint, proving (3).
Now let g : C → B be any curve in the subset Mz ⊆ M , and denote by i : C → Pz

the induced morphism to Pz. Because we already know that the restriction of T fix
s(C) to

every curve in M is trivial, we get

deg i∗TPz = deg i∗Ts(C) = deg g∗TB = d+ 1.

This means that there is a rational curve of anticanonical degree d + 1 through any
two points of Pz (namely the rational curves that sweep out the subvariety Pz′ for any
z′ ∈ Pz), and by our choice of d, these curves can obviously not degenerate. We can
therefore apply [CMSB02, Thm. 0.1] and conclude that Pz

∼= Pd and that the curves in
the subset Mz ⊆ M are exactly the lines through the point z ∈ Pz. Because p : Z → B
is étale on the open subset s(C), it also follows that

g∗TB
∼= i∗TPz ⊕ O⊕(n−d) ∼= O(2)⊕ O⊕(d−1) ⊕ O⊕(n−d),

and so the pullback of the tangent bundle of B actually has the same splitting behavior
as in (11) on every curve in the universal family.

Finally, the normal bundle NPz |Z is a vector bundle of rank n−d on Pz
∼= Pd whose

restriction to every line is trivial; by general facts about vector bundles on projective
space, it follows that NPz |Z is a trivial bundle of rank n− d, and (1) is proved. □

Remark 5.2. One can use the results above to show that the open subset s(C) ⊆ Z
is actually Pd-bundle over a smooth variety of dimension n − d, whose fibers are the
projective spaces Pz. The key point is that relevant Hilbert scheme of Z is smooth
of dimension n− d at the point corresponding to Pz, due to the fact that the normal
bundle of Pz in Z is trivial. For details, see [Ara06, Lem. 3.3].

The second result is a proposition proved by Hwang in his earlier paper [Hwa07].
As it plays an important role in our argument, we include the proof. First a lemma.

Lemma 5.3. Let z1, z2 ∈ Z◦ be two points. If p(Pz1) = p(Pz2), then Pz1 = Pz2.

Proof. Suppose that p(Pz1) = p(Pz2), and denote by P the normalization of this sub-
variety of B. Since Pzj ⊆ s(C), the induced morphism Pzj → P is a finite immersion,

and therefore a finite covering space. But Pzj
∼= Pd, and therefore P ∼= Pd; this is

simply connected, and so Pzj → P is an isomorphism. By composing one isomorphism
with the inverse of the other, we get an isomorphism between Pz1 and Pz2 . Under the
isomorphism Pzj

∼= Pd, any line in Pd determines a rational curve in B of anticanoni-

cal degree d + 1. Since every automorphism of Pd takes lines to lines, it follows that
π
(
s−1(Pz1)

)
= π

(
s−1(Pz2)

)
, and therefore Pz1 = Pz2 . □

The following result is a slight generalization of [Hwa07, Prop. 2.2].

Proposition 5.4. Let z1, z2 ∈ Z◦ be two points with p(z1) = p(z2) = b. If the subspaces

F 1WZ |z1 ⊆ F 1VZ |z1 ∼= F 1V|b and F 1WZ |z2 ⊆ F 1VZ |z2 ∼= F 1V|b
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have a nontrivial intersection in F 1V|b, then Pz1 = Pz2.

Proof. Since p : Z → B is étale at the point z1, we can find an open neighborhood
U ⊆ B of the point b, and and open neighborhood U1 ⊆ Z of the point z1, such
that p|U1 : U1 → U is biholomorphic. The pullback of WZ |U1 along the inverse of
this biholomorphic mapping therefore defines a subvariation of Hodge structure W1

of V |U , whose rank is 2d. After applying the same construction to the point z2, we
obtain another subvariation of Hodge structure W2 of V |U , also of rank 2d. Since the
two Hodge bundles F 1W1 and F 1W2 have a nontrivial intersection at the point b, the
intersection W = W1∩W2 must be a nontrivial subvariation. According to Lemma 3.3,
the intersection F 1W1 ∩ F 1W2 = F 1W is therefore a foliation of positive rank on U .
The leaf of the foliation through the point b is contained in both p(Pz1) and p(Pz2),
and so the intersection p(Pz1) ∩ p(Pz2) must have positive dimension.

As Pz → p(Pz) is always birational, we can therefore find a smooth projective curve
Y and two morphisms f1 : Y → Pz1 and f2 : Y → Pz2 such that p ◦ f1 = p ◦ f2. We
can clearly arrange that the image of Y passes through the point b. The following
commutative diagram shows the relevant morphisms:

Y Pz1

Pz2 B

f1

f2 p

p

From Lemma 5.1, we know that p∗TB|Pz
∼= TPz ⊕ O⊕(n−d), and that the tangent

bundle to Pz
∼= Pd is the restriction of the bundle T pos

s(C). Since the tangent bundle of

projective space is ample, the identity

f∗
1TPz1

⊕ O⊕(n−d) = f∗
2TPz2

⊕ O⊕(n−d)

inside the pullback of TB clearly implies that f∗
1TPz1

and f∗
2TPz2

are the same sub-

bundle. But this means that F 1WZ |z1 and F 1WZ |z2 are equal, as subspaces of F 1V|b,
from which it follows as above that p(Pz1) ∩ p(Pz2) has dimension d, and hence that
p(Pz1) = p(Pz2). We now reach the desired conclusion by applying Lemma 5.3. □

6. Controlling the ramification of the finite covering

After the results in the four preceding sections, the proof of Hwang’s theorem is
reduced to showing that the splitting in Lemma 4.4 descends toB◦ (where it contradicts
the irreducibility of V ). Our proof of this fact is a version of [Hwa08, §5], but becomes
simpler because everything is controlled by variations of Hodge structure. The crucial
step is to control the ramification of the finite morphism p : Z → B via the following
result.

Proposition 6.1. Let g : C → B be the rational curve corresponding to a general point
in the moduli space M . Then the base change of the finite covering space p◦ : Z◦ → B◦

along g◦ : C◦ → B◦ is a disjoint union of copies of C◦.

Let g : C → B be a generic rational curve (in the universal family C). Such a curve
intersects the discriminant locus D transversely (because all the rational curves under
consideration are free), and as Z is normal, the base change

C ×B Z Z

C B

p

g
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is a finite union of smooth projective curves, each with a finite morphism to C. Since
G : C → B factors through p : Z → B by construction, exactly one of these curves is
(the image of) C ⊆ C. Let p : R → C be one of the other components. If deg(R/C) = 1,
then p is an isomorphism, and so R◦ is isomorphic to C◦. In order to prove Proposi-
tion 6.1, we may therefore assume from now on that deg(R/C) ≥ 2; after several steps,
we will see that this assumption leads to a contradiction. The idea is the same as in
Hwang’s paper: to first reduce to the d = 1 case (so the curves in M don’t deform
with a fixed point), and then to show there is a deformation of C for which R → C
deforms trivially but for which constant sections deform along curves in the family M .
The condition deg(R/C) ≥ 2 then contradicts Proposition 5.4.

Lemma 6.2. If deg(R/C) ≥ 2, then the pullback of the variation of Hodge structure
V to R◦ is constant.

Proof. We use the superscript “◦” to denote the base change to the open subset B◦.
We have the following commutative diagram:

R◦ Z◦

C◦ B◦

p◦ p◦

g◦

We obtain two decompositions as variations of Hodge structure of VR := VZ |R◦ . One

decomposition VR
∼= V fix

R ⊕ WR comes from restricting (14) to R◦; the other comes

from pulling back VC = (g◦)∗V ∼= V fix
C ⊕WC along the map p◦ : R◦ → C◦. Note that

both WC and WR are variations of Hodge structure of rank 2d, where d is the integer
from (10). We now play the two decompositions off against each other.

Consider the intersection (g◦)∗WC ∩ WR, which is again a subvariation of Hodge
structure of VR. If it is nontrivial, then the intersection of the two Hodge bundles
(g◦)∗F 1WC and F 1WR is a vector bundle of positive rank on all of R◦. According to
Proposition 5.4, this gives us Pg̃(y) = P for every y ∈ R◦, where P is the projective
space containing our original curve. But this is clearly impossible. The conclusion is
that (g◦)∗WC and WR intersect trivially. This makes the composition

WR → VR → (p◦)∗V fix
C

of the inclusion and the projection injective. As V fix
C is a constant variation of Hodge

structure on C◦, it follows that WR is constant, too.

Now we claim that the intersection of the subvariations WR and (p◦)∗V fix
C is also

trivial. Otherwise, the Hodge bundle F 1WR contains a subbundle of positive rank
that is the pullback of a trivial bundle from C◦, which means that the two subspaces
F 1WR|y and F 1WR|y′ intersect inside F 1Vp(y), for any two points y, y′ ∈ R◦ such that
p(y) = p(y′). By Proposition 5.4, it follows that Pg̃(y) = Pg̃(y′), and as deg(R/C) ≥ 2,
this is clearly impossible. The conclusion is that, for dimension reasons,

VR
∼= WR ⊕ (p◦)∗V fix

C

is the sum of two constant variations of Hodge structure on R. □

Remark 6.3. Lemma 6.2 in particular implies there is a covering family of curves on
which V is isotrivial, which contradicts the main result of [Bak22] (and therefore proves
Proposition 6.1) unless the Lagrangian fibration is isotrivial. In the isotrivial case the
foliations all come from a flat structure on TB◦ , and are therefore easier to think about,
but we do not in fact use this reduction.

The next step is to show that d = 1.
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Lemma 6.4. In the above situation, we must have d = 1.

Proof. Because p : R → C is étale over C◦, it must ramify over at least one point
x ∈ C such that g(x) ∈ D. Being generic, g : C → B intersects the discriminant locus
D transversely, and so g(x) is a smooth point of D. The pullback of V to R◦ has trivial
monodromy (by Lemma 6.2), hence the Hodge structures do not vary from point to
point; as C◦ is quasi-projective, this implies that the Hodge bundle F 1VC is a flat
subbundle of VC . It also follows that the local monodromy of VC around the point x
has finite order; consequently, the local monodromy of V near g(x) has finite order as
well. According to Lemma 3.6, the monodromy transformation therefore has exactly
two nontrivial eigenvalues, and because the Hodge bundle F 1VC is a flat subbundle
of VC , it contains (in a punctured neighborhood of the point x) a subbundle of rank
n − 1 that is preserved by the monodromy transformation around x. Now if d ≥ 2,
then it follows as above that at any two points y, y′ ∈ R◦ with p(y) = p(y′) sufficiently
close to x, the two subspaces F 1WR|y and F 1WR|y′ intersect nontrivially. As this is
impossible (by Proposition 5.4), we conclude that d = 1. □

This reduces the problem to the case d = 1. The smooth morphism G : C → B now
has finite fibers, and so s : C → Z is an open embedding. We may therefore identify
the universal curve C with an open subset of Z for the remainder of the argument. We
have dim C = n and dimM = n− 1; because there is nothing to prove when n = 1, we
shall assume from now on that n ≥ 2.

Recall from Lemma 4.2 that p : Z → B is étale at every point of C. According to
Lemma 4.4, we have a decomposition of the tangent bundle

TC ∼= T fix
C ⊕ T pos

C (16)

into two foliations of rank n− 1 respectively 1, induced by the decomposition

VZ = V fix
Z ⊕WZ

of the variation of Hodge structure VZ = (p◦)∗V on Z◦. From the construction in (12),

it is clear that T fix
C is the pullback of a vector bundle of rank n − 1 from the moduli

space M , whereas T pos
C is tangent to the fibers of π : C → M . By comparing (16) with

the short exact sequence for the relative tangent bundle

0 → TC/M → TC → π∗TM → 0,

we deduce that T fix
C

∼= π∗TM and T pos
C

∼= TC/M .
Denote by g̃ : R → Z the morphism induced by p : R → B, as in the following

commutative diagram:

R Z

C B

g̃

p p

g

The intersection R∩ g̃−1(C) is a dense Zariski open subset of the curve R that contains
R◦. Under the projection π : C → M , which is proper, the image π(g̃(R) ∩ C) is a
quasi-projective curve inside the moduli space M .

Lemma 6.5. The morphism π ◦ g̃ : R ∩ g̃−1(C) → π(g̃(R) ∩ C) is an immersion.

Proof. Suppose to the contrary that y ∈ R ∩ g̃−1(C) is a branch point. Set z = g̃(y) ∈
g̃(R) ∩ C. This means that g̃(R) is tangent to the fiber Pz = π−1

(
π(z)

)
at the point

z. Since p : Z → B is étale there, we have TzZ ∼= Tp(z)B. Under this isomorphism,
the tangent space TyR maps isomorphically to Tp(z)C, and the tangent space TzPz is

isomorphic to T pos
C |z. By Lemma 6.2, the variation of Hodge structure (p◦)∗VC on R◦
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is constant. It therefore extends uniquely to a constant variation of Hodge structure VR

on the entire curve R, and both WZ |R◦ and (p◦)∗WC extend to constant subvariations
of rank 2. The condition that TzZ and TyR have the same image inside Tp(z)B means
that these two subvariations are equal at the point y. Being constant, they must then
be equal everywhere, and as usual, this is in contradiction with Proposition 5.4. □

We now investigate what happens when we deform the rational curve g : C → B.
Because π : C → M is a P1-bundle, we can choose a small open neighborhood M0 of
the point g : C → B in the moduli space M , say with M0 biholomorphic to an open
ball, such that π−1(M0) ∼= M0 × P1. The original rational curve is now a morphism
g : P1 → B, and the nearby subvarieties Pz are the different copies of P1. The following
diagram shows the relevant morphisms:

M0 × P1 B

M0

π

G

By restricting the decomposition in Lemma 4.4 to the open subset M0×P1, we obtain
a decomposition of the tangent bundle

TM0×P1
∼= T fix

M0×P1 ⊕ T pos
M0×P1

in which the two summands are foliations of rank n−1 respectively 1. By construction,

the fibers of π are leaves of T pos
M0×P1 , and the restriction of T fix

M0×P1 to the fibers is trivial.

Since the initial curve g : P1 → B intersects D transversely, the inverse image
G−1(D) is a union of finitely many sections (id×hj)(M0), where h1, . . . , hm : M0 → P1

are holomorphic mappings. The next result says that each of these sections is actually

a leaf of the foliation T fix
M0×P1 .

Lemma 6.6. The foliation T fix
M0×P1 is tangent to the divisor G−1(D).

Proof. The argument is very similar to the proof of Lemma 3.6. The holomorphic
mapping from M0 × P1 → Z is an open embedding, and by Lemma 4.4, the tangent
bundle TM0×P1 is therefore the canonical extension of the pullback of the Hodge bundle

F 1VZ . Since VZ = V fix
Z ⊕ WZ , we can apply the construction in Lemma 3.6 in a

neighborhood of any component of G−1(D), but choosing the sections v1 and vn+1 in
the canonical extension of WZ , and the remaining sections v2, . . . , vn and vn+2, . . . , v2n
in the canonical extension of V fix

Z . Then s1 is a local frame for the canonical extension

of F 1WZ , and s2, . . . , sn are a local frame for the canonical extension of F 1Vfix
Z , and

therefore for the foliation T fix
M0×P1 . The same argument as before shows that s2, . . . , sn

are tangent to the given component of G−1(D), and this proves the claim. □

The tangent bundle of M0 × P1 is globally generated (because TP1 is globally gen-
erated and M0 is a Stein manifold); the same thing is therefore true for the foliation

T fix
M0×P1 . After composing G with an automorphism of M0 × P1, we can arrange that

the three standard sections M0 × {0}, M0 × {1}, and M0 × {∞} are leaves of the

foliation T fix
M0×P1 . From the isomorphism

H0
(
M0 × P1,TM0×P1

) ∼= H0(M0,TM0)⊕H0(M0,OM0)⊗H0
(
P1,TP1

)
we then conclude that every leaf of T fix

M0×P1 must be of the form M0 × {x} for a point

x ∈ P1. In particular, every component of the divisor G−1(D) must be of this form,
which means that the holomorphic mappings h1, . . . , hm : M0 → P1 are constant.
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From this fact, we can easily deduce that the finite covering p : R → P1 does not
change as we deform g : P1 → B. Recall that R is a smooth projective curve, and that
g̃ : R → Z is the induced morphism. After shrinking M0, if necessary, the base change

(M0 × P1)×B Z Z

M0 × P1 B

p

G

is also smooth; let R be the unique component containing R. We have just shown that
R◦ → M0 × (P1)◦ is a finite covering space; because finite covering spaces of a fixed
quasi-projective curve do not deform in a nontrivial way, we get R ∼= M0 × R. The
following commutative diagram shows the relevant morphisms:

C M

M0 ×R Z

M0 × P1 B

π

G̃

id×p p

G

According to Lemma 6.5, the morphism

π ◦ g̃ : R ∩ g̃−1(C) → π
(
g̃(R) ∩ C

)
is unramified. Because unramified morphisms between two fixed quasi-projective
curves also do not deform in a nontrivial way, the following lemma will very quickly
lead to the desired contradiction.

Lemma 6.7. There is a 1-dimensional family of deformations of the initial rational
curve g : P1 → B for which the curves π(g̃(R) ∩ C) ⊆ M stay the same.

Proof. Consider the quasi-projective curve π(g̃(R) ∩ C) inside the moduli space M .
Its preimage under π is a quasi-projective surface in C. Since p : C → B is smooth of
relative dimension 0, it follows that

S = p
(
π−1

(
π(g̃(R) ∩ C)

))
⊆ B (17)

is a quasi-projective surface in B that contains the intersection g(P1) ∩ B◦. A priori,
S could be singular along this curve, but we will show in a moment that it is actually
smooth in a neighborhood of g(P1) ∩ B◦. We can think of S as being swept out by
those rational curves in our family that intersect R.

Let us first prove that S is smooth at every point b0 ∈ g(P1)∩B◦. Let z0 ∈ C◦ be a
point on the curve g : P1 → B such that p(z0) = b0, and enumerate the points in the
fiber p−1(b0)∩R◦ as y1, . . . , yr, where r = deg(R/P1); set zj = g̃(yj). Choose an open
neighborhood U ⊆ B of the point b0, and an open neighborhood Uj ⊆ C of each point
zj , such that p|Uj : Uj → U is a biholomorphism. Pulling back the r + 1 variations of
Hodge structure WZ |Uj , we get r+1 subvariations W0, . . . ,Wr ⊆ V |U . From the proof
of Lemma 6.2, we know that the subvariation WR + (p◦)∗WC of VR has rank 4d = 4,
and that its fibers at any two points y, y′ ∈ R◦ with p(y) = p(y′) map to the same
subspace of Tp(y)B. This implies that W = W0+W1+ · · ·+Wr has rank 4 at the point

b0, and therefore on all of U . Consequently, the Hodge bundle F 1W defines a foliation
of rank 2 on the open set U , and this foliation is the sum of the two foliations F 1W0

and F 1Wj of rank 1, for every j = 1, . . . , r.
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From (17), it is easy to see that all those curves involved in the construction of S
that intersect the open subset U must be tangent to the foliation F 1W. For dimension
reasons, this implies that S ∩ U is the leaf of the foliation F 1W through the point b0,
and therefore smooth.

Now let C0 denote the branch of the curve g : P1 → B corresponding to the point z0;
to be precise, we have C0 = p(U0∩Pz0). Similarly, let Cj = p(Uj∩Pzj ) be the branches

of the other r rational curves. By construction, each Cj is the leaf of the foliation F 1Wj

through b0. According to Lemma 3.4, the surface germ S ∩ U is therefore swept out
by the deformations of the curve germ C0 along each of the curves Cj . This gives us
the desired 1-dimensional family of deformations of the rational curve g : P1 → B. □

We can now finish the proof of Proposition 6.1 as follows. Let ∆ be the unit disk,
and represent the 1-dimensional family of deformations of g : P1 → B by a holomorphic
mapping h : ∆ → M0 with h(0) = [g]. Let us denote by gt = G(h(t),−) : P1 → B the

rational curves in this family, and by g̃t = G̃(h(t),−) : R → Z the resulting family of
morphisms from R. By Lemma 6.5, the composition

π ◦ g̃t : R ∩ g̃−1
t (C) → π

(
g̃t(R) ∩ C

)
is unramified for every t ∈ ∆. Since the source and the target stay fixed, it follows
that π ◦ g̃t is independent of t. This means that if we let y1, . . . , yr be the points in the
fiber p−1(x) over a fixed point x ∈ (P1)◦, and set zj = g̃(yj), then as t ∈ ∆ varies, the
image g̃t(yj) sweeps out a small open subset of the curve Pzj . Because p ◦ g̃ = g ◦ p,
it follows that p(Pz1) = · · · = p(Pzr); but then Lemma 5.3 gives Pz1 = · · · = Pzr , and
this clearly contradicts our initial assumption that r ≥ 2.

7. Proof of the main theorem

At this point, we can prove the main theorem very quickly by putting together the
results from the previous five sections.

Proof of Theorem 1.1. By way of contradiction, assume B is not isomorphic to Pn. By
Theorem 1.2, there must be a minimal degree rational curve g0 : C0 → B meeting
B◦ with d + 1 = −deg g∗0TB ≤ n. By Proposition 2.2, since g∗0TB contains a copy
of TC0

∼= O(2), it follows that g∗0TB has a trivial factor, so by Proposition 2.4 and
Lemma 4.4, we obtain a nontrivial splitting of the variation of Hodge structure VZ .
A general curve g : C → B meets the boundary transversely, and since b2(B) = 1, it
must meet every irreducible component of the boundary that has dimension n − 1.
By Proposition 6.1 it follows that p : Z → B is unramified in codimension 1, and
because Z is normal by construction, p must be an étale cover by purity of the branch
locus [Nag59]. Since B is simply connected, it follows that p is an isomorphism; this
means that there is a nontrivial splitting of V itself, which contradicts Voisin’s result
in Theorem 1.3. □

Remark 7.1. The fact that M was a full deformation space of a family of rational
curves admitting a splitting was crucial to the argument. Indeed, consider S → P1 an
elliptic K3 surface, and X = S[n] → B = Pn the Hilbert scheme of n points. Then
taking the cover P1 × Pn−1 → Pn obtained by quotienting (P1)n by Sn−1, we have a
covering family of rational curves (namely the P1 fibers) along which the pullback of
V has a fixed part (of rank 2n − 2), and the cover P1 × Pn−1 → Pn splits completely
over the open part of these curves. These curves are all tangent to the diagonal of Pn

however, so this does not imply P1 × Pn−1 → Pn is unramified (and indeed it is not),
and it also does not imply that the splitting descends (and indeed it does not).
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Remark 7.2. The proof of Theorem 1.1 works equally well for a Lagrangian fibration
f : X → B of a primitive symplectic variety X, provided we additionally assume X is
simply connected and that the discriminant is divisorial.
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