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Abstract

We prove that Shimura varieties admit integral canonical models for sufficiently large primes. In the
case of abelian-type Shimura varieties, this recovers work of Kisin-Kottwitz for sufficiently large primes.
We also prove the existence of integral canonical models for images of period maps corresponding to
geometric families. We deduce several consequences from this, including a version of Tate semisimplicity,
CM lifting theorems, and a version of Tate’s isogeny theorem for ordinary points.
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1 Introduction
This paper is motivated by the following question, raised by Langlands and made precise by Milne:

Given a Shimura variety Sk (G, X) over its reflex field E, does Sk (G, X) admit a “good model” Sk (G, X),
over completions Og, ¢

For the moduli space of principally polarized abelian varieties 4,4, for instance, the moduli problem
provides a natural model. As not all Shimura varieties are known to have an associated geometric moduli
problem (notably the exceptional Shimura varieties), it is preferable to have a model which is uniquely
determined by certain intrinsic properties, possibly only for sufficiently large primes. At the very least, we
would like our model to be smooth over O, , which already may not exist at certain primes. Indeed, even
in the case of the modular curve, the level structure at p needs to be maximal in order for there to exist a
smooth model at p.

Smoothness alone however does not a priori guarantee a unique model. Milne defined an “extension prop-
erty” (and this notion was refined by Moonen in [Mo098|) which formally guarantees uniqueness. Following
Milne and Moonen, an integral model is said to be an integral canonical model if it is smooth and if it satis-
fies their extension property. The moduli space of principally polarized abelian varieties A4, for instance, is
known to admit integral canonical models over Z, whenever the level structure is prime to p, i.e. when the
level structure is hyperspecial at p. Indeed, smoothness follows from the fact that the deformation theory
of polarized abelian varieties with a prime-to-p-polarization is unobstructed (proved by Grothendieck), and
Chai and Faltings prove an extension result for abelian schemes over certain bases (see Sec-
tion 3| for the precise results they prove) from which the Milne-Moonen extension property for A, follows
directly.

Langlands suggested more generally that integral canonical models should exist whenever the compact
open K, at p is hyperspecial. In the case of PEL Shimura varieties (i.e. Shimura varieties parameterizing
polarized abelian varieties with extra endomorphisms), Kottwitz in [Kot92] constructs integral models when
the level structure at p is hyperspecial. Kisin generalizes Kottwitz’ work to the setting of Shimura varieties
of abelian type (|Kis10]). In [IKY23| the authors prove a prismatic characterization of integral models of
abelian type. In , Pappas and Rapoport lay out a framework for integral models for all Shimura
varieties, and amongst various other things, they show that the integral models constructed by Kisin satisfy
their framework. In [Lov17], Lovering constructs integral canonical models for automorphic data associated
to Shimura varieties of abelian type. The extension property proven in most of these works ultimately relies
on the work of Chai and Faltings, which uses the moduli intepretation of 4,, and therefore does not carry
over to exceptional Shimura varieties.

1.1 The extension property

We now define our extension property. We note that our extension property is the equivalent to the one
formulated by Milne-Moonen, and we include a discussion about this fact below. In the proper case, the



extension property is very simple:

Definition 1.1. Let F be a local field. We say that an integral model .k (G, X)/OpF of a proper Shimura
variety Sk (G, X)/F has the extension property if for every smooth scheme 7 /Op, every map over the generic
fiber ¢ € Hom(7r, Sk (G, X)) extends to a map from T to Sk (G, X).

In the non-proper case, one must take care to ensure that the special fiber doesn’t map to the “boundary”
of Yk (G, X). For primes ¢ # p, we fix an ¢-adic automorphic local system oV, on .k (G, X) corresponding
to a faithful representation V of G®4 (see Section for precise definitions of ¢ V).

Definition 1.2. We say that a model Sk (G, X)/OF of Sk(G,X) satisfies the extension property if for
every smooth scheme 7 /O, and every map over the generic fiber ¢ € Hom(7r, Sk (G, X)) such that ¢*V,
extends to T for some £ # p, the map ¢ extends to a map from T to .k (G, X).

1.2 Main results for Shimura varieties

Our main theorem is to prove the existence of integral canonical models for arbitrary Shimura varieties S,
for sufficiently large primes. Concretely, we prove the following:

Theorem 1.3. Let S be a Shimura variety over its reflex field E. For almost all finite places v, there exists
a model S over O, which has the extension property, and which admits a log-smooth compactification over
O,.

Moreover, for the places v as above, S is the unique smooth model of S over O, which admits a log-smooth
compactification over O, and to which the local system 'V, extends.

Note that the uniqueness claim implies that any global model of Sk (G, X) will specialize to the integral
canonical model at almost all places.

While our theorem applies to all Shimura varieties, the fact that it only applies for almost all finite places
means that much stronger results (|Kis10|) are known in the abelian setting. Therefore, the case of greatest
interest is when S is a Shimura variety of exceptional type.

1.2.1 Applications

We deduce several applications for mod v (and v-adic) Shimura varieties. The main theorem implies that
Hecke correspondences away from p extend to .7k (G, X)/Og,. We use these Hecke correspondences to prove
the following theorem:

Theorem 1.4. Let x € Sk (G, X)(Fy) be any point. Then, the Frobenius endomorphism on V¢ z is semi-
stmple.

Work of Esnault-Groechenig shows that V,,/Sk (G, X) is a crystalline local system, which yields a relative
Faltings-Fontaine-Laffaille on the p-adic completion of .k (G, X). Analogous to [Kis10} Section 1.5], we give
an explicit description of the this Faltings-Fontaine-Laffaille module restricted to complete local rings of
Yk (G, X) at closed points (see Theorem for the precise statement). We then use this in conjunction
with the semi-simplicity of ¢-adic Frobenii, to prove the following theorem (which generalizes the Serre-Tate
canonical lift).

Theorem 1.5. The p-ordinary locus in Sk (G,X)r, is open dense. Let x € Sk (G, X)(F,) denote a p-
ordinary point. Then, there exists a canonical special point & € S (G, X)(W (F,)) that lifts x.

The above theorem then immediately has the following consequence.

Theorem 1.6. Let x € (G, X)(F,) denote a p-ordinary point, and let _, V, denote the F-crystal at x
(associated to the Fontaine-Laffaille module defined by ,V,/Sk(G,X)). Then, the crystalline q-Frobenius
endomorphism on .V, is semisimple.
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Finally, we also have an analogue of Tate’s isogeny theorem for ordinary points.

Theorem 1.7. Let x and y be ordinary mod p points whose (-adic Galois representations are isomorphic.
Then a rational Hodge structures underlying the canonical lifts & and § are isomorphic.

This result should be thought of as an exceptional analogue (in the ordinary case) of Tate’s isogeny theo-
rem, which states that two abelian varieties over finite fields are isogenous if the /-adic Galois representations
associated to the abelian varieties are isomorphic.

1.3 Comparison with the extension property of Milne-Moonen

The usual (Milne-Moonen) phrasing of the extension property is to let the level K be of the form K = KPK,
where K, = G(Qp) and K? < G(A%), and consider the tower of varieties ./ (G, X) where K, is fixed and
K? varies. One then asks for a tower of integral models with finite etale transition maps, and that a map
from the generic fiber of any scheme 7 to this tower extends. This however entails defining a category of
admissible test schemes to be able to map to this entire tower, which is something like “pro-smooth schemes
over Z,”, and this requires some care to do precisely. Geometrically these are more complicated (pro-)
objects, which is why we choose to work with our definition.

These two extension properties are very close to each other. Indeed, the Milne-Moonen extension property
implies ours as follows: Suppose T is a smooth scheme over O,,, and ¢ : Tp, — Sk (G, X) such that all of the
¢%V, extend. Then we may define a tower Tx» with finite transition maps using the local systems ¢V,
and a corresponding map from lim  Yi» p, — lim Ik (G, X)F,. The Milne-Moonen extension property
implies that this map extends and hence so does our original one.

Conversely, we first point out that our construction in fact gives models for the entire tower lim . .k (G, X)p, .

P
Suppose one has an admissible test 7 over O, and a map from 7p, to lim K Yk (G, X)F,. By definition,
P

T is a pro-etale cover of a smooth scheme over some unramified extension R of O,, and hence is an inverse
limit of smooth schemes over R. Each of the schemes in this inverse limit must therefore map to some finite
level Shimura variety in the tower, in a way that limits to the original map. Moreover, the pullbacks of all
the automorphic local systems «V, will extend, and thus our extension property will apply at each finite
level, and hence to all of 7.

1.4 Integral canonical models for images of geometric period maps

Our methods in fact provide integral canonical models at sufficiently large primes for many varieties which
are interpretable as moduli spaces of Hodge structures. We describe the case of variations coming from
geometry, but first give some general background from Hodge theory (see Section for more details).

Suppose an irreducible normal complex variety P (which we can without loss of generality assume smooth)
is equipped with a polarizable integral variation of Hodge structures (Wz, F'*). The associated period map
P> — [G(Z)\D] will factor as P** — Y?" — [G(Z)\D] where Y is a generically inertia-free Deligne—
Mumford stack with quasiprojective coarse moduli space, P — Y, has connected generic geometric fiber,
and Y — [G(Z)\D] is finite [BBT23|. This map is obtained by taking a resolution P — P and then a
partial compactification P P’ for which the period map extends to a proper period map and forming the
Stein factorization. In particular, the variation (Wz, F'*) is pulled back from (Vz, F*) on Y. In general P
may be a stack as well, but the inertia of Y acts faithfully on Vz, so Y is a global quotient of a normal
quasiprojective variety by the action of a finite group, and after passing to a finite étale cover of P (for
instance by adjoining level structure) we may assume Y (and therefore P) is a quasiprojective variety. We
call such a Y the Stein factorization of the period map.

Now let P be an irreducible normal variety defined over a number field E, f : Z — P a smooth projective
E-morphism, and for any fixed k let .,W, := R*f.7Z, be the arithmetic local system—or more generally
a subquotient obtained from maps between such local systems induced by P-morphisms of familiesﬂ We

1We lay out the precise conditions for a variation of Hodge structures to “come from geometry” in the sense we need it in
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let Y be the Stein factorization of the period map of the variation with underlying geometric local system
Vz = R* 227 for some embedding E < C. Then Y is defined over E, does not depend on the embedding,
and the local system W, descends to Y.

For example, for any moduli space P admitting an infinitesimal Torelli theorem (including moduli spaces
of Calabi—Yau varieties and most moduli spaces of complete intersections in P", to name a couple), YV is a
canonical partial compactification (namely, the natural “Hodge—theoretic” compactification) of P.

Theorem 1.8. Let E be a number field. Let Y /E be the Stein factorization of the period map of a geometric
variation of Hodge structures which we assume to be inertia-free (and therefore a quasiprojective variety).
Let .tV be the descent of the natural £-adic arithmetic local system to Y .

1. There is a finite set of primes Xy of O such that, for all finite places v of Op %, , there is a model
Y, over O, such that:

(a) Each ¢V, extends to Y, for £ # p, where p is the integral prime below v.

(b) For any irreducible smooth X /O, with generic point nx, any morphism go : nx — Yg, extends to
g: X — Yy if and only if g5 (e+Ve) extends to X for some £ # p.

2. The models in part are functorial in the following sense. Let Y,Y'/E be the Stein factorizations of
two possibly different period maps arising as above, and for a finite place v of O v, s, let Yo,V be
models as in part . Then any morphism go : 1y — Vi, extends to g : Y, — V., if and only if g (ecVe)
extends to Y, for some { # p. In particular, the local model Y, of Y is canonically determined.

3. The models in part[] are minimal in the following sense. For any O,-model Z, of Y that admits a
uniform log smooth resolution (see Definition and to which V, extends for some ¢ # p, the
identity map over the generic fiber extends to an O,-morphism Z, — V.

4. Finally, there exists a global model Y over Og s, of Y which restricts to the model ), of partfor all
places v of Og 5, .

In general, the image of a period map has no reason to be smooth (already over C), so it is important
to allow for singularities. Even starting with a smooth moduli space S parametrizing varieties with an
infinitesimal Torelli theorem so that the period map S* — [G(Z)\D] is immersive, it will often not be
proper; the “Hodge-theoretic” compactification is essentially the closure of the image of S — [G(Z)\D]
(up to a finite map) and will therefore usually be singular anyway. This is already true for the image of the
Torelli map for the moduli space of curves (see Example .

1.5 An outline of the proof of the Extension Property

The proof of the extension property in Theorem [I.3]is motivated by classical Hodge theory and the arguments
of [dJO97,MB85,[FC90|. Briefly, let F//Q,, be a finite unramified extension ring of integers O, X /O a smooth
scheme, and fr : X — Y a morphism over the generic point to a model of a Stein factorization of a period
map ). There are three steps to proving the extension of fr to a morphism f: X — ):

1. Y will support an f-adic local system .;V, with large local monodromy at the boundary. It then
follows (assuming the existence of a reasonable resolution and log smooth compactification) that the
map extends in codimension one as soon as f7 (e Ve) extends to X. This in particular establishes the
claim if dim X = 1.

2. If dim X > 2, then assuming the result for dim X = 2, the conclusion follows by induction. An extension
is unique if it exists, and by assumption exists on a general hyperplane section H. Deformation theory
can then be used to locally lift the extension to the completion of X along H, which is enough to
deduce the existence of the extension to X. This is the same argument used by |dJO97, MBS&5,[FC90].



3. The main step is then to handle the case dim X = 2, so when X' /O is a family of smooth curves, and here
we must use that ) supportsﬂ a crystalline local system whose associated Fontaine—Laffaille module
has ample Griffiths bundle. On the one hand, by a key result of Hokaj [Hok24] and Guo-Yang |GY24],
the Fontaine-Laffaille module extends to X'/O; on the other hand, the map to ) can be extended on
a blow-up X’ at points in the special fiber. The pull-backs of the two Fontaine-Laffaille modules must
agree, and the ampleness of the Griffiths bundle implies every exceptional curve is contracted in ).

1.6 Comparison with past work

In the Abelian case which Kisin handles, proving the existence of smooth models is difficult, whereas the
extension property follows directly from the extension property for A,. Unlike [Kisl0|, we don’t directly
address the question of for which places v the Shimura variety Sk (G, X) admits smooth models over O,.
Instead, we “spread out” the global model Sk (G, X) over Og[1/N] for some large N, which in particular
guarantees smoothness at primes v { N (amongst other good properties). However, the lack of an interpreta-
tion of our Shimura varieties as a moduli space means we need an entirely different argument for establishing
the extension property.

Regarding the applications to the mod p and p-adic geometry of Shimura varieties, Kisin ([Kis17]) proves
that every E,—point of abelian Shimura varieties admit CM lifts up to isogeny. Note that the up-to-isogeny
requirement is crucial as work of Oort |Oor92| shows (for a more general statement, see also [KLSS21|).
Noot in [Noo96| proves the existence of CM lifts (on the nose) for points of Hodge-type Shimura varieties
that intersect the ordinary locus of A,. Noot’s theorem was generalized to p-ordinary points by [Moo04] in
the PEL-type case to the and [SZ21] in the Hodge type case.
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1.8 Outline

In Section 2] we formulate the definition of an integral canonical model in terms of the extension property,
and show that extension in codimension 1 can be controlled in many cases (including those of interest) by
a local system. We also discuss the descent and extension of arithmetic local systems to integral models
of period images, and the relation of the extension property to purity results in classical Hodge theory. In
Section [3]we prove the extension in codimension 2. In Section [f] we formulate precise conditions under which
the presence of a Fontaine-Laffaille module on a local model implies the extension property, and in Section 5]
we apply it to the case of Shimura varieties and period images to prove the existence of integral canonical
models as in Theorem and Theorem In Section [6] we prove Hecke correspondences extend and use
this to prove Theorem In Sections[7] and [§] we analyze the complete local rings of the integral canonical
models of Shimura varieties at closed points and prove Theorems [I.5] [I.6] and [I.7]

1.9 Notation

Typically O will be the ring of integers in either a number field E or an unramified finite extension F'/Q,.
We use script letters S, X', ) to denote either finite type Spec O-schemes or finite type formal Spf O-scheme

2This only makes sense after pulling back to a resolution which is smooth over @



(in the latter case). We denote by unadorned Roman letters S, X, Y the generic fibers over F or F (in the
non-formal case) and Sy, Xy, Vo will denote the special fibers (when O is local). For a finite place v of Of
we denote by O, = O, the completion.

2 The extension property and natural boundary

In this section we single out a class of integral models for which extension on the level of fundamental groups
is the only obstruction to extending morphisms defined over the generic point. In particular, such models
will be uniquely determined when they exist. The key property these models will have is the extension
of morphisms from smooth schemes, just as in the work of Milne and Moonen. In the Shimura case (or
whenever the model is smooth) this property obviously uniquely determines the model; in the general case
it will be important to allow for singularities, as even for smooth moduli spaces, the extension property
will often force a partial compactification which is not smooth—for instance, see Example 2.12] We also
discuss how the extendability on the level of fundamental groups can be detected by the extendability of
local systems.

Throughout this section, we let O be a Dedekind domain with fraction field F' which is either a finite
extension of @, or a global number field. In the local situation, we denote by k the residue field.

2.1 The extension property

Definition 2.1.

1. Let ¥,Y'/O be finite type flat O-schemes. An F-morphism fr : ¥ — Y’ of the generic fibers is
O-admissible if the maps on fundamental groups fits into a diagram

T (Y,g) —— mft (Y’

| |

ﬂ-?t(y7 g) 77777 ’ Wﬁt(y/7 :U/)

)

for compatibly chosen basepoints.

2. We say a finite type flat O-scheme Y/O satisfies the smooth extension property over O if for any
smooth O-scheme X /O, any O-admissible F-morphism fr : X — Y on the generic fiber extends to an
O-morphism f: X — ).

2.2 Natural boundary and extension in codimension 1

In the presence of a sufficiently well-behaved log smooth compactification of a resolution (one with “natural
boundary” as defined below), admissible morphisms with smooth source will extend over codimension 1
points, and this will be the first step of the proof of the extension property in the setting of section [4

The following definition is made with a view towards the general case where ) is not smooth, but for
Shimura varieties we will have § = ).

Definition 2.2.

1. Let Y/O be a normal finite type flat O-scheme. A resolution of Y/O is a smooth O-scheme S/O with
a proper dominant birational map 7 : S — )Y such that Oy = 1. Og via the natural map.

2. We say (S,D)/0O is log smooth if it is étale locally isomorphic over O to (A%, D), where D is a union
of coordinate hyperplanes.

3. Let §/O be a smooth O-scheme. By a log smooth compactification we mean a log smooth proper
O-scheme (S, D)/O with S\D = § (as an O-scheme).



In the cases that will be of interest to us, the boundary of S will be detected by the fundamental group in
the sense made precise by the following definition. For a log smooth scheme (S, D) over C with S = S\D and
whose boundary D has irreducible components { D, };cs, and for any point = € D together with a small arc Z :
[0,1) — S mapping 0 to z and (0, 1) to S, the local fundamental group ©°(S, D, %) := lim ;g 71 (U\D, 2)
is naturally identified with P D5z L, where the sum is over irreducible component D; of D containing x and
the basepoint is taken to be any point on & sufficiently close to x.

Definition 2.3. Let (S, D) be a proper log smooth complex variety with S = S\D and 7 : S — Y a
resolution of a normal complex variety Y. We say the boundary of S is m-natural if for every morphism
f:(C,Dg) — (S, D) from a log smooth proper curve (C, D¢) with Do = (f*D)*4 and for any ¢ € D¢, we
have that the composition

7-‘—1100(07 Dc,é) — ﬂ—lloc(gvaf@)) — w1 (S, f(e)) — 71—I(Y’W © f(é» - WTt(Y’W ° f(é>)

is injective. Equivalently, we require that for any f,c as above and any n, there is a Galois finite étale cover
Y’ — Y whose base-change to C' ramifies to order = n at c.

Let Y/O be a normal finite type flat O-scheme, 7 : S — ) a resolution, and S/O a log smooth compact-
ification of S. We say that the boundary of S is m-natural if this is true for the base-change of 7 and S to
C for some (hence any, by the above remark) embedding of K into C. If 7 is the identity we just say S has
natural boundary.

Lemma 2.4. Let F/Q, be an unramified extension with ring of integers O. Let Y/O be a normal finite type
flat O-scheme, 7 : S — Y a resolution, and S/O a log smooth compactification of S with w-natural boundary.
Let X/O be a normal finite type flat O-scheme and fr : X — Y an O-admissible morphism over the generic
point. Then there is a finite type flat X'/O, a proper dominant generically finite morphism X' — X, and a
morphism X' — S such that the following diagram on the generic fibers commutes:

X — S

Ll

x Iy

Moreover, if the image of fr meets the locus of Y where 7 is an isomorphism, then X' — X can be taken to
be an isomorphism over a dense open set.

Proof. Let W < X xo S be the closure of the fiber product X xy S < X xp S. We then have that the
projection W — X is proper dominant with a morphism W — &, and taking an appropriate complete
intersection of ample hypersurfaces, we may find X’ < W which is proper dominant generically finite over
X. If X meets the locus where 7 is an isomorphism, then we take X’ = W and the morphism X’/ — X
is a generic isomorphism. Either way, if the boundary of S intersects X’ nontrivially, then there is a finite
extension O’ of O and an O’-point of X’/O whose closed point maps to the boundary. Because the boundary
is natural, by the argument of [PST* 21, Thm 4.4] this contradicts the admissibility assumption.

O

Corollary 2.5. In the setting of the lemma, assuming the image of fr meets the locus of Y where 7 is an
isomorphism, there is a codimension > 2 subset Z X and an extension of fr to a morphism f : X\Z — ).

Proof. X' — X is proper so every codimension 1 point 7 lifts to X’ and maps to S, so fr extends over . [J

2.3 Natural boundary and local systems

For S/O smooth and S a log smooth compactification, both the naturality of the boundary and the admissi-
bility condition on O-morphisms to S can be checked using an f-adic local system V, on §. The key property
such a local system must have is “nonextendability” over the generic fiber, meaning it does not extend to
any nontrivial partial compactification—see |Bru23, §3|, where it is referred to as “maximality”.



Definition 2.6. Let Y/C be a normal variety with an ¢-adic local system V,. We say V; is nonextendable
if for any resolution 7 : S — Y, finite étale p : S’ — S, and partial log smooth compactification S’ = §’, if
the local system (p o 7)*V, extends to S, then S’ = S'.

For Y/F a normal variety with an ¢-adic local system V,, we say V; is geometrically nonextenable if the
base-change to Y is, for some (hence any) complex embedding F' = C. We say an f-adic local system on an
integral model ) of Y is geometrically nonextendable if the restriction to the generic fiber is.

Nonextendability restricts well:

Lemma 2.7 (|Bru23, §3|). Let Y/C be a normal variety and Vo an ¢-adic local system on Y. Then the
following are equivalent:

1. V, is nonextendable.
2. For any curve C/C and any proper morphism f: C — Y, f*V, is nonextendable.
3. For any normal variety X /C and any proper morphism f: X —Y, f*V, is nonextendable.

The next lemma interprets the naturality of the boundary and admissibility in terms of the local system
as promised.

Lemma 2.8. Suppose Y/O is a normal finite type flat O-scheme, m: S — Y a resolution, S/O a log smooth
compactification of S, and Vy a geometrically nonextendable ¢-adic local system on ). Then

1. S has w-natural boundary.

2. For X /O regular, a morphism fr: X —Y over the generic point which meets the locus of Y where ™
is an isomorphism is O-admissible if and only if fEV, extends to X.

Proof. For [} by Lemma [2.7] for any proper morphism f : C'— S¢ from a curve, the local monodromy of
f*V, around any boundary point is infinite.

For 2] the forward implication is obvious. For the reverse implication, the same argument as in Lemma[2.4]
shows that fr extends to f : X\Z — Y for a codimension > 2 subset Z, but by purity of the branch locus
7N (X\Z,z) — 7%(X, ) is an isomorphism. O

Corollary 2.9. For Y,V as in the lemma, X/O a normal finite type flat O-scheme, and fr : X — Y
a morphism over the generic point such that fiV, extends to X. Then there is a codimension > 2 subset
Z < X and an extension of fr to a morphism f: X\Z — ).

2.4 Integral canonical models of smooth varieties

For simplicity, we first define integral canonical models in the smooth case (to be generalized in the next
section).

Definition 2.10. Let )/O a quasiprojective smooth O-scheme. We say /O is an integral canonical model
if for every closed point v of Spec O, the base-change ), /O, satisfies the extension property over O,.

The following is immediate:

Lemma 2.11. Let S§,8'/O be two smooth integral canonical models and fr : S — S’ a morphism over the
generic point.

1. fr extends to a morphism f: S — S’ if and only if there is a commutative diagram

ﬂ-(let(Sv 5) — ﬂ'?t(sla 5/)

I

for compatibly chosen basepoints.



2. Suppose further that S’ admits a log smooth compactification and a geometrically nonextendable £-adic
local system Vy. Then fr extends to a morphism f:S — &' if and only if f5(V,) extends to S.

2.5 Integral canonical models of normal varieties

We begin with a simple example to demonstrate that, even for a smooth variety, a model which satisfies the
smooth extension property might necessarily involve a partial compactification with singularities.

Example 2.12. Consider the moduli stacks A, and M, of principally polarized g-dimensional abelian
varieties and genus g curves, say over Z, for p » 0, and let M, — A, be the Torelli map. After taking
sufficient level structure, both of these stacks are schemes, and the Torelli map is generically immersive.
Ay satisfies the smooth extension property, so the closure of the image of M, in A, will as well. This
closure is quite singular however: the map M, — A, extends to the partial compactification Mg — A,
parametrizing compact-type nodal curves (that is, nodal curves whose dual graph is a tree), but the boundary
gets contracted with positive-dimensional (non-uniruled) fibers, as the Jacobian does not record the attaching
nodes.

In the normal case, to deduce the extension of arbitrary morphisms from the case of morphisms with
smooth source, we will require the existence of an integral resolution with the property that the subvarieties
contracted in a special fiber are limits of subvarieties contracted in the generic fiber.

Definition 2.13. Let /O be a normal finite type flat O-scheme.

1. A resolution of /O is a smooth O-scheme S/O with a proper dominant map 7 : S — ) such that
Oy = 1,Og via the natural map.

2. A resolution 7 : § — Y is uniform if there is a flattening stratification of 7 by locally closed subsets
V7 of Y, each of which is flat over Spec O.

Lemma 2.14. Let Y /F be a normal variety, 7g : S — Y a resolution, and w : S — Y a model of mp defined
over O. Then m is a uniform resolution over a (nonempty) open set of O.

Proof. Since Oy — m,Ogs is an isomorphism over the generic point, it is over an open set of Spec Or[1/N].
Taking a flattening stratification ), the strata which do not dominate map to finitely many primes. O

Definition 2.15. Let Y/O a normal quasiprojective flat O-scheme. We say /O is an integral canonical
model if:

1. Y admits a uniform resolution 7 : S — ).
2. For every closed point v of Spec O, the base-change ), /O, satisfies the extension property over O,.

Note that if Y/O is smooth, the condition on the existence of a uniform resolution is automatic, so this
definition generalizes Definition [2.10] The next proposition generalizes Lemma to the normal case.

Proposition 2.16. Let O be a Dedekind domain with fraction field F'. Let Y/O be a normal quasiprojective
flat O-scheme admitting a uniform resolution, Y'/O an integral canonical model, and fr :' Y — Y’ a
morphism over the generic point.

1. fr extends to a morphism f:Y — V' if and only if there is a commutative diagram

,/Tllet (Ya g) — ﬂ—ft (Yla y/)

| !

for compatibly chosen basepoints.
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2. Suppose further that V' admits a uniform resolution @’ : 8" — V', a log smooth compactification of S’,
and that V' has a geometrically nonextendable £-adic local system Vy. Then fr extends to a morphism

f: Y=Y if and only if fE(V,) extends to ).
For the proof we need the following:

Lemma 2.17 (Rigidity Lemma, [Deb01, Lemma 1.15]). Let X,Y, Z be integral finite type schemes, f : X —
Y a proper morphism with Oy —> f+Ox via the natural map, and g : X — Z a morphism which is constant

on f~1(y) for some point y of Y. Then for an open neighborhood y e U < Y, gl : f~YU) — Z factors
through f| -1y : f~H(U) = Y.

Proof. The proof is exactly the same as in [Deb01|. Consider the (proper) morphism h = fxg: X - Y x Z,
and let W be the image with projection map p : W — Y. Since Oy < p.Ow < fOx = Oy, the Stein
factorization of p is trivial. Since h=1((p~1(y))) = f~(y) maps to a point in Z, p~(y) is a point, hence
the fibers of p are O-dimensional in a neighborhood of y, and therefore p : W — Y is an isomorphism in a
neighborhood of y. O

Corollary 2.18. Let Y,)’'/O be normal finite type flat O-schemes, and w : S — Y a uniform resolution.
Assume V' /O is quasiprojective. Then any morphism f : S — Y’ which factors through g : S — Y over
the generic point factors through .

Proof. Let L' be a very ample bundle on )’, let 7 < Y be an O-flat stratum in a flattening stratification of
S — Y, let S7 — )7 be the base-change to ), and consider the composition S7 — S — ). For any fiber F
of 87 — Y7, L|r is globally generated, hence has a section which is generically nonzero on every geometric
component. On the other hand, LY is trivial on every geometric fiber of S/ — )7 over the generic point,
hence by semicontinuity LV |r has at least one nonzero section. The product is a section of Op which is not
identically zero, so since the fibers of S/ — )7 are geometrically connected it must be nowhere zero. Thus,
L|F is trivial, and so f contracts every fiber of S — ). By the Lemma we conclude that f factors
through § — ). O

Proof of Proposition[2.16 The forward implication of part 1 is trivial; for the reverse implication, by the
smooth extension property we have an extension of the composition S - Y — Y’ to S, — ). for every
finite place, and therefore an extension S — )’. Then by Corollary the map & — ) factors through
the desired extension f : )Y — )Y’. Part 2 follows from part 1 by Lemma

O

Corollary 2.19. Assume Y admits a geometrically nonextendable local system Vy. Then:

1. There is at most one integral canonical model Y/O to which V, extends and which admits a uniform
resolution with a log smooth compactification.

2. Assume such an integral canonical model Y exists. Then for any normal finite type flat model Z/O
to which V, extends and which admits a uniform resolution, the identity map over the gemeric fiber
extends to a morphism Z — ).

2.6 Descending and extending arithmetic local systems

Let P/O be smooth with geometrically irreducible generic fiber, and )/O normal finite type flat with
geometrically irreducible generic fiber. Let f : P — ) be a proper morphism of O-schemes with Oy, = £20p.
In this section we describe how arithmetic local systems can be extended to integral models and descended
along f.

We start with the following:

Lemma 2.20. Let f: X — Y be a proper morphism of schemes with Y integral and assume f has geomet-
rically connected fibers and geometrically reduced generic fiber. Then over a dense open U 'Y we have the
following:

11



1. The base-change Xy — U induces an exact sequence
78 (X 7) = 1 (X, 7) — 78 (U ) — 1
for compatibly chosen basepoints, where n is the generic point of Y.
2. For every geometric point u of U, the specialization map sp : 75 (X5, T) — 75 (Xg, &) is surjective.

Proof. According to [Sta23, Tag 0579, since the generic fiber is geometrically reduced we may take U to be
the interior of the set of points with geometrically reduced fibers. We may further assume Xy — U is flat
by generic flatness. Then the first claim follows from the homotopy exact sequence [Sta23, Tag 0C0J| and
the second from base-change to the henselization of the local ring. O

The following is standard but we include it for completeness. For a morphism of schemes X — Y which
induces a surjection 7¢*(X, z) — 7¢*(Y, §) for compatibly chosen basepoints, we denote by Iy < nf* (X, T)
the kernel (somewhat abusively, since we suppress the basepoints from the notation).

Lemma 2.21. The map fr : P — Y induces the following commutative diagram with exact rows and
columns for compatibly chosen basepoints.

Ip, )y, ——— Ip)y
1 —— 7$4(Pp,p) —— 74P, p) —— a$8(F,F) —— 1

1 —— 7$(Ye,9) —— 758(Y,9) —— a$8(F,F) —— 1

1 1

Proof. The exactness of the rows is standard and the surjectivity of the vertical maps to the bottom row is
a consequence of normality and the generic fiber being geometrically connected. O

Corollary 2.22. Let V, be an Z;-local system on P for which the geometric local system V, on Pg descends
to Yp. Then Vy descends to Y.

Lemma 2.23. After inverting finitely many primes of O, any £-adic local system Vy on P which geometrically
descends to Yi descends to Y. Moreover, the same is true for any further localization of O.

Proof. We first claim that after inverting finitely many primes, the following is true: for every geometric point
Jo of Y there is a geometric point § of Y specializing to it such that the specialization map 7$*(Py,7) —
7§ (Py,. Yo) is surjective. Using Lemma there is a stratification )* of ) such that this is true for
(Pyi)red — V' provided )? is flat over . After shrinking O, we may assume this is the case for all J?, and
therefore the claim is proven.
By Corollary 2:22] we may assume V, descends to Y. To finish it suffices to show any finite étale cover
P’ — P which descends to Y over P descends to ). The descent clearly patches, so we may assume
Y = Spec R for a local ring R. Base-changing to the henselization R, the cover P, — Pg descends to R
by [Sta23, |Tag 0A48], since it is trivial on every geometric fiber of Pr — Spec R by the above surjection of
specialization maps. The descent to R comes equipped with descent data which gives a finite étale cover of
Spec R which pulls back to P’.
O

Corollary 2.24. After inverting finitely primes of O, the following is true. For any ¢ and any n, any
Zy-local system V; on P[1/n] which geometrically descends to Yi descends to Y[1/n].
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2.7 Relation to Hodge theory over C

We end this section by summarizing some classical extension results in Hodge theory using the above lan-
guage. This is both motivation for the using extension properties to determine integral models and is needed
to prove the characteristic 0 part of the extension in Theorem [I.§]

Lemma 2.25. Let P be a smooth complex algebraic variety equipped with a polarizable integral variation of
Hodge structures (Wy, F*W), and let ® : P** — [G(Z)\D] be the period map.

1. For any partial log smooth compactification (P', D), (Wz, F*) extends to P’ if and only if the mon-
odromy of Wy around each component of D is trivial.

2. ¢ is proper if and only if and only if Vy is nonewtendableﬂ

3. There is a finite étale cover m : P> P anda partial log smooth compactification P’ of P such that
m*W7y extends to P’ where it is nonextendable.

4. If the local monodromy of Wy is unipotent, then there is a partial log smooth compactification P’ of P
such that Wy extends to P’ where it is nonextendable.

Proof. (1) is a result of Griffiths |Gri70, Theorem 9.5]. For (2), (3), and (4), see |Bru23, §3|. O

For simplicity, we will assume W7 has torsion-free monodromy. In this case, it follows from the lemma
that for any period map ® : P** — [G(Z)\D], there is a partial log smooth compactification P’ of P,
a proper extension @’ : P'* — [G(Z)\D] which factors through a finite inertia-free cover I'\D, and a

proper algebraic map &/ : P’ — Y to a normal variety Y with Oy — K, Op: such that ® factors as
pran M yan 27, [G\D]. We call Y the Stein factorization of the period map ®. Observe that the local

system W7 as well as the associated filtered flat vector bundle (W, V, F*W) are pulled back from V7 and
(V,V,F*V)onY.

Corollary 2.26. Let Y be the Stein factorization of a period map (Wyz, F*W) on P with torsion-free mon-
odromy. Let X be a smooth complex algebraic variety and U < X a dense Zariski open set. Then a morphism
gu : U =Y eatends to g : X =Y if and only if g5 Wz extends to X.

Definition 2.27. For any scheme Y and a vector bundle (V, F*V) on Y with a locally split decreasing
filtration, we define the Griffiths bundle of (V, F*V) to be ®;cz det FV.

The main result of [BBT23]| is the following:

Theorem 2.28 ([BBT23|). IfY is the Stein factorization of a period map as above, then the Griffiths bundle
on'Y is ample.

Lemma 2.29. Suppose P is defined over a number field F.

1. If the filtered flat vector bundle (W, ¥V, F*W) underling (Wz, F*W) is defined over F, so is the Stein
factorization of the (compactified) period map h' : P' — Y. Moreover, the descent (V,V,F*V) is also
defined over F'.

2. If Wy, extends to an arithmetic local system sW, on P, then Vz, extends to an arithmetic local system
Ve onY.
et V2O

3We use the same definition for a Z-local system
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3 Extension in codimension 2

In this section we prove our main extension result in codimension 2.

Theorem 3.1. Let F'/Q, be a finite unramified extension with ring of integers O. Let S/O be a smooth O-
scheme equipped with a Fontaine-Laffaille module M € MF[q (3) on the p-adic completion S with underlying
filtered flat bundle (M,V,F*M) where 0 < w < p— 2. Let X/O be a smooth finite type O-scheme with
dim X = 2, x € X a point in the special fiber, and f : X\x — S a morphism. Suppose we have a commutative
diagram

X 258

A

X\ — X

where m : X' — X is an iterated blow-up at closed points lying above z, and g : X' — S is a morphism
extending f via the natural lift X\& — X'. Then the Griffiths bundle of §*(M, F* M) is trivial on 7" (x).
In particular, if the Griffiths bundle of (M, F*M) is ample on S, then the morphism f extends over x.

We recall the notion of Fontaine-Laffaille modules and the category MF[q ., (S’) in the next section.

3.1 Fontaine-Laffaille modules
3.1.1 Reminder on crystals and flat bundles

Let F/Q, be an unramified extension and let O be the ring of integers of F.. We remind the reader that
for a smooth formal scheme X' /Spf O there is a natural equivalence of categories between crystals in vector
bundles on the special fiber Xy and flat vector bundles on X (see for example [Sta23) Tag 07JH]). In particular,
there is a well-defined “Frobenius pull-back” of a flat vector bundle (V, V) on X which we denote F*(V, V).
Concretely, for a lift of Frobenius ¢ : X — X, we form (¢*V,¢*V), and for any other lift of Frobenius
¢’ : X — X there is a canonical isomorphism of flat vector bundles (¢*V, ¢'*V) — (¢*V, 9*V) given by the
formula:

1®UHZM®V(8)%. (3.1.1)

Here we take tq,...,t, to be local co-ordinates for X with a dual basis of derivations d; and for a multi-index
I=(iy,... i) we set V(0)! = [1; V(0;)4.

The above isomorphisms satisfy an appropriate cocycle condition, hence local pullbacks (where a lift of
Frobenius exists) canonically glue. Moreover, for any morphism f : ) — X of smooth formal schemes there
is a natural identification f*F*(V,V) = F* f*(V,V) by factoring f as the graph followed by the projection
X — X x )Y — Y and using the existence of campatible lifts of Frobenius for the graph and the projection
separately.

3.1.2 Unramified case

Let F/Q, be an unramified extension and let O be the ring of integers of F. Let X denote a smooth formal
scheme over O, and X" its rigid-analytic fiber. In |Fal89] Faltings defines a category of Fontaine-Laffaille
modules as follows:

Definition 3.2. Assume first that X admits a lift of Frobenius ¢ : X — X. Let 0 < w < p — 2. Then
an object of MF[q (&) consists of a vector bundle M equipped with a decreasing filtration F*M with
FOM = M,F**'M = 0, a Griffiths-transverse flat connection Vs, and a morphism ¢y : ¢*M — M
satisfying:

1. ¢y is horizontal for V
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2. The restriction of ¢ps to ¢%,FIM is divisible by p?, for ¢ € [0, w].
3. M =3"op " ou(d3F'M).

Morphisms in MF[q ,,(X) are morphisms of the underlying modules which are compatible the additional
structures.

Faltings shows that this category is independent of the choice of ¢ up to a natural isomorphism, using
the canonical identifications of eq. . Indeed, for a different choice of Frobenius lift ¢/ : X — X, we
obtain a new lift ¢, to M by setting:

(¢(1) — 6)"

Shr(1@m) = > ¢(1® V(') (m)) 1l

I

(3.1.2)

Finally, for a general X', one simply covers by affines where a lift of Frobenius exists as above and glues
in the natural way. Since Frobenius lifts lift uniquely under etale maps, it follows that MF[q ,,(X’) satisfies
étale descent.

Whenever we write MF[ ,,) we assume that 0 < w < p — 2. The following lemma must be well-known to
the experts but we cannot find it in the literature in this form:

Lemma 3.3. Letg : X — Y be a map of smooth formal O-schemes. There is a natural base-change morphism
MF(g) : MF[g,,1(Y) — MF[0,0](X), compatible with compositions, so that MF (g1 o g2) = MF(g1) o MF(gs).

Proof. The statement is clearly Zariski-local on both X and ), which we may therefore assume to be affine.
We may simply pull back the vector bundle, filtration, and connection. The only tricky part lies in the
semi-linear Frobenius morphism ¢. As explained in |Fal89|, the data of (M, Vs, énr) is equivalent to an
F-crystal on Xy. Since F-crystals pull back naturally, the claim is proven.

O

3.1.3 Ramified case

Let F'/Q, be a finite extension, which might be ramified. Let F < F’ be the maximal unramified subfield,
and let @', O be the rings of integers of F’, F. Let m € O denote a uniformizer, with minimal polynomial
f(t) € O[t]. Let R = O[[t]][£}], and let Ror be the PD-completion of R. Then Ry naturally acquires a

‘nl
decreasing filtration with FORo = Ro and F4Ry: being generated by the divided powers %, n = q.
In [Fal99, Def 2| Faltings defines a category MF[q ,,1(O’) for a < p — 2 whose definition we recall here:

Definition 3.4. An object MF[q,,)(O’) is a Ro-module M with a decreasing filtration F'*M, a Griffiths-
transverse flat connection Vj; which nilpotent modulo p, and a (semi-linear) Frobenius ¢, satisfying the
following:

1. M is filtered-free as an Rp--module (meaning a direct sum of twists of Ro), with a basis m; in degrees
g; in [0, w].

2. ¢ is horizontal for V
3. The restriction of ¢ to F4M is divisible by p?, for ¢ € [0, w].
4. The elements ¢(m;)/p? form another basis for M.

Morphisms in MFg ,(O’) are morphisms of the underlying modules which are compatible the additional
structures.

Once again, as Faltings observes, the data of (M, Vs, ¢) gives an F-crystal on O’ Q F,,.

Lemma 3.5. Let S be a smooth formal scheme over Spf O, and let v : Spf O' — S be a morphism of formal
O-schemes. There is a natural base-change morphism MF (1) : MF[q ,1(S) — MF[g ,j(O’).
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Proof. Let M € MF[g,1(S). We may define the flat bundle (M;,Vyy,) underlying MF(:)(M) and the
Frobenius ¢, by simply pulling back the F-crystal underlying M to Spec®’. It remains to define the
filtration. Without loss of generality, we may assume S is affine, so ¢ : A — O’ for A the p-adic completion
of a smooth O-algebra. By smoothness, we may pick a lift 1; : A — Res, and note M; =~ Ror ®4 M. We
now get a natural filtration on M; by taking the product filtration. We must show that this is independent
of the choice of 11, so let 15 be a different lift. Then the crystal structure gives an isomorphism of flat
bundles M7 — M> given as follows. As before, let ¢, ...,t, be local co-ordinates for X with a dual basis of
derivations ;. For a multi-index I = (iy,...,i,) set V(0)] = [ Var(0;)%.
Then our isomorphism M; — Ms is given by:

1 ®,, m— Z W—[LQ(W (SO VM(ﬁl)(m)
7 !

I
Since M e FIIRo and the connection is Griffiths transverse, it follows that this isomorphism

respects filtrations. This completes the proof

0

We point out that if Cv denotes the crystal corresponding to M € MF[g ,,1(0’), then Cnm(SpfO') =
O’ ®r,, M.

3.1.4 Local systems

Following Faltings, we say that a small O-algebra is one that admits a finite, etale map from (9<T1i7 oo, TS,
Let S be a smooth formal O-scheme. Using the above notion of Fontaine-Laffaille module, in [Fal99, Thm
5] there is defined a fully faithful functor D : MF[q ,,1(S) — Locgris(Z,). We recall the notion here, and to
do so we recall some basic rings that are used:

Let S = Spf A where A is a small O-algebra. Consider the maximal extension of the fraction field Frac(A)
in which A[1/p] has unramified normalization, and let A be the normalization of A in this field. We let A°

be the perfection of A/p and W (A”) the Witt ring. Then there is a map W (4”) — A, and we let B*(A)
denote the completed divided power hull with respect to the ideal generated by the kernel I of this map and

p. The group G4 := Gal(A[1/p]/A[1/p]) acts continuously on BT (A). B
Giving an M € MF[q ,,1(S) gives an F-crystal Cy on Sp, and hence by pull back an F-crystal Cv on

i@ F, with a Gal(4/A) action. As in lemma this endows Cyi(B*(A)) with a natural filtration. We
define
ID)(M) = HOHIB+(A)7F117¢(€M (B+(A)), B+(A))

where the homomorphism is of BT (A)-modules and is required to respect the filtration and Frobenius.
The analogous definition using B*(0’) gives a functor D : MF[q ,,1(0’) — Locor(Z,), where Locor (Zy)
simply denotes free Z, representations of Galg-.

Lemma 3.6. Let S be a smooth formal O-scheme, and X be either Spf O or a smooth formal O-scheme,
and f: X — 8. Let M € MF|q_,,(S). Then we have a natural isomorphism f~'D(M) — D(MF(f)(M)).

Proof. Assume first that X" is a smooth formal O-scheme, and assume X = Spf R, S = Spf A are both small
and affine. Now we have a natural map B (A) — B*(R) compatible with the Galois actions. Moreover,
since M is a vector bundle, we have that Cp(B¥(4)) ® BY(R) = Cm(BT(R)). We therefore obtain a
natural morphism f~1D(M) — D(MF(f)(M)). It remains to show that this is an isomorphism.

By |Fal89, IL,h| we see that the natural map Cp(B*(A)) — D(M)* ® B (A) is an isomorphism up to
B8 where Sy is as in [Fal89|. It follows that

B3 - D(MF(f)(M)) ® B (R) < f~'D(M) ® B*(R) = D(MF(f)(M)) ® B*(R).
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Finally, since p { 8, it follows that the map f~!D(M) — D(MF(f)(M)) is an isomorphism as desired.
Since this map is clearly natural, we may glue up to obtain the claim for a general smooth formal Oy schemes
X,S.

If X = Spf ' the proof is identical, using B1(0’) instead of BT(R) and |Fal99, Thm 5] instead of
|Fal89L 1Tk,

O

3.1.5 Liu—Zhu correspondence

Let £ denote a smooth geometrically connected rigid analytic variety over a finite extension F’/Q,. Let
L denote a de Rham Qj-local system on the etale site Z¢;. Then |[LZ17, Thm 3.9] associate a filtered flat
bundle with Griffiths transverse connection LZ(IL) in a functorial way with respect to both 2" and L. If
Z = X" for a smooth, small formal scheme X' = Spf R, then LZ(L) =~ (L® OB, (R[1/p]))“~.

Lemma 3.7. Let X' denote either a smooth formal scheme over O or Spf O'. Let M € MFq ,1(X). Then
there is a canonical isomorphism

M[1/p] - LZ(D(M)*) if X is smooth over O
M ®p,, F' — LZ(D(M)*) if X = Spf O’

Proof. We once again first work locally on Spf R for a small R. By [LZ17, Thm 3.9,v], we see that
LZ(DM)*) ®r OB, (R[1/p]) - D(M)* ® OB, (R[1/p]))

is an isomorphism
Moreover, there is a natural map [Bri08| B*(R)[8;'] — OB, (R[1/p]). Hence, composing the above
with |Fal89, IT, Theorem 2.6*, h] we see that

LZ(DM)*) ® OB, (R[1/p]) = Cm(B™ (R)) ®p+(r) OB,y (R[1/p]).-

Now OB, (R[1/p]) maps to ﬁ[l/p]7 we obtain a Galois-equivariant morphism

A~

LZ(DM)*) ® R[1/p] = Cm(B* (R)) ®s+ (r) B[L/p] = Om(R)[1/p] = M ®r R[1/p).

Taking Galois invariants, we see that LZ(D(M)*) = M[1/p]. Since all the maps are natural, this glues up
to completes the proof for an arbitrary smooth formal scheme O.

_ GRr = S al(R - a
LZ(DM)*) = (Cnm(B*(R)) ®p+(r) OB, (R[1/p])) " = Cm(R)[1/p] ) = (M@gR[1/p]) %™ = M[1/p]
For X = O’ the proof is exactly the same, noting that in this case for M € MFg ,(O’), we have
Cm(R) = M ®g,, O 0
3.2 Proof of Theorem [3.1]

We use the notion of crystallinity in [GY24), Def 4.4], which we refer to as Brinon-crystalline. Recall that a
classical point of a rigid space % over F' is a map spa F’ — & for a finite extension F’/F.

Lemma 3.8. Let O be the ring of integers in a finite unramified extension F'/Qy, and let X/Spf O be a
smooth formal scheme. Let L. be a Zy-local system on X719 which is Brinon-crystalline at every classical
point of X™9. Then L is crystalline.

Proof. By |GY24] Thm 1.1] we obtain that L is Brinon-crystalline. Since F'/Q, is unramified, it follows by
[Hok24, Thm 3| that L is crystalline. O
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Proof of Theorem[3.1] Let M be the Z,-local system on 8" corresponding to M on S, and N = (fri9)*M
the pullback. By Lemma N is crystalline, hence corresponds to a Fontaine-Laffaille module N on X.
Now by Lemmawe see that we have maps ry : g* M — LZ(g7'D(M)*) and 75 : 7*N — LZ (7 'D(N)*),
and natural isomorphisms g~!D(M)* — 7= D(N)* giving induced isomorphisms

s: LZ(g7'D(M)*) — LZ(r 'D(N)*).

We claim that the images of the maps 1,72 are identified by s. To prove this its enough to work at every
Qp-point. So let F’/Q, be a local field and O’ its ring of integers and ¢ : Spf O’ — X’ an arbitrary point.
Note that by Lemma [3.6) we have that MF(go:)(M) is a Fontaine-Laffaille module, and D(MF(go:)(M)) =
t~tg7™ID(M), and that D(MF(g o ¢)(N)) =~ .~ 7~ D(N).

By Lemmas [3.6] [3.7] we obtain maps

Fry 1 ¥g* M — K LZ (g7 'D(M)*) = LZ(D(MF (g o ¢)(M))*).

Moreover, this map is canonical and therefore so is its image. It follows that the images of t*r; and (t*ry
agree. Thus, the images of r; and 7y agree, as desired. It follows that ¢* M and 7n*M are isomorphic as
filtered flat bundles, and thus the Griffiths bundle of g*(M, V, F* M) is trivial on 7—1(x), as desired.
It follows by Lemma that if the Griffiths bundle of (M, V, F*M) is ample, the map g descends to
X, completing the proof.
O

4 Criteria for local integral canonical models

The goal of this section is to give a general setting in which local integral canonical models exists, in the
sense of Definition For simplicity, we first give the smooth case.

Theorem 4.1. Let F/Q, be a finite unramified extension with ring of integers O. Let S/O be a smooth
O-scheme equipped with:

1. A log smooth compactification S/O of S with natural boundary.
2. A Fontaine-Laffaille module M € MFq ) (S) with ample Griffiths bundle.
Then if p>w+ 1, S is an integral canonical model.

See Definition 2.2 and Definition [2.27 for the definitions of (7-)natural boundary and the Griffiths bundle.
In the normal case, we will additionally need a form of stratified resolution.

Definition 4.2. Let O be a Dedekind domain and /O a normal finite type flat O-scheme. A stratified
resolution of Y consists of:

1. An increasing sequence of closed subspaces V! < ... c Y™ = Y, each flat over O, such that )7\)7~!
is smooth over O for each j. Let )7 — )7 be the normalization.

2. For each j, a resolution 77 : &7 — )7 and a log smooth compactification S7/O with the property that
the composition §7 — Y — Y7 (which we call 7/ : S — )7) is an isomorphism over Y7\)7~1.

We say the stratified resolution:
3. is uniform if the resolution of the top stratum 7™ : §™ — Y™ = ) is uniform.
4. has natural boundary if each S’ has m/-natural boundary.

Theorem 4.3. Let F/Q, be a finite unramified extension with ring of integers O. Let Y/O be a normal
finite type flat O-scheme equipped with:
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1. A uniform stratified resolution {n : 8 — Y7} with natural boundary.
2. A filtered bundle (V, F*V') on Y with ample Griffiths bundle.

3. For each j a Fontaine-Laffaille module M7 e MF[O,wj](Sj) and a proper dominant generically finite
morphism ¢7 : T4 — 87 from a smooth T7 /O such that

¢ (M7, F*M7) = §*77*(V, F*V)
as filtered vector bundles.

Then if p > max(w?) + 1, ) is an integral canonical model.

Note that Theorem [£.3] directly implies Theorem [4.1] by taking the trivial stratification and 7 = §™ =
y=_s.

4.1 Extension in codimension > 2

We now use the results of Section [3]to show that, in the presence of a Fontaine—Laffaille module with ample
Griffiths bundle, morphisms from smooth sources which are defined outside of a set of codimension > 2
extend.

Proposition 4.4. Assume the setup of Theorem . Let X/O be a smooth finite type O-scheme and
[ X\Z > Y a morphism for Z c X a subset of codimension = 2 which is contained in the special fiber.
Then there is an extension f : X — ).

Proof. If j is minimal such that Y7 contains the image of the generic fiber X, then the image of X meets
Y7\Y771, so there is a dense open set of X which lifts to S/. By purity of the branch locus, X\Z — X
induces an isomorphism on fundamental groups, so the map X — Y is O-admissible. It follows by Lemma|2.4
that there is a finite type flat X’/O, a proper morphism 7 : X’ — X which is an isomorphism on a dense
open subset, and a morphism X’ — S7 whose generic fiber lifts the morphism X — Y7,

There is nothing to prove for dim X < 1. For dim X > 2, we argue as in |[dJO97] (see also [MB85,[FC90|)
by induction on dim X starting with the base case dim X = 2 and using deformation theory for the induction
step.

Assume first that dim X = 2, so there is a finite set of points ¥ in the special fiber of X such that =
is an isomorphism on the complement X\X. By resolution of singularities for surfaces (|Lip78|, specifically
[Sta23, [Tag 0AHI]), there is a composition of blow-ups at points lying above &, X, — -+- — &} — X, whose
composition factors as X, - X’ — X. Note that the map X\X — Y lifts to S/. To show that X' — & — )
factors through X’ — X (and hence the existence of the required extension), it suffices (for instance by
Lemma to show the following:

Claim. The composition X,, — X’ — S7 — Y contracts all exceptional curves.

Proof. Applying Theorem [3.1] to the diagram

X, — &7

.

XS —— X

we obtain that the Griffiths bundle of M/ is trivial on every exceptional divisor E. For each E we may take
a curve C in 77 dominating E, and it follows that the Griffiths bundle of V is trivial on C, hence it is degree
0 on E. Thus, every exceptional divisor is contracted in ). O
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We now treat the general case dim X > 2 by induction via deformation theory. It will be sufficient to show
that for any x € Z, f extends on an étale neighborhood of x. In particular we may assume X’ is affine and )
is a closed subscheme of a smooth affine O-scheme V. Let H < X be a divisor containing x such that H n 2
is codimension > 2 in H. By induction, the map H\Z — ) extends to fp : H — V. Let gy : H — V be the
composition with the embedding ) < V. Let H; be the ith order thickening of H in X. Given a lift H; — ) of
fu : H — Y, lifts to a morphism ;1 — V are unobstructed since the obstruction lies in H'(H, Oy (—iH)®
g5 Tv) = 0; the set of such lifts is naturally a torsor under H%(H;, Oy (—iH) ® g5Tv). Likewise, lifts of
HN\Z — Y to Hi1\Z — V are a torsor under HO(H\Z, Oy, (—iH) ®g;\zTSU) =~ H'(H,Ox(—iH) @95 Tv),
since Oy (—iH) ® g3, Ty is locally free and codimy Z > 2. In particular, there is a lift H;41 — V which
agrees with the given map H;1\Z — ¥ — V. Since the ideal of H; in H;,1 is locally free (over #), this
lift factors through a morphism H;.; — ). Letting &)} denote the completion of X’ along #, it follows that
there is a formal map X}; — ) whose restriction to (X \Z)?A_[\Z agrees with the completion of f: X\Z — Y
along H\Z.

Let W be the closure of the graph of X\Z — ) in X x Y; note that since X’ — X is proper, it follows
that W — X is as well. Since the ideal sheaf of H; in H;;1 is locally free (over H) for each i, the natural
formal map &}, — & x Y factors through W as it does so over (X \Z)%\Z. Thus, the projection W — X
admits a section over &}). Say the image of w is z; then the map Spec(Oywy ) — Spec(Ox ) admits a
formal section. Since W — X is proper and birational, the following lemma implies it is an isomorphism
above .

Lemma 4.5. Let g : W — X be a proper birational morphism of finite-type integral O-schemes, w a closed
point of W and x = g(w). If the induced map Spec(Ow ) — Spec(Ox 4) admits a formal section then it is
an isomorphism at w.

Proof. The claim is étale-local on X'. By Artin approximation |Art69, Corollary (2.5)] (see also [Sta23| [Tag
0CAUJ), after replacing X with an étale cover there is an algebraic map X — W agreeing with the formal
section to first order. But the composition X — W — X agrees with the identity to first order, and therefore
is an isomorphism. We may assume it is in fact the identity, in which case W — X admits an algebraic
section. It follows that the short exact sequence of Oy ,-modules

0— OX,:E - OW,w - OW,w/OX,x — 0
splits. Since g is birational, Oy ., / Ox 4 is torsion, hence must be zero since Oyy ,, is a domain. O
O

Proof of Theorem[{.3 By assumption, Y admits a uniform resolution. Given smooth X/O and an O-
admissible fr : X — Y, by Corollary 2.5 fr extends in codimension 1 and by Proposition [I.4] the rest
of the way.

O

Remark 4.6. The dim X = 2 step in the proof of Proposition [£.4] in the setting of Theorem follows

immediately from the last claim of Theorem [3.1

4.2 Local models of images of period maps

In this section we give a slightly different formulation of Theoremwhich deduces the existence of the MJ
at each level of the resolution from a single global M.

Proposition 4.7. Let F/Q, be a finite unramified extension with ring of integers O. Let Y/O be a normal
finite type flat O-scheme equipped with:

1. A uniform stratified resolution {m’ : 8 — Y7} with natural boundary.
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2. A smooth P/O with a proper dominant h : P — Y with Oy = hyOp and a Fontaine-Laffaille module

M e MF[g,,,](P) such that:
(a) The filtered flat vector bundle (M,V,F*M) underlying M is pulled back from (V,V,F*V) on V.
(b) The Griffiths bundle of (V,V,F*V) is ample.

(¢c) The local system oV, on P"9 corresponding to M under the Fontaine—Laffaille correspondence
descends to Y.

3. We finally suppose for each j there is a smooth T7/O and a commutative diagram

TI P
7 l

SI h
ol

Vi—y
where ¢7 is proper dominant and étale over a dense open subset of S7.
Then if p > w + 1, Y is an integral canonical model.

Before the proof we need the following;:

Lemma 4.8. Let F/Q, be a finite unramified extension with ring of integers O. Let S, T be smooth O-
schemes.

1. If f+ T — 8 is finite étale of prime to p degree and oV, is a Zy-local system on S™9 such that
(f79)* (4 V) is crystalline, then V), is crystalline.

2. Suppose given:

(a) f:T — S a proper dominant morphism;

(b) U = S a dense open set with preimage V = f~Y(U) such that f|y : V — U is étale and S\U is flat
over O;

(¢c) Fontaine-Laffaille modules M € MFg (T) and Ny € MF'[0,] U) as well as an extension
(N,V,F*N) of the underlying filtered flat vector bundle of Ny, to S;

(d) an isomorphism of filtered flat bundles f*(N,V,F'N) — (M,V,F*M) whose restriction to V
underlies an isomorphism f*Na = M.

Then there is a Fontaine—Laffaille module N on S and an isomorphism f*N — M extending the above
isomorphism.

Proof. The category of Fontaine—Laffaille modules is a full subcategory of the category of local systems, so
the descent datum of f#V, also descends the corresponding Fontaine-Laffaille modules [Fal89).

We now prove (2). The Frobenius morphism on M gives a morphism ¢y : f*F*(M,V) — f*(M,V)
which is compatible with the one on f *(N,V), and we have natural solid commutative diagrams

Fuf F*(N,V) — 0 g e (N, V) Fef* FH (N, V) 2, (N,
T T restricting to T T (4.2.1)
F*(va) 77777777 ¢7 777777 ” (N,V) F*(N,V)h;{L (N,V)|1j{
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where in the top row we push-forward just the underlying vector bundles. Since 7,S are smooth and f is
proper dominant, Os — f.O has torsion-free cokernel. Indeed, since S,7T are smooth, Og — f,O7 is
a split summand outside codimension 2, and both sheaves are reflexive. As N and F*N are locally free,
the vertical arrows in the left square of - have torsion-free cokernel as well, and it follows that f*gb M
restricts to an extension ¢ : F*(N,V) = (N, V). The extension ¢ is flat since it is on 2.

For the strong divisibility condition, note that by eq. - ) F* M V) has a natural flat filtration which
is locally given by FM Do <j<i P! ¢* FP=3_ and ¢, is divisible by p’ on F*. The strong divisibility condition
is then equivalent to p~™“ ¢, : F ¥ — M being an isomorphism. Using the analog of the dlagram eq.

for this morphlsm since p~% f*d> v B ' — f«M is an isomorphism and restricts to p~" ¢y on Z/{ we conclude
that p~lwey is an isomorphism. O

Proof of Proposition[{.7] By assumption, for each j, we have a Fontaine-Laffaille module #*M on 77 whose
corresponding local system is pulled back from Y"%. Moreover, the underlying filtered flat vector bundle
of #7*M is pulled back from (V,V,F*V) on V. Applying part [1| of Lemma [4.8| to the open set U7 of SJ
over which ¢/ is finite étale, we conclude that there is a Fontaine-Laffaille module N;;; which pulls back

o (H* M)l(q]) 1@zsy- Applying part 2L we find that Ny, extends to a Fontaine-Laffaille module N7 which

pulls back to #/*M. In particular, we have ¢7*(N7, F'Nj) >~ @/*#73*(V, F*V). Thus, all the conditions of
Theorem 3] are satisfied. O

4.3 Making period maps proper

We will need a result allowing us to extend geometric Fontaine-Laffaille modules when the underlying filtered
flat vector bundle extends.

Proposition 4.9. Let F/Q, be a finite unramified extension with ring of integers O. Let P/O be smooth
with a partial log smooth compactification (P',D)/O. Let f : Z — P be a smooth projective morphism with
geometrically connected fibers of relative dimension < p. Let M = H}_%R(Z/P) be the Fontaine—Laffaille
module with underlying filtered flat vector bundle the De Rham cohomology of Z/P. Assume:

1. There is a generically finite proper morphism g : (Q,&) — (P, D) from a log smooth (Q,A)/O and
a semistable morphism W, A) — (Q,&) from a log smooth W, A)/O extending the base-change of f
(possibly after shrinking P ).

2. The filtered flat vector bundle (M,V,F*M) extends to (M', V', F*M") on P’.

3. g*(M'\V' F*M') =~ HYp((W,A)/(P',D)) via an isomorphism extending the natural one, where
HE (W, A)/(P', D)) is the relative log De Rham cohomology.

Then (M', V', F*M’) underlies an extension M’ of M to P’ as a Fontaine—Laffaille module.

Proof. According to [Fal89, Thm 6.2], the completion of the filtered flat bundle Hf, (W, A)/(P’, D)) natu-
rally underlies a log Fontaine-Laffaile module |Fal89, §2i]. By assumption the connection has trivial residue,
so it follows it is in fact a Fontaine—Laffaille module. Now apply Lemma 2). O

5 Existence of integral canonical models

In this section, we deduce the existence of integral canonical models for sufficiently large primes.

5.1 Proof of Theorem 1.3l

In this section we show that models of Shimura varieties satisfy the conditions of Theorem for large
primes, thereby proving Theorem Let S = Sk (G, X) be a Shimura variety. We let E denote the reflex
field. Sk (G, X) carries a flat principal G-bundle £/S, which admits a canonical model over E. A choice of
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Hodge co-character defines a parabolic subgroup P < G, and gives a parabolic bundle P/S, along with a
canonical morphism P — &, where all this data descends to Fg. We note that P is not flat for the connection
on€&.

Let V denote a faithful rational representation of G, and V < V denote a lattice. The choice of V specifies
a compact open subgroup of G(Ay) by considering the stabilizers of V,. We choose the level structure K to
be a subgroup of this compact open subgroup, such that it is neat, and such that it acts trivially on V/3V.
Corresponding to V there is a family of Qp local systems V; with Z; sub-systems V,. Moreover, there
is a filtered flat vector bundle .,V over Sk (G, X) — indeed we have that .,V is defined by € x¢ V. The
filtration is induced by the fact that ,, V is also canonically isomorphic to P x g, V. Now, let p be a prime
and let v | p be a prime of E.

By choosing N to be a large enough integer, we may assume that Sk (G, X) spreads out to a smooth
integral model .k (G, X)/Og[1/N] such that:

e G has a reductive model G/Z[1/N]. There are elements s, € V[1/N]® whose point-wise stabilizers
define the group G.

e For every p{ N, we have K = G(Z,) - KP, where K? is the prime-to-p level structure.
e P c G is induced by a parabolic subgroup of G defined over Og[1/N].

e The map P — £ is induced by a map & — & over S, where & is a flat principal G bundle and & is a
principal bundle for the parabolic of G defined over Og[1/N].

Note that this gives us an integral model ,,V/.%k (G, X) for the filtered flat bundle .V (where the flat
bundle is defined as & xg V[+], and the filtration is induced by & — &).

Lemma 5.1. After increasing N we have the following.
o Yk (G, X) admits a log-smooth compactification over Og[1/N].
o The local systems ot Vy extend to Sk (G, X)[1//].

e For each finite place v of Og[1/N], &Vp(m) is crystalline on Sk (G, X)g, for m sufficiently small so
that V(m) has positive Hodge degrees.

e For each finite place v of Op[1/N], let , V/Sk (G, X)o,, denote the Fontaine-Laffaille module cor-
responding to «Vp under the Fontaine-Laffaille correspondence. Then the Griffiths bundle of .V is

ample.

cris

Proof. The first condition follows by choosing a log smooth compactification over the generic fiber.
For the second condition, we use the following result of [KP23al, Thm 1.3]:

Theorem 5.2 (Klevdal-Patrikis). There is an integral model S of Sk (G, X) over Z[1/N] for some N such
that for each € the local systems ¢ V¢ all extend to S[1/¢].

The third condition is [PST*21, Thm 7.1]
The final condition follows because the same is true for the filtered flat bundle , V' over the generic
point. O

It follows from Theorem that (G, X)o,, is an integral canonical model. It remains to argue that
YKk (G, X)oy, is the unique model admitting a log smooth compactification. Let S be another such model.
The extension property yields that the identity map over the generic fiber extends to f : S — /x (G, X)o,, ,
and by purity of the branch locus this map is an open immersion. Let W < S x %k (G, X)oy, be the closure
of the graph of f. Over the generic point, the inverse image of the boundary of S in W must map to the
boundary of .k (G, X )op,, since every boundary divisor has infinite local monodromy, and the same is
therefore true for WW. Thus, the extension is an isomorphism. O
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5.2 Proof of Theorem [1.§

Suppose F' is a number field, P/F a smooth variety, and f : Z — P a smooth projective family. Let hp :
P’ — Y be the Stein factorization of the (compactification) of the period map associated to Wz := RfyZ zan
as described in Then hp is defined over F'. By spreading out over O := Op[1/n] and inverting finitely
many primes, we may assume we have smooth P, Z/0, a log smooth partial compactification (P’,D)/O of
P, and Y/O normal finite type flat as well as:

1. f:Z — P smooth projective.
2. h:P' — Y proper with Oy = hyOp:.
3. Y admits a uniform stratified resolution {n’ : &7 — Y7}.

4. For each j there is a smooth 77/O and a commutative diagram

Ti s P!

o

Y h

|

Vi— Y
where ¢’ is proper dominant and étale over a dense open subset of S7.

5. By |ALT20] there is a semistable model (W, A) — (Q, &) for the family f up to a smooth alteration
9:(2,€) — (P, D).

6. The filtered flat vector bundle (V,V, F*V) on Y extends to (V,V, F*V) on ), and its pullback to P is
identified with the filtered flat vector bundle underlying H% (Z/P). Moreover, (V,V, F*V) has ample
Griffiths bundle by Theorem [2:28

7. By Corollary [2.24] the local system HY (Z/P[1/¢],Z¢) extends to P’ and descends to ;V, on Y[1//].
By Lemma [2.25] and Lemma [2.8] it follows that the stratified resolution has natural boundary.

This yields part [Ta] and both [2] and [3] follow from [IB] by Corollary 2:19] and Proposition [2:16] Part [4]is clear
from construction. Thus it remains to show the extension property in[Ib] and since by Lemma [2:25] we have
the extension in characterstic 0, it suffices to show ), is an integral canonical model for each finite place v.
By Theorem we must show for each finite place v of O that there is a Fontaine—Laffaille module M on
P! with the required properties. The filtered flat vector bundle underlying H ’[“) r(Z/P,) extends to P,, and
so by Proposition [£.9]it extends as a Fontaine-Laffaille module whose underlying filtered flat vector bundle
is the pullback of (V,V,F*V)p, on V,. O

6 Tate-semisimplicity and special points

The aim of this section is to first prove that prime-to-p Hecke correspondences extend to the integral model
over Op, where v | p and use this to prove that the Frobenius endomorphism on ¢V, is semisimple for
every « € i (G, X)(F,). The main theorem of this section is:

Theorem 6.1. Let pt N be a prime, and x € Sk (G, X)(F,) where k is a finite field of char. p. Then ct¢
acts semisimply on Vi 4.
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This is a special case of a folklore conjecture that posits that the Frobenii at closed points are semisimple
for any irreducible local system defined over a smooth F,-variety. We will then use this to show that every
]Fp point of .Zk (G, X) is special. As the proof of Theorem ! strongly uses Hecke correspondences, we will
start this section with a discussion on Hecke correspondences in characteristic zero and their extension to
Yk (G, X). We will then reformulate the notion of special points in terms of the Hecke action, and then
prove Theorem and use that to deduce that every F,-point of .7 (G, X) is special.

6.0.1 Extension of Hecke correspondences

Let V be a lattice in a faithful representation V of G, such that V® Z stabilized by K. Let K (n) denote the
kernel K — Aut(V/nV), and consider the congruence covers S, := S ) (G, X). We focus on the towers
Sen for a fixed prime £. Over the generic fiber this is a (possibly disconnected) Galois cover of S = S;. By
taking the total space of the local systems V/¢"V we obtain smooth integral models S,, with log-smooth
compactifications over the base, that are Galois over .7k (G, X) = S;.

We recall some basics about Hecke correspondences. Let h € G(Z[1/f]). Let ¢™ be such that A= K,({")h <
K. Then there are well defined maps 7, : Sgn — S7 for large enough n. Let 7 : Syn — S7 denote the standard
projection.

Then 71z is corresponds to (a subset of ) mod £"- equivalence classes of trivializations of ¢ : V, = V, and

mh(21) = mp(22) for m(z1) = w(x2) = x if and only if ¢, € K.

Theorem 6.2. For h € G(Qy) the map m, : Sgn — S - which exists for large enough n - extends as an etale
map over Z[1/{N]

Proof. This is an immediate consequence of Theorem

With this in hand, we have:

Definition 6.3. The ¢-power Hecke correspondence 75, associated to h on .k (G, X)/Og[1/¢N] is defined
as 7, (z) = mp (771 (2)).

Let p ¥ (N be a prime, let F' be a p-adic local field with Op < F its ring of integers. Let y €
Ik (G, X)(Op). We then have that 7, (y) = {y1 ... yn} for some integers n, where y; € .k (G, X)(OF,) where
F;/F are finite unramified extensions. There is a canonical Galois action of 7 (OF) on the set {y1 ...yn}
induced by the action of m1(Op) on V. Further, we have that the field of definition F; of y; is just the
extension corresponding to the stabilizer of y; in 71(Op). Finally, the Galois action of m1(OF,) on Vg, is
induced by the Galois action of m1(OF) on Vi .y =et Vo, ® Q by considering ¢V, = t;lheth Cet Viw
(here, t; is the choice of mod ¢"-trivialiazation corresponding to the point y;). This description also holds
with O replaced with finite fields, as m1(Op) = 71 (F,) where F, is the residue field of Op.

This discussion has the following immediate consequence.

Lemma 6.4. Let y € Yk (G,X)(Op) (resp. Sx(G,X)[F,)). Let 0 € m(Op) (resp. m(F,)) denote
the geometric Frobenius endomorphism, and let e denote the automorphism of V. induced by o.
Let h € G(Qq) be some element, and let mh(y) = {y1...yn}. We have y; is in Sx(G,X)(Op) (resp.
Ik (G, X)(Fy)) if a(ti_thz) = t;th[. Further, if we were to identify Vo with V¢, using t;, we obtain
the identification hVy =g V, ,, with the Frobenius at y; acting as h;tlgog,mh.

6.1 Special points
Proposition 6.5. Let x € Sk (G, X)(C). The following are equivalent:

1. x is a special point.

2. For infinitely many primes £ at which G is split, there exists a finite set S := {& = x1,...,z,} C
Sk (G, X)(C) and a mazimal split torus T < G defined over Qg such that T,(x) NS # & for every
he T(Qg)
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Proof. Assume 1. Then there is a Q-torus T — G and a cocharacter h : S' — Tk which lands in X. By
enlarging T assume that T is maximal. Then conjugating by elements of T does not change h, and the
statement follows.

Now assume 2. Let y = y1, ...,y € G(A)/K be lifts of the x;. Without loss of generality we may assume
that for every i = 1,..., n there is an element ¢; € G(Q) such that ¢; -y = y;. Moreover, we let z; := y; g € X.

Now let H ¢ Gg denote the largest Q-subgroup fixing z = z;. Note that H(R) is compact and therefore
H is reductive. Let ¢ be a sufficiently large prime such that G, H are both split, K, and K, n H(Qy)
are hyperspecial, the torus T exists as in assumption 2, and all the y; have component 1 - K, at . Then
Vh e T(Qy), m,-1(y) consists of the union of h; -y where the multiplication takes place in the £’th co-ordinate
only, and h; ranges over elements of K;h~'K,. Therefore, there is an element v € G(Q) such that

° ’ygEthKg
e v-z€{z1,...,2n}

The second condition is that for some i, € ¢; - H, and thus we see that
U H(Q) — KN\G(Qr)/ K.

Let Z < G be a maximal, split Q-torus such that Z’ := Z n H is also a maximal, split Q, torus of H.
Let W, W’ be the Weyl groups of (G, Z), (H, Z'). By |Tit79, Pg. 51], we have

Kg\G(@g)/Kg jact X*(Z)/W

and similarly
(Ke n H\H(Qu)/(K¢nH) =~ X (Z")/W'.

Let Py < P be the coroots in a positive Weyl Chamber for Z’, Z respectively. Let us write | J;~, K,c;Cy
as (Jyeg KeA(0) Ky for S © P*. Then

U Kyc; - H Qo) K, (U KwJQ) - K H(Qe) K,

CUKM Ko | KN(OK
AES )\/GP;I'

Note that the containments must in fact be equalities. By [Tit79, Pg. 148] we see that this latter product
contains (¢) for € P+ only if y1 is dominated by some root in S + Pj. But S is finite, Pj; is contained in
a sublattice of X,(Z), so this is only possible if Z' = Z.
Thus H has the same rank as G. Thus z has a stabilizer containing a maximal Q-torus, and therefore x
is a special point, as desired.
O

Let R denote a ring of characteristic p. In the case of Shimura varieties of Hodge type, one defines an
R-valued point to be special if the abelian variety associated to the point has complex multiplication. Guided
by Proposition we make the following definition.

Definition 6.6. Let R be a ring of characteristic p. We say that = € .Zx (G, X)(R) is special if there exists
a finite set © = x1, T2, ...z, € K (G, X), and split maximal tori T; = Gg, for infinitely many primes ¢ such
that 7, (x) N {x1,...,2,} # & for every h € T(Qy).

We will end this section by proving Theorem and using it to prove that every E,—V&lued point of
Ik (G, X) is special as per our definition.
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6.2 Tate semisimplicity

We will now prove Theorem [6.1}

Proof. We first fix a G-equivariant identification ¢V, . = V,. Suppose that ;e , doesn’t act semisimply —
let (e4z.6) = Pss - Punip- Note that the Jordan decomposition implies that ¢ss, @unip are elements of G(Qy).
A sufficiently ¢-divisible power of ¢unip Will preserve V, , and hence by increasing the field F, we may and
do assume g, @unip lies in K.

We will find hecke operators in G(Qg) which preserve F -rationality, and therefore which eventually give
us that our point is stable under that appropriate operator, which we will use to deduce semisimplicity. In
order to preserve F,-rationality, we pick our Hecke operator as follows. Let H < G denote the centralizer of
(pss — it contains ¢, and punip. Note that H is semisimple by [Conl4]. Using the Jacobson-Morozov lemma,
we can find an element h € H(Qy) such that hilcpuniph = cpﬁiip. Let 73, denote the corresponding Hecke
correspondence. One of the points of 7, (x) (which we call 1) will correspond to the lattice AV, ¢ V; ® Qy,
and as this lattice is stable under the action of ¢, the point will also be defined over F, by Lemma
The action of ¢, is just ¢, on the lattice hV, < V;, again by Lemma Therefore, we have that
Pg, = h’lcpmh = gosscpfiﬁp by construction. Therefore, ¢g, unip — 1 is strictly more divisible by ¢ then
©z,unip — 1, and therefore x # z;.

Iterating this process over and over, we get a sequence of mutually distinct k-rational points. This is
contradiction arising from our assumption that ¢umip is nontrivial.

[
Theorem [6.1] and its proof has the following immediate consequence.
Corollary 6.7. Every z € Sk (G, X)(F,) is special.

Proof. Tt suffices to prove that the image of = in the adjoint Shimura variety is special, and so we suppose
that G is an adjoint group. The point x is defined over some F,. Let H denote the centralizer of ,¢,,
where ¢¢, is the F,-Frobenius at = acting on ¢ ¢V,. The argument in the proof of Theorem yields that
h(x) N Tk (G, X)(Fq) # & for every h € H(Qq). By Theorem [6.1] we have that H must contain a maximal
torus of G defined over Q. Therefore, if we were to set S = {x = z1,...2,} = Sk (G, X)(F,) and T to
be some maximal torus of H defined over Qp, we would have that 7,(z) n .S # J for every h € T(Qy).
Therefore, it suffices to prove that there exist infinitely many ¢ such that some power of ;¢, is contained in
a split maximal Q-torus of G.

By the main theorem of [KP23b|, the conjugacy class of ¢, is Q-rational, and does not depend on /.
Therefore, we may choose ¢ such that Gg, is split, and such that the characteristic polynomial of ;¢, on
some faithful representation of G splits over Q. By replacing ¢, by a power (i.e. replacing g by a power),
we may also assume that the roots of this characteristic polynomial do not differ by a non-trivial root of
unity. It follows that ¢¢, is contained in split torus. However, in a quasi-split (and therefore split) group,

every split torus is contained in a maximal split torus.
O

7 Complete local rings for large primes

Let notation be as in Section and let p { N denote a prime. As we will exclusively work over a p-adic
field, we let G denote Gz,. Throughout this section, the level structure at p is G(Z,).

The goal of this section is to fully describe the Fontaine-Laffaille data restricted to complete local rings
of Sk (G, X) at F,-points z, and to describe the Fontaine-Laffaille data at W-valued points of Sk (G, X) in
terms of picking a filtration on an appropriate F-crystal. For such a point x, we let #k (G, X)* denote the
formal neighbourhood of .Zx (G, X) at . Let R* denote the complete local ring at z, and let _,_V* denote
the restriction of _, 'V to Sk (G, X)*. Similarly, we let _, V, denote the restriction of _,_ V to any W-point
of Zk(G,X). Let .V, denote the induced F-crystal at z € Sk (G, X)(F). We will treat _, V, as a free

cris cris
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W-module equipped with a semi-linear Frobenius endomorphism. We let ¢,, denote Frobenius on
¢z denote Frobenius on _, V.

is

V* and

cris

7.1 The Fontaine-Laffaille module on complete local rings
7.1.1 F-crystals with G-structure and G-split filtrations.

We refer to [SZ21, Section 2| for the notion of an F-crystal with G structure. Recall that we have ten-
SOrS So € V(ﬁ. These tensors induce global sections of the p-adic etale local system etVz@ (defined over
N

Ik (G, X)/ OE[ﬁ]) — we will refer to them as etale tensors ctSq.p €et Vz(?'
Via the Riemann-Hilbert correspondence, the tensors s, give rise to flat sections s, €, V®. We have
the following proposition:

Proposition 7.1. The tensors ., s, descend to integral tensors in ,, V& over OE[%]

Proof. This follows directly from the existence of the integral model &/Og[+] of the flat principal G-bundle.
Then we have the isomorphism
VO~ & xgV® (7.1.1)

over OE[%] Using this isomorphism, the tenors s, induce canonical flat sections of ,,V®. These are
precisely the flat sections s, and the proposition follows.
O

Let v denote some prime of E above p, and consider the p-adic etale local system V,/Sk (G, X)/E,. As
in [Kis10, Section 1.3.3], we may apply the Fontaine-Laffaille functor to the tensors ¢sq,, to obtain tensors
Sa € ... V&, which by construction are fixed by Frobenius and contained in Fil°.

Recall that the integral structures on ,,V/Sk (G, X)g, induced by _, V and ,,V are the same. We have
the following proposition:

cris

Proposition 7.2. Under the identifications above, we have _,_Sq = .5 Sa-

cris

Proof. As both sets of tensors are flat, it suffices to prove that the two sets of tensors agree at some point —
we will show that they agree at a special point. Indeed, at a special point y, all the data -V arise from the
cohomology of a CM abelian variety. Similar to [Kis10}, Section 2.2.2], the equalities follow from the work of
Blasius-Wintenberger [Bla94]. O

Corollary 7.3. There is an (non—canom’caﬂ) isomorphism of R*-modules 1" : V,QR* — . V¥ which sends

the tensors s, to

cris

cris Sa-

Proof. This follows directly from the ismorphism in Equation (7.1.1)) and the fact that &| s, (q, x)= is trivi-
alizable (Note that the connection however is not trivializable as a principal bundle). O

Now, let & € .7k (G, X)(W) denote a W-valued lift of z. Let _, V; denote the Fontaine-Laffaille module
pulled back to Z. Corollary [7.3] has the following immediate implication:

Corollary 7.4. There are isomorphisms 1z : V, @ W — V;  R* &

tensors so, and such that 1otz = 1*.

Vz and V7 that respect the

cris cris cris

We will now prove that the second isomorphism in Corollary [7.4] can be chosen to respect filtrations.

Proposition 7.5. The isomorphism ¢ in Corollary may be chosen such that Fil*(
isomorphically onto Fil*(_, . V®).

cris

Vz) ® R* maps

cris

4The non-canonicity is because any choice of isomorphism can be pre-composed by some element of G(R®).
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Proof. Consider the subgroups of GL(_,, Vz) and GL(_, V*) that fix the tensors s, and the filtrations Fil®.
The existence of the integral model of &2/.%k (G, X) implies that these are parabolic subgroups Py < Gw
and Pg= < GRge respectively — the identification ¢z and (* in Corollaries [7.3] and [7.4] allow us to think of
the parabolic subgroups as subgroups of Gy and Gr=. Further, Pgr. clearly specializes to Py via the point
Z. Consider now the two parabolic subgroups Pre and Py ® R* of Fr=. These two subgroups are equal
(and therefore conjugate) at the unique closed point. By [Conl4] Corollary 5.2.7], the two parabolics are
G(R™)-conjugate. Conjugating ¢ by this element still respects the tensors (which are fixed by elements of G)
and now respects the filtrations by construction. The proposition follows. O

cris

Finally, we have that Fil® is induced by a G-split co-character. In other words, we have:

Corollary 7.6. The filtration on Fil®(_,, Vz) is induced by a Gw -valued co-character.

cris

Proof. We will let Z also denote the W[1/p]-point of .#k (G, X). By [Kis10, Lemma 1.1.4], it suffices to prove
that the filtration on . V; is induced by a Gyy [y /p)-valued co-character. Further, we have (by [DLLZ23|) that
Vs and D, (etVp,z) are isomorphic as filtered vector spaces. The fact that the filtration on D (et Vp,z) is
induced by a G-valued co-character now follows from |Kis10, Lemma 1.4.5]. O

7.1.2 Explicit coordinates

We pick coordinates on R* and write it as W{[z1,...,2,]], such that the point Z is given by setting all
the z; = 0. We choose a lift of Frobenius o, on R* that extends the usual Frobenius ¢ on W and satisfies
ou(x;) = xf. Using the isomorphisms ¢z, t*, we may now write ¢, = b,0, and pz = bo, where the fiber of
b, € G(R*[1/p]) at & is b e G(W[1/p]). We also fix a choice of Gy -valued co-character p that induces the
filtration on _, Vz) and on _, V* via ¢.)

cris cris

Proposition 7.7. We have b, € G(R*)o(u(p)).

Proof. Let . V¥ denote the weight spaces of
divisibility condition yields that @), Lbu (o (...,
W, and acts as the identity on the coordinates x;. Further, the action on

by Corollary
By definition, we have that u(p)(_,,.

whence _._V® = b,o(u(p)~1)(,,..V*). It therefore follows that b,o(u(p)~!) € GL(
follows as G(R*) = G(R*[1/p]) n GL(

V7 under . Clearly, Fil" = @P),_ . V#. The strong-
V7)) = _..V®. Here, o denotes the semi-linear Frobenius on

cris
V7 is via the Z, structure given

cris

VE) = pl,, VE. Therefore, we have that ., V" = (B buo(u(p) L V7).

i ¥VE). The proposition
V7). -

We have the immediate corollary:

Corollary 7.8. We have be G(W)o(u(p)).

7.1.3 The Fontaine-Laffaille module on complete local rings

We will now prove the main result of this section, which is to give a description of the Fontaine-Laffaille data
on Sk (G, X)* analogous to the case of abelian type Shimura varieties following Kisin |[Kis10|. Let notation
be as in the previous subsections. Recall that we have chosen an isomorphism _, Vz; ® R* —_, V* of filtered
modules compatible with the G-structure defined in Subsection [7.1.1]} We note that such an isomorphism is
unique only up to an element of P(R*), where P is the parabolic subgroup of G defined by the filtration.
Also recall that we have chosen a G-valued co-character (defined over W) that splits Fil®. Let U°PP denote
the opposite unipotent of i, and let U°PP denote the completion of U°PP at the identity mod p.
We now fix tz. We note that the choice of ¢ fixes the choice of ¢*.

cris

Theorem 7.9. The isomorphism of filtered modules ¢ :_,, Vz @ R* —_.. V¥ can be chosen so that b, = u-b,

where u € U°PP(R®). Further, the map induced by the point u : Spf R* — U°PP s an isomorphism.
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Proof. We will first prove that we may choose ¢ such that u € U °PP - and will then use the versality of the
Kodaira Spencer map to show that the tautologocal map u induces is an isomorphism. The first part of the
proof will follow [KLSS21} Proposition 4.7].

Let I = R* denote the kernel of R* > W. We have that b, = u'b, where v/ € G(R*) with v’/ = Id mod I.
Therefore, we also have that v’ € U°PP mod I. We may write v’ = Au with A\ € P and u € U°PP, with
both A and w reducing to the identity modulo I. Replacing ¢ by A o« has the effect of replacing b, by
A t/bo(A) = u(ba(A\)b~1)b. Define /(1) to be u(ba(A)b~1). As o(I) is generated by t¥, we have that
u'(1) € U°PP mod I?, and we may thus write u' (1) = A(1)u(l), with A(1) € P reducing to the identity
modulo I? and u(1) reducing to the identity modulo I. Tterating this process, we may change coordinates
by an element of P again and replace b, by u/(2)b = u(1)(bo(A(1))b~1)b, whence u/(2) € U°PP mod I*".
Iterating this process is equivalent to modifying j by the convergent product ... A(2) - A(1) - A, and has the
effect of writing b, = w - b with uw € U°PP(R*) as required.

We will now prove that the tautological map Spf R* — U°PP induced by u is an isomorphism. The
leading order term of the connection is du (see |Kis10, Proof of Lemma 1.5.2. Therefore, the Kodaira
spencer map reduces mod I to the element duz : Hom(Tz; R* — End(Gr,,,, Vz)), where duz is the restriction
of du to the tangent space of T;T* of R* at &. The image of duz is contained in Lie U;*P. The versality of
the Kodaira-Spencer map implies that duz is an immersion. As the dimension of U°PP is the same as the
dimension of R, it follows that u is an isomorphism.

O

7.2 Versality of Filtrations

The setting and notation will be as in Section Let 2’ denote a W-valued lift of z. The F-crystals under-
lying the Fontaine-Laffaille modules _, V3 and _, Vs are canonically isomorphic, and indeed are canonically
isomorphic to the F-crystal _, V.. This canonical isomorphism is obtained by considering the horizontal
continuation sy of elements s e_,, Vz to ., V* with respect to the connection V on _, V*. We will use this
identification to view Fil*(,,, Vz) and Fil°*(_, Vs ) as filtrations on _, V,, i.e. different filtrations on the same
underlying F-crystal. The content of the following proposition is that points & € R*(W) are in bijection
with filtrations of the form g - Fil*(_, Vz), where g € U°PP(W). This result will be used crucially in a later

section to define the canonical lift of (u-)ordinary and then prove our CM lifting theorems.

cris cris

Proposition 7.10. There is a bijection between U°PP (W) and points &' € R*(W), where the bijection assigns
to g € U°PP(W) the Fontaine-Laffaille module with underlying F-crystal _._V, and filtration g - Fil*(_, V%).

We will first need the following result about flat sections on _, V*. Let O denote the ring of rigid-analytic
functions on the rigid-analytic space given by the tube of .k (G, X) over z. The tube is just a Sk (G, X)-
dimensional open unit ball around z. Note that R*[1/p] < O is the subset of bounded functions. Recall that
we have the coordinates x; € R, whose vanishing defines . Let y; € O be defined by y; = % We have the

cris cris

inclusion O W[]l)]<yz>, given by restricting functions on the open unit ball to the closed ball with radius
%. We let W{y;) denote functions on this closed ball that are bounded above by 1. We are now ready to
state the following lemma.

Lemma 7.11. We have the following results:

1. The connection V has a basis of solutions over O. Further, (_,,V®,V)|w¢y,> is isomorphic to (.. V&_o®@w
W<y;»,d) . Consequently, the horizontal continuation of every s €_,. Vz is an element of _, . V* ®pg=

2. Let s €. Vi be some element. Let § denote the element s@1 € _, V* under the isomorphism in
Theorem [7.9. Let sy denote the horizontal continuation of s to _ V* ® O. There exists a unique
element g € G(O) such that g - 5§ = sy where g is independent of s. Further, g€ G(W<{y;)).

cris

5Note that in loc. cit., the leading order term is described as u~! - du. As u = Id mod I, du and u~'du have the same
leading term.
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3. g =u"' mod (x;)2, where u is the tautological point u € U°PP(R®) as in Theorem . Further, the
coefficients of the series expansion of g in the coordinates y; are divisible by p? for the non-linear and
non-constant terms.

Proof. This lemma is proved by direct calculation. First note that (. V* V) has a full set of solutions over

W{1/p][[z:]], with flat sections given by:

sy = Zﬂ H V()" ), (7.2.1)

where the sum is taken over all tuples @ = (w;) of non-negative integers.

cris

1. That V has a basis of solutions over O follows from the Frobenius structure (Dwork’s trick). The fact
that the flat bundle (_,,, V*, V)|, is trivial is a general fact about vector bundles with flat connection
on W{[x;]] pulled back to W<y;) for primes p > 2. Indeed, the connection matrix has entries valued
in W{[z;]], and after substituting x; = py;, it is evident that the resulting expressions are contained
in W{y;), and indeed, we have sv |,y = 3|wy,» mod p.

2. By [Kisl0, Lemma 1.5.2] and [Kis17] El]ﬂ it follows that V € LieG®L,.. Therefore, g is indeed a point
of G, a-priori valued in W[1/p][[x;]]. The fact that it is an O-valued point (and indeed, a W<{y; ) -valued
point ) of G follows from the first part (and the fact that G(W<{y;)) = GL(W<y;)) n GW[1/p][[z:]]))-

3. This follows from Equation (7.2.1) and the fact that the leading term of V is du.

With this in hand, we will now prove Proposition [7.10}

Proof. Let h = g~1. By Lemma (3), we have that h = u mod (y;)? N (p?). We have that 5 = h - sy.
We let Fil® denote the filtration Fil®*(_, Vz). The filtration on _,_V? is given by Fil* = Fil* @w R*. Let

Fily denote the horizontal continuation of Fil®. We then have that h - Fily = Fil*. Let P];‘l]' c G be the
parabolic subgroup of G stabilizing the filtration Fily,. We may write h = «’ - X/, where v’ € UOPP(W<yl>)

and \' € Prig (W<yz>) we have that Fil* = -Fily. Note that «/ = h mod (y;)? n (p?).

Let Uo/pp < U°PPris denote the closed ball of radius % around the identity. The element v’ induces

a rigid-analytic map Sp W(y;) — ﬁoPp’rig, and the conditions on «' imply that the image is contained
in Uf/pp Note that unipotent groups are uniquely p-divisible, and so the map “dividing by p”’ gives an
isomorphism Uff;p — U°PPrig. Here, we abuse notation and also allow U°PP to denote the formal scheme
obtained by p-adic completing U°PP. Therefore, by composing u’ by the “dividing by p” map, we obtain
a map u” : SpW/[1/p]{y;> — U°PPH&. Both these rigid spaces admit natural integral models — Spf W{y;)
and U°PP, The congruence conditions on ' imply that u” is induced by a map on these integral models.
It suffices to prove that «” is an isomorphism, which would follow from the claim mod p. The congruences
established in Lemma together with Theorem imply that u” is an isomorphism modulo (y;)?, and
that the coefficients in the series expansion of u” in the coordinates y; are divisible by p for the non-linear
and non-constant terms. It is now clear u” is an affine linear map mod p, and it suffices to check that it
is an isomorphism at the tangent space of some closed point. But this follows from the fact that u” is an
isomorphism mod (y;)?. The proposition follows from here.

O

6 As the erratum indicates, the conclusion that V € LieU ® Q}%z is false without extra assumptions (for example, the point
z being ordinary), but the weaker claim V € LieG ® Q}?z is true.
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8 The p-ordinary locus: CM lifts and Tate’s isogeny theorem

In this section, we will define the notion of p-ordinariness. This notion generalizes the notion of ordinary
abelian varieties. We will then prove that the p-ordinary locus is open-dense, and that every p-ordinary
point admits a lift to a special point. This generalizes the Serre-Tate canonical lift of an ordinary abelian
variety (and generalizes work of Moonen for Shimura varieties of PEL type, and work of [SZ21] in the case
of Hodge type Shimura varieties).

We keep the notation of the previous section. Let B < G be a Borel subgroup defined over Z,, and let
T < B c G be a maximal torus that splits over an etale extension of Z,(that G/Z, is reductive implies
that these objects exist). Let x € Sk (G, X)(F). Associated to the F-crystal .V, is the Frobenius element
b, € G(L), which is well defined up to o-conjugation by G(W). Let v, € X, (T) be the dominant element that
is conjugate to v, the Newton cocharacter associated to b, (see work of Kottwitz [Kot85| and [Kot97] for
definitions and more details). Note that the conjugacy class of v, depends only on the o-conjugacy class of b,
and so the definition of v, is independent of the choice of representative of the o-conjugacy class of b,.. We note
that v, is defined over Z,,. Let u, € X, (T) denote the dominant co-character with b, € G(W)o (1z) (p) G(W).
The co-character 1, might not be defined over Z,, and let fi, = m ZTeGal( E,/Q) 7(p) denote the Galois
average of i, where E,/Q,, is some finite unramified extension splitting T'. We have that v, < /1, (for example,
see |Gas10]), where two dominant fractional cocharacters satisfy p’ < p” if and only if p” — i/ can be written
as a non-negative rational linear combination of positive co-roots. We have the following definition.

Definition 8.1.
1. The point x is said to be u-ordinary if v, = [i,.
2. The point x is said to be ordinary if it is p-ordinary and if 1, is defined over Z,,.

We remark that when G = T is itself a torus, then every point is y-ordinary. The notion of p-ordinariness
was first introduced by Rapoport in his ICM talk (see also [Worl3|, [Moo04], and [SZ21]). The p-ordinary
locus will be open-dense if nonempty. This was done in [Worl3| in the case of Shimura varieties of abelian
type, when the level structure at p is hyperspercial (see also [Biil01]). We prove this in the case when p is a
large enough prime — we remark that our proof works both in the abelian and exceptional cases.

Theorem 8.2. Let p be a large enough prime and let v | p be a prime of E. Then the u-ordinary locus of
Sk (G, X)p, is non-empty.

v

We will prove this result at the end of this section. The content of [Worl3|, Proposition 7.2] is the following
result:

Proposition 8.3 (Wortman). Let x € Sk (G, X)(F) be a p-ordinary point with by, v, and p, as above.
Then there exists g € G(W) such that g~'b,o(g) = (o) (p).

We now change coordinates on (by o-conjugating by an element of G(W)) and we may assume that
by = o(1z)p. The following proposition defines the canonical lift of a p-ordinary point.

Proposition 8.4. Consider the Fontaine-Laffaille module with underlying F-crystal ..V, and with the
filtration defined by the co-character p,. This corresponds to a (necessarily) unique point of Sk (G, X)®.

Proof. This result follows almost immediately from Proposition [7.7} Indeed, let Z denote some W-valued
lift of x, and let p denote a co-character inducing the filtration on _._Vz. The Fontaine-Laffaille conditions
imply that filtrations induced by u, and p agree on . V; mod p.

Consider the parabolic subgroups of P, < G and P, < G induced by i, and u respectively. That the
filtrations agree modulo p implies that P, = P, mod p. By |Conl4, Corollary 5.2.7], the two parabolics are
conjugate over some etale extension of W, and therefore over W itself. As the two parabolics agree modulo
p, they are conjugate by an element g € U OPP(W) (with U°PP the opposite unipotent of u). Therefore,

Fil, = g - Fil,,, and so the proposition follows by Proposition

cris
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Definition 8.5. Let « € S(G, X)(F) be a p-ordinary point. We let 2°*" denote W-valued lift constructed
in Proposition and call it canonical lift of x.

In the ordinary case, this construction directly generalizes the Serre-Tate canonical lift of an ordinary
abelian variety. More generally, this generalizes the notion of canonical lifts of p-ordinary points of PEL-type
Shimura varieties defined by Moonen in [Moo04], and of p-ordinary points of Hodge-type Shimura varieties
defined in [SZ21]. Analogous to those cases, we will shortly prove that z®" is actually a CM point. For
now, we remark that the canonical lift is functorial in prime-to-p Hecke correspondence. Indeed, prime-to-p
Hecke correspondences are finite etale correspondences on the integral model, and therefore every § € 7(Z) is
a W-valued point of Sk (G, X) whenever Z is. Further, the action of prime-to-p Hecke correspondences on
W-valued points preserves the isomorphism class of the Fontaine-Laffaille modules attached to these points.
Therefore, we have the immediate corollary:

Corollary 8.6. Let " denote the canonical lift of a p-ordinary point x, and let § € 7(x°*™) where T is a
prime-to-p Hecke correspondence. Let y be the specialization of y. Then, y = y°®*. In particular, y = x"

ify=ux.

We can now apply this in conjunction with Proposition and Corollary to obtain the following
result:

Theorem 8.7. FEvery p-ordinary point lifts to a characteristic-zero special point.
We obtain the following corollary.

Corollary 8.8. Let x € Sk (G, X)(F,) be p-ordinary, with ¢ = p", and let _, . be the crystalline (semi-
linear) Frobenius endomorphism on D,. Then, the linear map _,_ @ is semisimple.

8.1 Non-emptiness of the p-ordinary locus

We will now prove that the p-ordinary locus is non-empty at all large enough primes v of the reflex field E,
by constructing zero-dimensional Shimura varieties that specialize mod v to p-ordinary points. It suffices to
treat the case of adjoint groups, so we assume throughout that G is adjoint. Let (T,h) — (G, X) denote
an embedding of Shimura data such that the image of T" is a maximal torus of G. Let Er denote the reflex
field of (T, h) — note that this is just the field of definition of the Hodge co-character uj associated to h. Let
w be a place of Er dividing the place v of E. Let p denote the rational prime that v divides. We make the
following definition.

Definition 8.9. Let 77 < G’ denote a maximal torus inside a reductive group defined over Z,. We say that
T" is quasi-split if T' is contained in a Borel subgroup B < G defined over Z,,.

We remark that quasi-split tori always exist, they are all conjugate to each other over Z,, and a torus
inside a Zp-reductive group is quasi-split if and only if it contains a maximal split torus.

Proposition 8.10. The zero-dimensional Shimura variety modulo w induces a p-ordinary of Sk (G, X)r,
if the following two conditions are satisfied:

1. T is quasi-split at p.
2. The co-character pup € Xy(Tg,.,) is dominant with respect to a Borel subgroup of G defined over Z,.

Proof. As remarked earlier, the mod w zero-dimensional Shimura variety is p-ordinary for the group T.
Therefore, we have that the Newton co-character is the Galois average of uj. However, in order to show that
we also have p-ordinariness for the group G, we must show the same equality but after replacing both the
Newton and the Hodge co-character with their dominant conjugates (dominant with respect to some Borel
subgroup defined over Q,). However, p;, is dominant by definition, and as B is defined over Q,, so is its
Galois average. The result follows. O
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The absolute Galois group of Q acts on X, (7). We recall Chai and Oort’s definition from |[CO12].

Definition 8.11. We say that (T, h) is a Weyl special point if the image of the Galois action Gal(Q/Q) on
the co-character lattice X, (7T') contains the Weyl group.

Given this setup, let E(G) denote the finite extension of Q such that the image of the Galois action
Gal(E(GQ)/E(G)) equals the Weyl group. Let E7. denote the splitting field of 7. Note that E(G) contains
E and E’. contains Er.

Proposition 8.12. Let (T,h) be as above. Suppose that T is quasi-split at p, and that (T,h) is a Weyl
special point. Then there exists a place w of Ep that satisfies the second condition of Proposition[8.10

Proof. It suffices to replace F, and Er with E(G), and E’. respectively. Abusing notation by letting v denote
a place of E(G) dividing the original place of E, we must find a place w | v of E/. such that uy, € X (Tey )
satisfies the positivity condition with respect to a Z,-Borel. Given a co-character p defined over E/. and a
place w | v, we let ;* denote the base-change of u to Ep,,. We also fix a choice of Borel subgroup over Z,
containing 7.

We now pick a place w’ | v. By construction, the Weyl-group orbit of p is defined over E/. and
therefore over E’T7w,. As T is split over E’., we have that u}fjl and any other element in its Weyl orbit are

conjugate over E},w,. Let g be the Weyl group element satisfying g - ,uﬁ/ is dominant with respect to B.
Let 7 € Gal(E}/E(G)) satisfy 7(un) = g - pn. Then by construction, 7(us)®" € X*(TE/T ,) is dominant.

—1 ’
But this is equivalent to s, (W) ¢ X*(TE/T o /)) being dominant as B is defined over Q,. Therefore, the

proposition follows by picking w = 771 (w’).
O

We are now ready to prove Theorem 8.2

Proof. By Propositions and it suffices to find a Weyl special point (T, h) where T is quasi-split at
p. But this follows directly from [CO12, Proposition 5.11] by choosing X1 = {p, o0}, Uy as in Remark 5.12
of loc. cit., and U, to be the set of set of elements in Lie G(Z,) which reduce to an element of Lie G(Z,)
whose stabilizer in Gy, is equal to a maximal torus containing a maximal split torus. O

8.2 An analogue of Tate’s isogeny theorem for ordinary points

We will now prove prove an analogue of Tate’s isogeny theorem for abelian varieties in the setting of ordinary
points.

Theorem 8.13. Let z,y € Sk (G, X)(F,) be ordinary points such that the (-adic Frobenii v, and ¢, are
conjugate in G(Qp). Then, the rational Hodge structures associated to the canonical lifts " and y*" are
isomorphic.

In the setting of (ordinary) abelian varieties, this result would translate to abelian varieties over finite
fields being isogenous if their ¢-adic Frobenii are conjugate.

Proof. Let (T}, ptz) and (Ty, pyy) denote the zero-dimensional Shimura data inducing the special points z°"
and y®". Let E, denote the reflex field of (T, u,) and let v be the place of E, such that = " mod v.
Recall that we have fixed V', a Q-representation of G, which we will now consider as a representation of
T,.. By [Mil94], there exists a surjective morphism of Shimura data (T,pu) — (T, p) where (T, p) is a
zero-dimensional Shimura datum of Hodge type. Let E denote the reflex field of (T, ) (E contains E,), and
let v’ | v be some place of E above E,. Let W be the tautological symplectic representation of T" associated
to a Hodge embedding. Let z € S(T, 1) be a point that maps to Z and let A denote the CM abelian variety
associated to z. Note that T is the Mumford-Tate group of A. Let § € End(A) denote the endomorphism
that specializes to the Frobenius endomorphism of A mod v’. We will abuse notation and let 8 € T'(Q) also
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denote the Betti-realization of the endomorphism g. Let ¢/, and ,, 8 denote the endomorphisms of .V}
and .V induced by . Restricting the Galois representation to the local Galois group at v, we may apply
the Crystalline functor D_,  to /8 and obtain an endomorphism of _,_ V,Fil® — this endomorphism is just
the power of the crystalline Frobenius operator on _, V,Fil*, and equals 8 under the crystalline-deRham
comparison isomorphism. All of this follows from the fact that 5 € T(Q) is induced by an endomorphism of
the abelian variety A.

We set ¢ = p™. Let a € T,(Q) denote the image of 8. As V is in the Tannakian category generated

by W (as T-representations), we have that the same compatibility holds for the various realizations of .
That is, we have that ccay acts as Frobenius ¢tz on otVz e for £ # p, and the Crystalline functor D__
applied to ety the nth power of the Crystalline Frobenius _, ¢, on .V, and therefore that (. @) =5
under the Crystalline-deRham comparison isomorphism. We will now prove that the group generated by
« is Zariski-dense in Ty. Let L denote any field containing F,. Let ., T, < GL(,,Vz 1) denote the torusﬂ
defined by taking the Zariski-closure of the group generated by _.co. It suffices to prove that the Hodge
co-character factors through T, (note that this doesn’t depend on the field L). We pick L = W (F,)[1/p].
By the Crystalline-de Rham comparison (and the compatibility outlined above), we may replace ,,« and
ur Vaean 1, Fil* by . o™ and _, V;, Fil®. As the point z is ordinary, we have a direct sum decomposition
of the crystal , Vi,... 0. = @__ Vi, @,.¢" where “p—“ol is a bijective o-linear Frobenius morphism. By
definition, the Hodge filtration on _ V, defined by the canonical lifting is Fil = @ Vi. We have that
4@ is just the nth iterate of . ¢,, and the eigenvalues of ,,« on V. have p-adic valuation exactly equal
to ni. In order to prove that the Hodge co-character factors through T, it suffices to prove the following
general claim:
Claim. Let K be a finite extension of Q,, let 7/ be a and let V' be a faithful algebraic representation of T”
defined over K. Let p : G,, — T’ be a co-character that induces weight decomposition V' = @ V"% Let
o' € T'(K) be an element that acts on V" with eigenvalues having valuation ni. Then, u factors through
T!, - the Zariski closure of the group generated by /.

cris

cris cris

1<) eris

Proof. By replacing K by a finite extension if need be, we may assume that 7" is a split torus. Without
loss of generality, we may also assume that the rank of 77 equals the dimension of V’. Let x denote any
character of 7" such that y(a/) = 1. It suffices to prove that x o u is the trivial character on G,,. We may
write 77 = [ [ [ T"* according to the decomposition V/ = @ V", Picking coordinates on V", we may write
T" = []G,,, with the diagonal G,, acting by scalars on V"%, In these coordinates, o’ will decompose as
(") with the entries of o/** having p-adic valuation ni. Let x be a character on T”. Then we may write x
as | [, xi» with x; = (a;1,...ain,), where x;((z;)) = Hm?’ for (z;) € T"" = [[G,,. A necessary condition
for x(a') = 1 is that the p-adic valuation of x(a') is 0, i.e. >, ni(a;1 + ...a;n,) = 0. On the other hand,
the co-character yu is given by u = [ us, with u;(2) = (2%, 2%, ... 2%). Therefore, x o u is trivial if and only if
> i(ain + ... ain,) = 0. Therefore, we've shown that if x(«) = 1, then y o u is trivial, and therefore p does
factor through T, as required.

O

Therefore, we have that T,, = T, as required. We have the analogous statement for the Frobenius element
associated to y and the Torus T},. By assumption, the Frobenii satisfy the same characteristic polynomial
on V. Therefore, there exists a Q-endomorphism X € GL(V) with X ~'aX = v. As the groups generated
by a and ~ are respectively Zariski dense in 7, and T} respectively, we have that X 17, X = T,. Finally,
the Hodge co-characters are conjugate to each other because the CM-types are uniquely determined by the
elements « and . The proposition follows. O
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