
Integral canonical models of exceptional Shimura varieties

Benjamin Bakker, Ananth N. Shankar, Jacob Tsimerman

March 17, 2025

Abstract

We prove that Shimura varieties admit integral canonical models for sufficiently large primes. In the
case of abelian-type Shimura varieties, this recovers work of Kisin-Kottwitz for sufficiently large primes.
We also prove the existence of integral canonical models for images of period maps corresponding to
geometric families. We deduce several consequences from this, including a version of Tate semisimplicity,
CM lifting theorems, and a version of Tate’s isogeny theorem for ordinary points.
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1 Introduction
This paper is motivated by the following question, raised by Langlands and made precise by Milne:

Given a Shimura variety SKpG,Xq over its reflex field E, does SKpG,Xq admit a “good model” SKpG,Xq,
over completions OEv?

For the moduli space of principally polarized abelian varieties Ag, for instance, the moduli problem
provides a natural model. As not all Shimura varieties are known to have an associated geometric moduli
problem (notably the exceptional Shimura varieties), it is preferable to have a model which is uniquely
determined by certain intrinsic properties, possibly only for sufficiently large primes. At the very least, we
would like our model to be smooth over OEv

, which already may not exist at certain primes. Indeed, even
in the case of the modular curve, the level structure at p needs to be maximal in order for there to exist a
smooth model at p.

Smoothness alone however does not a priori guarantee a unique model. Milne defined an “extension prop-
erty” (and this notion was refined by Moonen in [Moo98]) which formally guarantees uniqueness. Following
Milne and Moonen, an integral model is said to be an integral canonical model if it is smooth and if it satis-
fies their extension property. The moduli space of principally polarized abelian varieties Ag, for instance, is
known to admit integral canonical models over Zp whenever the level structure is prime to p, i.e. when the
level structure is hyperspecial at p. Indeed, smoothness follows from the fact that the deformation theory
of polarized abelian varieties with a prime-to-p-polarization is unobstructed (proved by Grothendieck), and
Chai and Faltings [FC90] prove an extension result for abelian schemes over certain bases (see [Moo98, Sec-
tion 3] for the precise results they prove) from which the Milne–Moonen extension property for Ag follows
directly.

Langlands suggested more generally that integral canonical models should exist whenever the compact
open Kp at p is hyperspecial. In the case of PEL Shimura varieties (i.e. Shimura varieties parameterizing
polarized abelian varieties with extra endomorphisms), Kottwitz in [Kot92] constructs integral models when
the level structure at p is hyperspecial. Kisin generalizes Kottwitz’ work to the setting of Shimura varieties
of abelian type ([Kis10]). In [IKY23] the authors prove a prismatic characterization of integral models of
abelian type. In [PR24], Pappas and Rapoport lay out a framework for integral models for all Shimura
varieties, and amongst various other things, they show that the integral models constructed by Kisin satisfy
their framework. In [Lov17], Lovering constructs integral canonical models for automorphic data associated
to Shimura varieties of abelian type. The extension property proven in most of these works ultimately relies
on the work of Chai and Faltings, which uses the moduli intepretation of Ag, and therefore does not carry
over to exceptional Shimura varieties.

1.1 The extension property
We now define our extension property. We note that our extension property is the equivalent to the one
formulated by Milne-Moonen, and we include a discussion about this fact below. In the proper case, the
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extension property is very simple:

Definition 1.1. Let F be a local field. We say that an integral model SKpG,Xq{OF of a proper Shimura
variety SKpG,Xq{F has the extension property if for every smooth scheme T {OF , every map over the generic
fiber ϕ P HompTF , SKpG,Xqq extends to a map from T to SKpG,Xq.

In the non-proper case, one must take care to ensure that the special fiber doesn’t map to the “boundary”
of SKpG,Xq. For primes ℓ ‰ p, we fix an ℓ-adic automorphic local system etVℓ on SKpG,Xq corresponding
to a faithful representation V of Gad (see Section 5.1 for precise definitions of etVℓ).

Definition 1.2. We say that a model SKpG,Xq{OF of SKpG,Xq satisfies the extension property if for
every smooth scheme T {OF , and every map over the generic fiber ϕ P HompTF , SKpG,Xqq such that ϕ˚Vℓ
extends to T for some ℓ ‰ p, the map ϕ extends to a map from T to SKpG,Xq.

1.2 Main results for Shimura varieties
Our main theorem is to prove the existence of integral canonical models for arbitrary Shimura varieties S,
for sufficiently large primes. Concretely, we prove the following:

Theorem 1.3. Let S be a Shimura variety over its reflex field E. For almost all finite places v, there exists
a model S over Ov which has the extension property, and which admits a log-smooth compactification over
Ov.

Moreover, for the places v as above, S is the unique smooth model of S over Ov which admits a log-smooth
compactification over Ov and to which the local system etVℓ extends.

Note that the uniqueness claim implies that any global model of SKpG,Xq will specialize to the integral
canonical model at almost all places.

While our theorem applies to all Shimura varieties, the fact that it only applies for almost all finite places
means that much stronger results ([Kis10]) are known in the abelian setting. Therefore, the case of greatest
interest is when S is a Shimura variety of exceptional type.

1.2.1 Applications

We deduce several applications for mod v (and v-adic) Shimura varieties. The main theorem implies that
Hecke correspondences away from p extend to SKpG,Xq{OEv

. We use these Hecke correspondences to prove
the following theorem:

Theorem 1.4. Let x P SKpG,XqpFqq be any point. Then, the Frobenius endomorphism on etVℓ,x̄ is semi-
simple.

Work of Esnault-Groechenig shows that Vp{SKpG,Xq is a crystalline local system, which yields a relative
Faltings-Fontaine-Laffaille on the p-adic completion of SKpG,Xq. Analogous to [Kis10, Section 1.5], we give
an explicit description of the this Faltings-Fontaine-Laffaille module restricted to complete local rings of
SKpG,Xq at closed points (see Theorem 7.9 for the precise statement). We then use this in conjunction
with the semi-simplicity of ℓ-adic Frobenii, to prove the following theorem (which generalizes the Serre-Tate
canonical lift).

Theorem 1.5. The µ-ordinary locus in SKpG,XqFv
is open dense. Let x P SKpG,XqpFqq denote a µ-

ordinary point. Then, there exists a canonical special point x̃ P SKpG,XqpW pFqqq that lifts x.

The above theorem then immediately has the following consequence.

Theorem 1.6. Let x P SKpG,XqpFqq denote a µ-ordinary point, and let
cris

Vx denote the F -crystal at x
(associated to the Fontaine-Laffaille module defined by etVp{SKpG,Xq). Then, the crystalline q-Frobenius
endomorphism on

cris
Vx is semisimple.
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Finally, we also have an analogue of Tate’s isogeny theorem for ordinary points.

Theorem 1.7. Let x and y be ordinary mod p points whose ℓ-adic Galois representations are isomorphic.
Then a rational Hodge structures underlying the canonical lifts x̃ and ỹ are isomorphic.

This result should be thought of as an exceptional analogue (in the ordinary case) of Tate’s isogeny theo-
rem, which states that two abelian varieties over finite fields are isogenous if the ℓ-adic Galois representations
associated to the abelian varieties are isomorphic.

1.3 Comparison with the extension property of Milne–Moonen
The usual (Milne-Moonen) phrasing of the extension property is to let the level K be of the form K “ KpKp

where Kp Ă GpQpq and Kp Ă GpAp
f q, and consider the tower of varieties SKpG,Xq where Kp is fixed and

Kp varies. One then asks for a tower of integral models with finite etale transition maps, and that a map
from the generic fiber of any scheme T to this tower extends. This however entails defining a category of
admissible test schemes to be able to map to this entire tower, which is something like “pro-smooth schemes
over Zp”, and this requires some care to do precisely. Geometrically these are more complicated (pro-)
objects, which is why we choose to work with our definition.

These two extension properties are very close to each other. Indeed, the Milne-Moonen extension property
implies ours as follows: Suppose T is a smooth scheme over Ov, and ϕ : TFv

Ñ SKpG,Xq such that all of the
ϕ˚
etVℓ extend. Then we may define a tower TKp with finite transition maps using the local systems ϕ˚

etVℓ,
and a corresponding map from lim

ÐÝKp YKp,Fv
Ñ lim

ÐÝKp SKpG,XqFv
. The Milne-Moonen extension property

implies that this map extends and hence so does our original one.
Conversely, we first point out that our construction in fact gives models for the entire tower lim

ÐÝKp
SKpG,XqFv .

Suppose one has an admissible test T over Ov and a map from TFv
to lim

ÐÝKp
SKpG,XqFv

. By definition,
T is a pro-etale cover of a smooth scheme over some unramified extension R of Ov, and hence is an inverse
limit of smooth schemes over R. Each of the schemes in this inverse limit must therefore map to some finite
level Shimura variety in the tower, in a way that limits to the original map. Moreover, the pullbacks of all
the automorphic local systems etVℓ will extend, and thus our extension property will apply at each finite
level, and hence to all of T .

1.4 Integral canonical models for images of geometric period maps
Our methods in fact provide integral canonical models at sufficiently large primes for many varieties which
are interpretable as moduli spaces of Hodge structures. We describe the case of variations coming from
geometry, but first give some general background from Hodge theory (see Section 2.7 for more details).

Suppose an irreducible normal complex variety P (which we can without loss of generality assume smooth)
is equipped with a polarizable integral variation of Hodge structures pWZ, F

‚q. The associated period map
P an Ñ rGpZqzDs will factor as P an Ñ Y an Ñ rGpZqzDs where Y is a generically inertia-free Deligne–
Mumford stack with quasiprojective coarse moduli space, P Ñ Y , has connected generic geometric fiber,
and Y an Ñ rGpZqzDs is finite [BBT23]. This map is obtained by taking a resolution P̃ Ñ P and then a
partial compactification P̃ Ă P 1 for which the period map extends to a proper period map and forming the
Stein factorization. In particular, the variation pWZ, F

‚q is pulled back from pVZ, F
‚q on Y . In general P̃

may be a stack as well, but the inertia of Y acts faithfully on VZ, so Y is a global quotient of a normal
quasiprojective variety by the action of a finite group, and after passing to a finite étale cover of P (for
instance by adjoining level structure) we may assume Y (and therefore P ) is a quasiprojective variety. We
call such a Y the Stein factorization of the period map.

Now let P be an irreducible normal variety defined over a number field E, f : Z Ñ P a smooth projective
E-morphism, and for any fixed k let etWℓ :“ Rkf˚Zℓ be the arithmetic local system—or more generally
a subquotient obtained from maps between such local systems induced by P -morphisms of families1. We

1We lay out the precise conditions for a variation of Hodge structures to “come from geometry” in the sense we need it in
Section 4.
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let Y be the Stein factorization of the period map of the variation with underlying geometric local system
VZ “ Rkfan

˚ Z for some embedding E Ă C. Then Y is defined over E, does not depend on the embedding,
and the local system etWℓ descends to Y .

For example, for any moduli space P admitting an infinitesimal Torelli theorem (including moduli spaces
of Calabi–Yau varieties and most moduli spaces of complete intersections in Pn, to name a couple), Y is a
canonical partial compactification (namely, the natural “Hodge–theoretic” compactification) of P .

Theorem 1.8. Let E be a number field. Let Y {E be the Stein factorization of the period map of a geometric
variation of Hodge structures which we assume to be inertia-free (and therefore a quasiprojective variety).
Let etVℓ be the descent of the natural ℓ-adic arithmetic local system to Y .

1. There is a finite set of primes ΣY of OE such that, for all finite places v of OE,ΣY
, there is a model

Yv over Ov such that:

(a) Each etVℓ extends to Yv for ℓ ‰ p, where p is the integral prime below v.

(b) For any irreducible smooth X {Ov with generic point ηX , any morphism g0 : ηX Ñ YEv
extends to

g : X Ñ Yv if and only if g˚
0 petVℓq extends to X for some ℓ ‰ p.

2. The models in part 1 are functorial in the following sense. Let Y, Y 1{E be the Stein factorizations of
two possibly different period maps arising as above, and for a finite place v of OE,ΣY YΣY 1 let Yv,Y 1

v be
models as in part 1. Then any morphism g0 : ηY Ñ Y 1

v extends to g : Yv Ñ Y 1
v if and only if g˚

0 petVℓq
extends to Yv for some ℓ ‰ p. In particular, the local model Yv of Y is canonically determined.

3. The models in part 1 are minimal in the following sense. For any Ov-model Zv of Y that admits a
uniform log smooth resolution (see Definition 2.13) and to which etVℓ extends for some ℓ ‰ p, the
identity map over the generic fiber extends to an Ov-morphism Zv Ñ Yv.

4. Finally, there exists a global model Y over OE,ΣY
of Y which restricts to the model Yv of part 1 for all

places v of OE,ΣY
.

In general, the image of a period map has no reason to be smooth (already over C), so it is important
to allow for singularities. Even starting with a smooth moduli space S parametrizing varieties with an
infinitesimal Torelli theorem so that the period map San Ñ rGpZqzDs is immersive, it will often not be
proper; the “Hodge-theoretic” compactification is essentially the closure of the image of San Ñ rGpZqzDs

(up to a finite map) and will therefore usually be singular anyway. This is already true for the image of the
Torelli map for the moduli space of curves (see Example 2.12).

1.5 An outline of the proof of the Extension Property
The proof of the extension property in Theorem 1.3 is motivated by classical Hodge theory and the arguments
of [dJO97,MB85,FC90]. Briefly, let F {Qp be a finite unramified extension ring of integers O, X {O a smooth
scheme, and fF : X Ñ Y a morphism over the generic point to a model of a Stein factorization of a period
map Y. There are three steps to proving the extension of fF to a morphism f : X Ñ Y:

1. Y will support an ℓ-adic local system etVℓ with large local monodromy at the boundary. It then
follows (assuming the existence of a reasonable resolution and log smooth compactification) that the
map extends in codimension one as soon as f˚

F petVℓq extends to X . This in particular establishes the
claim if dimX “ 1.

2. If dimX ą 2, then assuming the result for dimX “ 2, the conclusion follows by induction. An extension
is unique if it exists, and by assumption exists on a general hyperplane section H. Deformation theory
can then be used to locally lift the extension to the completion of X along H, which is enough to
deduce the existence of the extension to X . This is the same argument used by [dJO97,MB85,FC90].
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3. The main step is then to handle the case dimX “ 2, so when X {O is a family of smooth curves, and here
we must use that Y supports2 a crystalline local system whose associated Fontaine–Laffaille module
has ample Griffiths bundle. On the one hand, by a key result of Hokaj [Hok24] and Guo–Yang [GY24],
the Fontaine–Laffaille module extends to X {O; on the other hand, the map to Y can be extended on
a blow-up X 1 at points in the special fiber. The pull-backs of the two Fontaine–Laffaille modules must
agree, and the ampleness of the Griffiths bundle implies every exceptional curve is contracted in Y.

1.6 Comparison with past work
In the Abelian case which Kisin handles, proving the existence of smooth models is difficult, whereas the
extension property follows directly from the extension property for Ag. Unlike [Kis10], we don’t directly
address the question of for which places v the Shimura variety SKpG,Xq admits smooth models over Ov.
Instead, we “spread out” the global model SKpG,Xq over OEr1{N s for some large N , which in particular
guarantees smoothness at primes v ∤ N (amongst other good properties). However, the lack of an interpreta-
tion of our Shimura varieties as a moduli space means we need an entirely different argument for establishing
the extension property.

Regarding the applications to the mod p and p-adic geometry of Shimura varieties, Kisin ([Kis17]) proves
that every Fp-point of abelian Shimura varieties admit CM lifts up to isogeny. Note that the up-to-isogeny
requirement is crucial as work of Oort [Oor92] shows (for a more general statement, see also [KLSS21]).
Noot in [Noo96] proves the existence of CM lifts (on the nose) for points of Hodge-type Shimura varieties
that intersect the ordinary locus of Ag. Noot’s theorem was generalized to µ-ordinary points by [Moo04] in
the PEL-type case to the and [SZ21] in the Hodge type case.
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1.8 Outline
In Section 2 we formulate the definition of an integral canonical model in terms of the extension property,
and show that extension in codimension 1 can be controlled in many cases (including those of interest) by
a local system. We also discuss the descent and extension of arithmetic local systems to integral models
of period images, and the relation of the extension property to purity results in classical Hodge theory. In
Section 3 we prove the extension in codimension 2. In Section 4 we formulate precise conditions under which
the presence of a Fontaine–Laffaille module on a local model implies the extension property, and in Section 5
we apply it to the case of Shimura varieties and period images to prove the existence of integral canonical
models as in Theorem 1.3 and Theorem 1.8. In Section 6 we prove Hecke correspondences extend and use
this to prove Theorem 1.4. In Sections 7 and 8, we analyze the complete local rings of the integral canonical
models of Shimura varieties at closed points and prove Theorems 1.5, 1.6, and 1.7.

1.9 Notation
Typically O will be the ring of integers in either a number field E or an unramified finite extension F {Qp.
We use script letters S,X ,Y to denote either finite type SpecO-schemes or finite type formal Spf O-scheme

2This only makes sense after pulling back to a resolution which is smooth over O
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(in the latter case). We denote by unadorned Roman letters S,X, Y the generic fibers over E or F (in the
non-formal case) and S0,X0,Y0 will denote the special fibers (when O is local). For a finite place v of OE

we denote by Ov “ OEv
the completion.

2 The extension property and natural boundary
In this section we single out a class of integral models for which extension on the level of fundamental groups
is the only obstruction to extending morphisms defined over the generic point. In particular, such models
will be uniquely determined when they exist. The key property these models will have is the extension
of morphisms from smooth schemes, just as in the work of Milne and Moonen. In the Shimura case (or
whenever the model is smooth) this property obviously uniquely determines the model; in the general case
it will be important to allow for singularities, as even for smooth moduli spaces, the extension property
will often force a partial compactification which is not smooth—for instance, see Example 2.12. We also
discuss how the extendability on the level of fundamental groups can be detected by the extendability of
local systems.

Throughout this section, we let O be a Dedekind domain with fraction field F which is either a finite
extension of Qp or a global number field. In the local situation, we denote by k the residue field.

2.1 The extension property
Definition 2.1.

1. Let Y,Y 1{O be finite type flat O-schemes. An F -morphism fF : Y Ñ Y 1 of the generic fibers is
O-admissible if the maps on fundamental groups fits into a diagram

πet
1 pY, ȳq πet

1 pY 1, ȳ1q

πet
1 pY, ȳq πet

1 pY 1, ȳ1q

for compatibly chosen basepoints.

2. We say a finite type flat O-scheme Y{O satisfies the smooth extension property over O if for any
smooth O-scheme X {O, any O-admissible F -morphism fF : X Ñ Y on the generic fiber extends to an
O-morphism f : X Ñ Y.

2.2 Natural boundary and extension in codimension 1
In the presence of a sufficiently well-behaved log smooth compactification of a resolution (one with “natural
boundary” as defined below), admissible morphisms with smooth source will extend over codimension 1
points, and this will be the first step of the proof of the extension property in the setting of section 4.

The following definition is made with a view towards the general case where Y is not smooth, but for
Shimura varieties we will have S “ Y.

Definition 2.2.

1. Let Y{O be a normal finite type flat O-scheme. A resolution of Y{O is a smooth O-scheme S{O with
a proper dominant birational map π : S Ñ Y such that OY

–
ÝÑ π˚OS via the natural map.

2. We say pS̄,Dq{O is log smooth if it is étale locally isomorphic over O to pAnO,Dq, where D is a union
of coordinate hyperplanes.

3. Let S{O be a smooth O-scheme. By a log smooth compactification we mean a log smooth proper
O-scheme pS̄,Dq{O with S̄zD “ S (as an O-scheme).
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In the cases that will be of interest to us, the boundary of S̄ will be detected by the fundamental group in
the sense made precise by the following definition. For a log smooth scheme pS̄,Dq over C with S “ S̄zD and
whose boundary D has irreducible components tDiuiPI , and for any point x P D together with a small arc x̂ :
r0, 1q Ñ S̄ mapping 0 to x and p0, 1q to S, the local fundamental group πloc

1 pS̄,D, x̂q :“ limxPUĂS̄ π1pUzD, x̂q

is naturally identified with
À

DiQx Z, where the sum is over irreducible component Di of D containing x and
the basepoint is taken to be any point on x̂ sufficiently close to x.

Definition 2.3. Let pS̄,Dq be a proper log smooth complex variety with S “ S̄zD and π : S Ñ Y a
resolution of a normal complex variety Y . We say the boundary of S̄ is π-natural if for every morphism
f : pC̄,DCq Ñ pS̄,Dq from a log smooth proper curve pC̄,DCq with DC “ pf˚Dqred and for any c P DC , we
have that the composition

πloc
1 pC,DC , ĉq Ñ πloc

1 pS̄,D, fpcqq Ñ π1pS, fpĉqq Ñ π1pY, π ˝ fpĉqq Ñ πet
1 pY, π ˝ fpĉqq

is injective. Equivalently, we require that for any f, c as above and any n, there is a Galois finite étale cover
Y 1 Ñ Y whose base-change to C ramifies to order ě n at c.

Let Y{O be a normal finite type flat O-scheme, π : S Ñ Y a resolution, and S̄{O a log smooth compact-
ification of S. We say that the boundary of S̄ is π-natural if this is true for the base-change of π and S̄ to
C for some (hence any, by the above remark) embedding of K into C. If π is the identity we just say S̄ has
natural boundary.

Lemma 2.4. Let F {Qp be an unramified extension with ring of integers O. Let Y{O be a normal finite type
flat O-scheme, π : S Ñ Y a resolution, and S̄{O a log smooth compactification of S with π-natural boundary.
Let X {O be a normal finite type flat O-scheme and fF : X Ñ Y an O-admissible morphism over the generic
point. Then there is a finite type flat X 1{O, a proper dominant generically finite morphism X 1 Ñ X , and a
morphism X 1 Ñ S such that the following diagram on the generic fibers commutes:

X 1 S

X Y.

πF

fF

Moreover, if the image of fF meets the locus of Y where π is an isomorphism, then X 1 Ñ X can be taken to
be an isomorphism over a dense open set.

Proof. Let W Ă X ˆO S̄ be the closure of the fiber product X ˆY S Ă X ˆO S̄. We then have that the
projection W Ñ X is proper dominant with a morphism W Ñ S̄, and taking an appropriate complete
intersection of ample hypersurfaces, we may find X 1 Ă W which is proper dominant generically finite over
X . If X meets the locus where π is an isomorphism, then we take X 1 “ W and the morphism X 1 Ñ X
is a generic isomorphism. Either way, if the boundary of S̄ intersects X 1 nontrivially, then there is a finite
extension O1 of O and an O1-point of X 1{O whose closed point maps to the boundary. Because the boundary
is natural, by the argument of [PST`21, Thm 4.4] this contradicts the admissibility assumption.

Corollary 2.5. In the setting of the lemma, assuming the image of fF meets the locus of Y where π is an
isomorphism, there is a codimension ě 2 subset Z Ă X and an extension of fF to a morphism f : X zZ Ñ Y.

Proof. X 1 Ñ X is proper so every codimension 1 point η lifts to X 1 and maps to S, so fF extends over η.

2.3 Natural boundary and local systems
For S{O smooth and S̄ a log smooth compactification, both the naturality of the boundary and the admissi-
bility condition on O-morphisms to S can be checked using an ℓ-adic local system Vℓ on S. The key property
such a local system must have is “nonextendability” over the generic fiber, meaning it does not extend to
any nontrivial partial compactification—see [Bru23, §3], where it is referred to as “maximality”.
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Definition 2.6. Let Y {C be a normal variety with an ℓ-adic local system Vℓ. We say Vℓ is nonextendable
if for any resolution π : S Ñ Y , finite étale p : S1 Ñ S, and partial log smooth compactification S1 Ă S̄1, if
the local system pp ˝ πq˚Vℓ extends to S̄1, then S1 “ S̄1.

For Y {F a normal variety with an ℓ-adic local system Vℓ, we say Vℓ is geometrically nonextenable if the
base-change to YC is, for some (hence any) complex embedding F Ă C. We say an ℓ-adic local system on an
integral model Y of Y is geometrically nonextendable if the restriction to the generic fiber is.

Nonextendability restricts well:

Lemma 2.7 ([Bru23, §3]). Let Y {C be a normal variety and Vℓ an ℓ-adic local system on Y . Then the
following are equivalent:

1. Vℓ is nonextendable.

2. For any curve C{C and any proper morphism f : C Ñ Y , f˚Vℓ is nonextendable.

3. For any normal variety X{C and any proper morphism f : X Ñ Y , f˚Vℓ is nonextendable.

The next lemma interprets the naturality of the boundary and admissibility in terms of the local system
as promised.

Lemma 2.8. Suppose Y{O is a normal finite type flat O-scheme, π : S Ñ Y a resolution, S̄{O a log smooth
compactification of S, and Vℓ a geometrically nonextendable ℓ-adic local system on Y. Then

1. S̄ has π-natural boundary.

2. For X {O regular, a morphism fF : X Ñ Y over the generic point which meets the locus of Y where π
is an isomorphism is O-admissible if and only if f˚

FVℓ extends to X .

Proof. For 1, by Lemma 2.7, for any proper morphism f : C Ñ SC from a curve, the local monodromy of
f˚Vℓ around any boundary point is infinite.

For 2, the forward implication is obvious. For the reverse implication, the same argument as in Lemma 2.4
shows that fF extends to f : X zZ Ñ Y for a codimension ě 2 subset Z, but by purity of the branch locus
πet
1 pX zZ, x̄q Ñ πet

1 pX , x̄q is an isomorphism.

Corollary 2.9. For Y,Vℓ as in the lemma, X {O a normal finite type flat O-scheme, and fF : X Ñ Y
a morphism over the generic point such that f˚

FVℓ extends to X . Then there is a codimension ě 2 subset
Z Ă X and an extension of fF to a morphism f : X zZ Ñ Y.

2.4 Integral canonical models of smooth varieties
For simplicity, we first define integral canonical models in the smooth case (to be generalized in the next
section).

Definition 2.10. Let Y{O a quasiprojective smooth O-scheme. We say Y{O is an integral canonical model
if for every closed point v of SpecO, the base-change Yv{Ov satisfies the extension property over Ov.

The following is immediate:

Lemma 2.11. Let S,S 1{O be two smooth integral canonical models and fF : S Ñ S1 a morphism over the
generic point.

1. fF extends to a morphism f : S Ñ S 1 if and only if there is a commutative diagram

πet
1 pS, s̄q πet

1 pS1, s̄1q

πet
1 pS, s̄q πet

1 pS 1, s̄1q

for compatibly chosen basepoints.
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2. Suppose further that S 1 admits a log smooth compactification and a geometrically nonextendable ℓ-adic
local system Vℓ. Then fF extends to a morphism f : S Ñ S 1 if and only if f˚

F pVℓq extends to S.

2.5 Integral canonical models of normal varieties
We begin with a simple example to demonstrate that, even for a smooth variety, a model which satisfies the
smooth extension property might necessarily involve a partial compactification with singularities.

Example 2.12. Consider the moduli stacks Ag and Mg of principally polarized g-dimensional abelian
varieties and genus g curves, say over Zp for p " 0, and let Mg Ñ Ag be the Torelli map. After taking
sufficient level structure, both of these stacks are schemes, and the Torelli map is generically immersive.
Ag satisfies the smooth extension property, so the closure of the image of Mg in Ag will as well. This
closure is quite singular however: the map Mg Ñ Ag extends to the partial compactification M̃g Ñ Ag

parametrizing compact-type nodal curves (that is, nodal curves whose dual graph is a tree), but the boundary
gets contracted with positive-dimensional (non-uniruled) fibers, as the Jacobian does not record the attaching
nodes.

In the normal case, to deduce the extension of arbitrary morphisms from the case of morphisms with
smooth source, we will require the existence of an integral resolution with the property that the subvarieties
contracted in a special fiber are limits of subvarieties contracted in the generic fiber.

Definition 2.13. Let Y{O be a normal finite type flat O-scheme.

1. A resolution of Y{O is a smooth O-scheme S{O with a proper dominant map π : S Ñ Y such that
OY

–
ÝÑ π˚OS via the natural map.

2. A resolution π : S Ñ Y is uniform if there is a flattening stratification of π by locally closed subsets
Yj of Y, each of which is flat over SpecO.

Lemma 2.14. Let Y {F be a normal variety, πF : S Ñ Y a resolution, and π : S Ñ Y a model of πF defined
over O. Then π is a uniform resolution over a (nonempty) open set of O.

Proof. Since OY Ñ π˚OS is an isomorphism over the generic point, it is over an open set of SpecOF r1{N s.
Taking a flattening stratification Yj , the strata which do not dominate map to finitely many primes.

Definition 2.15. Let Y{O a normal quasiprojective flat O-scheme. We say Y{O is an integral canonical
model if:

1. Y admits a uniform resolution π : S Ñ Y.

2. For every closed point v of SpecO, the base-change Yv{Ov satisfies the extension property over Ov.

Note that if Y{O is smooth, the condition on the existence of a uniform resolution is automatic, so this
definition generalizes Definition 2.10. The next proposition generalizes Lemma 2.11 to the normal case.

Proposition 2.16. Let O be a Dedekind domain with fraction field F . Let Y{O be a normal quasiprojective
flat O-scheme admitting a uniform resolution, Y 1{O an integral canonical model, and fF : Y Ñ Y 1 a
morphism over the generic point.

1. fF extends to a morphism f : Y Ñ Y 1 if and only if there is a commutative diagram

πet
1 pY, ȳq πet

1 pY 1, ȳ1q

πet
1 pY, ȳq πet

1 pY 1, ȳ1q

for compatibly chosen basepoints.
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2. Suppose further that Y 1 admits a uniform resolution π1 : S 1 Ñ Y 1, a log smooth compactification of S 1,
and that Y 1 has a geometrically nonextendable ℓ-adic local system Vℓ. Then fF extends to a morphism
f : Y Ñ Y 1 if and only if f˚

F pVℓq extends to Y.

For the proof we need the following:

Lemma 2.17 (Rigidity Lemma, [Deb01, Lemma 1.15]). Let X,Y, Z be integral finite type schemes, f : X Ñ

Y a proper morphism with OY
–

ÝÑ f˚OX via the natural map, and g : X Ñ Z a morphism which is constant
on f´1pyq for some point y of Y . Then for an open neighborhood y P U Ă Y , g|f´1pUq : f

´1pUq Ñ Z factors
through f |f´1pUq : f

´1pUq Ñ Y .

Proof. The proof is exactly the same as in [Deb01]. Consider the (proper) morphism h “ f ˆg : X Ñ Y ˆZ,
and let W be the image with projection map p : W Ñ Y . Since OY Ă p˚OW Ă f˚OX “ OY , the Stein
factorization of p is trivial. Since h´1ppp´1pyqqq “ f´1pyq maps to a point in Z, p´1pyq is a point, hence
the fibers of p are 0-dimensional in a neighborhood of y, and therefore p : W Ñ Y is an isomorphism in a
neighborhood of y.

Corollary 2.18. Let Y,Y 1{O be normal finite type flat O-schemes, and π : S Ñ Y a uniform resolution.
Assume Y 1{O is quasiprojective. Then any morphism f : S Ñ Y 1 which factors through πF : S Ñ Y over
the generic point factors through π.

Proof. Let L1 be a very ample bundle on Y 1, let Yj Ă Y be an O-flat stratum in a flattening stratification of
S Ñ Y, let Sj Ñ Yj be the base-change to Yj , and consider the composition Sj Ñ S Ñ Y 1. For any fiber F
of Sj Ñ Yj , L|F is globally generated, hence has a section which is generically nonzero on every geometric
component. On the other hand, L_ is trivial on every geometric fiber of Sj Ñ Yj over the generic point,
hence by semicontinuity L_|F has at least one nonzero section. The product is a section of OF which is not
identically zero, so since the fibers of Sj Ñ Yj are geometrically connected it must be nowhere zero. Thus,
L|F is trivial, and so f contracts every fiber of S Ñ Y. By the Lemma 2.17, we conclude that f factors
through S Ñ Y.

Proof of Proposition 2.16. The forward implication of part 1 is trivial; for the reverse implication, by the
smooth extension property we have an extension of the composition S Ñ Y Ñ Y 1 to Sv Ñ Y 1

v for every
finite place, and therefore an extension S Ñ Y 1. Then by Corollary 2.18, the map S Ñ Y 1 factors through
the desired extension f : Y Ñ Y 1. Part 2 follows from part 1 by Lemma 2.8.

Corollary 2.19. Assume Y admits a geometrically nonextendable local system Vℓ. Then:

1. There is at most one integral canonical model Y{O to which Vℓ extends and which admits a uniform
resolution with a log smooth compactification.

2. Assume such an integral canonical model Y exists. Then for any normal finite type flat model Z{O
to which Vℓ extends and which admits a uniform resolution, the identity map over the generic fiber
extends to a morphism Z Ñ Y.

2.6 Descending and extending arithmetic local systems
Let P{O be smooth with geometrically irreducible generic fiber, and Y{O normal finite type flat with
geometrically irreducible generic fiber. Let f : P Ñ Y be a proper morphism of O-schemes with OY

–
ÝÑ f˚OP .

In this section we describe how arithmetic local systems can be extended to integral models and descended
along f .

We start with the following:

Lemma 2.20. Let f : X Ñ Y be a proper morphism of schemes with Y integral and assume f has geomet-
rically connected fibers and geometrically reduced generic fiber. Then over a dense open U Ă Y we have the
following:

11



1. The base-change XU Ñ U induces an exact sequence

πet
1 pXη̄, x̄q Ñ πet

1 pXU , x̄q Ñ πet
1 pU, ūq Ñ 1

for compatibly chosen basepoints, where η is the generic point of Y .

2. For every geometric point ū of U , the specialization map sp : πet
1 pXη̄, x̄q Ñ πet

1 pXū, x̄q is surjective.

Proof. According to [Sta23, Tag 0579], since the generic fiber is geometrically reduced we may take U to be
the interior of the set of points with geometrically reduced fibers. We may further assume XU Ñ U is flat
by generic flatness. Then the first claim follows from the homotopy exact sequence [Sta23, Tag 0C0J] and
the second from base-change to the henselization of the local ring.

The following is standard but we include it for completeness. For a morphism of schemes X Ñ Y which
induces a surjection πet

1 pX, x̄q Ñ πet
1 pY, ȳq for compatibly chosen basepoints, we denote by IX{Y Ă πet

1 pX, x̄q

the kernel (somewhat abusively, since we suppress the basepoints from the notation).

Lemma 2.21. The map fF : P Ñ Y induces the following commutative diagram with exact rows and
columns for compatibly chosen basepoints.

1 1

IPF̄ {YF̄
IP {Y

1 πet
1 pPF̄ , p̄q πet

1 pP, p̄q πet
1 pF, F̄ q 1

1 πet
1 pYF̄ , ȳq πet

1 pY, ȳq πet
1 pF, F̄ q 1

1 1

Proof. The exactness of the rows is standard and the surjectivity of the vertical maps to the bottom row is
a consequence of normality and the generic fiber being geometrically connected.

Corollary 2.22. Let Vℓ be an Zℓ-local system on P for which the geometric local system V̄ℓ on PF̄ descends
to YF̄ . Then Vℓ descends to Y .

Lemma 2.23. After inverting finitely many primes of O, any ℓ-adic local system Vℓ on P which geometrically
descends to YF̄ descends to Y. Moreover, the same is true for any further localization of O.

Proof. We first claim that after inverting finitely many primes, the following is true: for every geometric point
ȳ0 of Y there is a geometric point ȳ of Y specializing to it such that the specialization map πet

1 pPȳ, ȳq Ñ

πet
1 pPȳ0 , ȳ0q is surjective. Using Lemma 2.20, there is a stratification Yi of Y such that this is true for

pPYiqred Ñ Yi, provided Yi is flat over O. After shrinking O, we may assume this is the case for all Yi, and
therefore the claim is proven.

By Corollary 2.22, we may assume Vℓ descends to Y . To finish it suffices to show any finite étale cover
P 1 Ñ P which descends to Y over P descends to Y. The descent clearly patches, so we may assume
Y “ SpecR for a local ring R. Base-changing to the henselization R̄, the cover P 1

R Ñ PR descends to R
by [Sta23, Tag 0A48], since it is trivial on every geometric fiber of PR Ñ SpecR by the above surjection of
specialization maps. The descent to R comes equipped with descent data which gives a finite étale cover of
SpecR which pulls back to P 1.

Corollary 2.24. After inverting finitely primes of O, the following is true. For any ℓ and any n, any
Zℓ-local system Vℓ on Pr1{ns which geometrically descends to YF̄ descends to Yr1{ns.
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2.7 Relation to Hodge theory over C
We end this section by summarizing some classical extension results in Hodge theory using the above lan-
guage. This is both motivation for the using extension properties to determine integral models and is needed
to prove the characteristic 0 part of the extension in Theorem 1.8.

Lemma 2.25. Let P be a smooth complex algebraic variety equipped with a polarizable integral variation of
Hodge structures pWZ, F

‚W q, and let Φ : P an Ñ rGpZqzDs be the period map.

1. For any partial log smooth compactification pP 1, Dq, pWZ, F
‚q extends to P 1 if and only if the mon-

odromy of WZ around each component of D is trivial.

2. ϕ is proper if and only if and only if VZ is nonextendable3.

3. There is a finite étale cover π : P̃ Ñ P and a partial log smooth compactification P̃ 1 of P̃ such that
π˚WZ extends to P̃ 1 where it is nonextendable.

4. If the local monodromy of WZ is unipotent, then there is a partial log smooth compactification P 1 of P
such that WZ extends to P 1 where it is nonextendable.

Proof. (1) is a result of Griffiths [Gri70, Theorem 9.5]. For (2), (3), and (4), see [Bru23, §3].

For simplicity, we will assume WZ has torsion-free monodromy. In this case, it follows from the lemma
that for any period map Φ : P an Ñ rGpZqzDs, there is a partial log smooth compactification P 1 of P ,
a proper extension Φ1 : P 1an Ñ rGpZqzDs which factors through a finite inertia-free cover ΓzD, and a
proper algebraic map h1 : P 1 Ñ Y to a normal variety Y with OY

–
ÝÑ h1

˚OP 1 such that Φ1 factors as

P 1an h1an

ÝÝÑ Y an ψan

ÝÝÑ rGzDs. We call Y the Stein factorization of the period map Φ. Observe that the local
system WZ as well as the associated filtered flat vector bundle pW,∇, F ‚W q are pulled back from VZ and
pV,∇, F ‚V q on Y .

Corollary 2.26. Let Y be the Stein factorization of a period map pWZ, F
‚W q on P with torsion-free mon-

odromy. Let X be a smooth complex algebraic variety and U Ă X a dense Zariski open set. Then a morphism
gU : U Ñ Y extends to g : X Ñ Y if and only if g˚

UWZ extends to X.

Definition 2.27. For any scheme Y and a vector bundle pV, F ‚V q on Y with a locally split decreasing
filtration, we define the Griffiths bundle of pV, F ‚V q to be biPZ detF

iV .

The main result of [BBT23] is the following:

Theorem 2.28 ([BBT23]). If Y is the Stein factorization of a period map as above, then the Griffiths bundle
on Y is ample.

Lemma 2.29. Suppose P is defined over a number field F .

1. If the filtered flat vector bundle pW,∇, F ‚W q underling pWZ, F
‚W q is defined over F , so is the Stein

factorization of the (compactified) period map h1 : P 1 Ñ Y . Moreover, the descent pV,∇, F ‚V q is also
defined over F .

2. If WZℓ
extends to an arithmetic local system etWℓ on P , then VZℓ

extends to an arithmetic local system
etVℓ on Y .

3We use the same definition for a Z-local system
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3 Extension in codimension 2
In this section we prove our main extension result in codimension 2.

Theorem 3.1. Let F {Qp be a finite unramified extension with ring of integers O. Let S{O be a smooth O-
scheme equipped with a Fontaine-Laffaille module M P MFr0,wspŜq on the p-adic completion Ŝ with underlying
filtered flat bundle pM,∇, F ‚Mq where 0 ď w ď p ´ 2. Let X {O be a smooth finite type O-scheme with
dimX “ 2, x P X a point in the special fiber, and f : X zx Ñ S a morphism. Suppose we have a commutative
diagram

X 1 S

X zx X

π

g

where π : X 1 Ñ X is an iterated blow-up at closed points lying above x, and g : X 1 Ñ S is a morphism
extending f via the natural lift X zx Ñ X 1. Then the Griffiths bundle of ĝ˚pM,F ‚Mq is trivial on π´1pxq.

In particular, if the Griffiths bundle of pM,F ‚Mq is ample on Ŝ, then the morphism f extends over x.

We recall the notion of Fontaine–Laffaille modules and the category MFr0,wspŜq in the next section.

3.1 Fontaine-Laffaille modules
3.1.1 Reminder on crystals and flat bundles

Let F {Qp be an unramified extension and let O be the ring of integers of F . We remind the reader that
for a smooth formal scheme X {Spf O there is a natural equivalence of categories between crystals in vector
bundles on the special fiber X0 and flat vector bundles on X (see for example [Sta23, Tag 07JH]). In particular,
there is a well-defined “Frobenius pull-back” of a flat vector bundle pV,∇q on X which we denote F˚pV,∇q.
Concretely, for a lift of Frobenius ϕ : X Ñ X , we form pϕ˚V, ϕ˚∇q, and for any other lift of Frobenius
ϕ1 : X Ñ X there is a canonical isomorphism of flat vector bundles pϕ1˚V, ϕ1˚∇q Ñ pϕ˚V, ϕ˚∇q given by the
formula:

1 b v ÞÑ
ÿ

I

pϕ1ptq ´ ϕptqqI

I!
b ∇pBqIv. (3.1.1)

Here we take t1, . . . , tn to be local co-ordinates for X with a dual basis of derivations Bi and for a multi-index
I “ pi1, . . . , inq we set ∇pBqI “

ś

j ∇pBiq
ij .

The above isomorphisms satisfy an appropriate cocycle condition, hence local pullbacks (where a lift of
Frobenius exists) canonically glue. Moreover, for any morphism f : Y Ñ X of smooth formal schemes there
is a natural identification f˚F˚pV,∇q – F˚f˚pV,∇q by factoring f as the graph followed by the projection
X Ñ X ˆ Y Ñ Y and using the existence of campatible lifts of Frobenius for the graph and the projection
separately.

3.1.2 Unramified case

Let F {Qp be an unramified extension and let O be the ring of integers of F . Let X denote a smooth formal
scheme over O, and X rig its rigid-analytic fiber. In [Fal89] Faltings defines a category of Fontaine-Laffaille
modules as follows:

Definition 3.2. Assume first that X admits a lift of Frobenius ϕ : X Ñ X . Let 0 ď w ď p ´ 2. Then
an object of MFr0,wspX q consists of a vector bundle M equipped with a decreasing filtration F ‚M with
F 0M “ M,F a`1M “ 0, a Griffiths-transverse flat connection ∇M , and a morphism ϕM : ϕ˚M Ñ M
satisfying:

1. ϕM is horizontal for ∇M
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2. The restriction of ϕM to ϕ˚
MF qM is divisible by pq, for q P r0, ws.

3. M “
řw
i“0 p

´iϕM pϕ˚
MF iMq.

Morphisms in MFr0,wspX q are morphisms of the underlying modules which are compatible the additional
structures.

Faltings shows that this category is independent of the choice of ϕ up to a natural isomorphism, using
the canonical identifications of eq. (3.1.1). Indeed, for a different choice of Frobenius lift ϕ1 : X Ñ X , we
obtain a new lift ϕ1

M to M by setting:

ϕ1
M p1 b mq :“

ÿ

I

ϕp1 b ∇M pBIqpmqq
pϕ1ptq ´ ϕptqqI

I!
. (3.1.2)

Finally, for a general X , one simply covers by affines where a lift of Frobenius exists as above and glues
in the natural way. Since Frobenius lifts lift uniquely under etale maps, it follows that MFr0,wspX q satisfies
étale descent.

Whenever we write MFr0,ws we assume that 0 ď w ď p´ 2. The following lemma must be well-known to
the experts but we cannot find it in the literature in this form:

Lemma 3.3. Let g : X Ñ Y be a map of smooth formal O-schemes. There is a natural base-change morphism
MFpgq : MFr0,wspYq Ñ MFr0,wspX q, compatible with compositions, so that MFpg1 ˝ g2q “ MFpg1q ˝ MFpg2q.

Proof. The statement is clearly Zariski-local on both X and Y, which we may therefore assume to be affine.
We may simply pull back the vector bundle, filtration, and connection. The only tricky part lies in the
semi-linear Frobenius morphism ϕ. As explained in [Fal89], the data of pM,∇M , ϕM q is equivalent to an
F -crystal on X0. Since F -crystals pull back naturally, the claim is proven.

3.1.3 Ramified case

Let F 1{Qp be a finite extension, which might be ramified. Let F Ă F 1 be the maximal unramified subfield,
and let O1,O be the rings of integers of F 1, F . Let π P O denote a uniformizer, with minimal polynomial
fptq P Orts. Let R “ Orrtssr f

n

n! s, and let RO1 be the PD-completion of R. Then RO1 naturally acquires a
decreasing filtration with F 0RO1 “ RO1 and F qRO1 being generated by the divided powers fn

n! , n ě q.
In [Fal99, Def 2] Faltings defines a category MFr0,wspO1q for a ď p ´ 2 whose definition we recall here:

Definition 3.4. An object MFr0,wspO1q is a RO1 -module M with a decreasing filtration F ‚M , a Griffiths-
transverse flat connection ∇M which nilpotent modulo p, and a (semi-linear) Frobenius ϕM satisfying the
following:

1. M is filtered-free as an RO1 -module (meaning a direct sum of twists of RO1), with a basis mi in degrees
qi in r0, ws.

2. ϕM is horizontal for ∇M

3. The restriction of ϕ to F qM is divisible by pq, for q P r0, ws.

4. The elements ϕpmiq{pqi form another basis for M .

Morphisms in MFr0,wspO1q are morphisms of the underlying modules which are compatible the additional
structures.

Once again, as Faltings observes, the data of pM,∇M , ϕq gives an F -crystal on O1 b Fp.

Lemma 3.5. Let S be a smooth formal scheme over Spf O, and let ι : Spf O1 Ñ S be a morphism of formal
O-schemes. There is a natural base-change morphism MFpιq : MFr0,wspSq Ñ MFr0,wspO1q.
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Proof. Let M P MFr0,wspSq. We may define the flat bundle pM1,∇M1q underlying MFpιqpMq and the
Frobenius ϕM1 by simply pulling back the F -crystal underlying M to SpecO1. It remains to define the
filtration. Without loss of generality, we may assume S is affine, so ι : A Ñ O1 for A the p-adic completion
of a smooth O-algebra. By smoothness, we may pick a lift ι1 : A Ñ RO1 , and note M1 – RO1 bA M . We
now get a natural filtration on M1 by taking the product filtration. We must show that this is independent
of the choice of ι1, so let ι2 be a different lift. Then the crystal structure gives an isomorphism of flat
bundles M1 Ñ M2 given as follows. As before, let t1, . . . , tn be local co-ordinates for X with a dual basis of
derivations Bi. For a multi-index I “ pi1, . . . , inq set ∇M pBqI “

ś

j ∇M pBiq
ij .

Then our isomorphism M1 Ñ M2 is given by:

1 bι1 m ÞÑ
ÿ

I

pι1ptq ´ ι2ptqqI

I!
bι2 ∇M pBIqpmq.

Since pι1ptq´ι2ptqq
I

I! P F |I|RO1 and the connection is Griffiths transverse, it follows that this isomorphism
respects filtrations. This completes the proof

We point out that if CM denotes the crystal corresponding to M P MFr0,wspO1q, then CMpSpf O1q –

O1 bRO1 M .

3.1.4 Local systems

Following Faltings, we say that a small O-algebra is one that admits a finite, etale map from OxT˘
1 , . . . , T˘

n y.
Let S be a smooth formal O-scheme. Using the above notion of Fontaine–Laffaille module, in [Fal99, Thm
5] there is defined a fully faithful functor D : MFr0,wspSq Ñ LocSrig pZpq. We recall the notion here, and to
do so we recall some basic rings that are used:

Let S “ Spf A where A is a small O-algebra. Consider the maximal extension of the fraction field FracpAq

in which Ar1{ps has unramified normalization, and let A be the normalization of A in this field. We let A5

be the perfection of A{p and W pA5q the Witt ring. Then there is a map W pA5q Ñ
pA, and we let B`pAq

denote the completed divided power hull with respect to the ideal generated by the kernel I of this map and
p. The group GA :“ GalpAr1{ps{Ar1{psq acts continuously on B`pAq.

Giving an M P MFr0,wspSq gives an F -crystal CM on S0, and hence by pull back an F -crystal CM on
pA b Fp with a GalpA{Aq action. As in lemma 3.5, this endows CMpB`pAqq with a natural filtration. We
define

DpMq :“ HomB`pAq,Fil,ϕpCMpB`pAqq, B`pAqq

where the homomorphism is of B`pAq-modules and is required to respect the filtration and Frobenius.
The analogous definition using B`pO1q gives a functor D : MFr0,wspO1q Ñ LocO1 pZpq, where LocO1 pZpq

simply denotes free Zp representations of GalF 1 .

Lemma 3.6. Let S be a smooth formal O-scheme, and X be either Spf O1 or a smooth formal O-scheme,
and f : X Ñ S. Let M P MFr0,wspSq. Then we have a natural isomorphism f´1DpMq Ñ DpMFpfqpMqq.

Proof. Assume first that X is a smooth formal O-scheme, and assume X “ Spf R,S “ Spf A are both small
and affine. Now we have a natural map B`pAq Ñ B`pRq compatible with the Galois actions. Moreover,
since M is a vector bundle, we have that CMpB`pAqq b B`pRq – CMpB`pRqq. We therefore obtain a
natural morphism f´1DpMq Ñ DpMFpfqpMqq. It remains to show that this is an isomorphism.

By [Fal89, II,h] we see that the natural map CMpB`pAqq Ñ DpMq˚ b B`pAq is an isomorphism up to
βa0 where β0 is as in [Fal89]. It follows that

βa0 ¨ DpMFpfqpMqq b B`pRq Ă f´1DpMq b B`pRq Ă DpMFpfqpMqq b B`pRq.
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Finally, since p ∤ βa0 , it follows that the map f´1DpMq Ñ DpMFpfqpMqq is an isomorphism as desired.
Since this map is clearly natural, we may glue up to obtain the claim for a general smooth formal O0 schemes
X,S.

If X “ Spf O1 the proof is identical, using B`pO1q instead of B`pRq and [Fal99, Thm 5] instead of
[Fal89, II,h],

3.1.5 Liu–Zhu correspondence

Let X denote a smooth geometrically connected rigid analytic variety over a finite extension F 1{Qp. Let
L denote a de Rham Qp-local system on the etale site Xet. Then [LZ17, Thm 3.9] associate a filtered flat
bundle with Griffiths transverse connection LZpLq in a functorial way with respect to both X and L. If
X “ X rig for a smooth, small formal scheme X “ Spf R, then LZpLq – pL b OB

dR
pRr1{psqqGR .

Lemma 3.7. Let X denote either a smooth formal scheme over O or Spf O1. Let M P MFr0,wspX q. Then
there is a canonical isomorphism

#

M r1{ps Ñ LZpDpMq˚q if X is smooth over O
M bRO1 F

1 Ñ LZpDpMq˚q if X “ Spf O1

Proof. We once again first work locally on Spf R for a small R. By [LZ17, Thm 3.9,v], we see that

LZpDpMq˚q bR OB
dR

pRr1{psq Ñ DpMq˚ b OB
dR

pRr1{psqq

is an isomorphism
Moreover, there is a natural map [Bri08] B`pRqrβ´1

0 s Ñ OB
dR

pRr1{psq. Hence, composing the above
with [Fal89, II, Theorem 2.6*, h] we see that

LZpDpMq˚q b OB
dR

pRr1{psq – CMpB`pRqq bB`pRq OB
dR

pRr1{psq.

Now OB
dR

pRr1{psq maps to pRr1{ps, we obtain a Galois-equivariant morphism

LZpDpMq˚q b R̂r1{ps – CMpB`pRqq bB`pRq R̂r1{ps – CMp
pRqr1{ps – M bR

pRr1{ps.

Taking Galois invariants, we see that LZpDpMq˚q – M r1{ps. Since all the maps are natural, this glues up
to completes the proof for an arbitrary smooth formal scheme O.

LZpDpMq˚q –
`

CMpB`pRqq bB`pRq OB
dR

pRr1{psq
˘GR

Ñ CMp
pRqr1{psGalpRq – pMbR

pRr1{psqGalpRq – M r1{ps

For X “ O1 the proof is exactly the same, noting that in this case for M P MFr0,wspO1q, we have
CMpRq – M bRO1 O1.

3.2 Proof of Theorem 3.1
We use the notion of crystallinity in [GY24, Def 4.4], which we refer to as Brinon-crystalline. Recall that a
classical point of a rigid space Y over F is a map spaF 1 Ñ Y for a finite extension F 1{F .

Lemma 3.8. Let O be the ring of integers in a finite unramified extension F {Qp, and let X {Spf O be a
smooth formal scheme. Let L be a Zp-local system on X rig which is Brinon-crystalline at every classical
point of X rig. Then L is crystalline.

Proof. By [GY24, Thm 1.1] we obtain that L is Brinon-crystalline. Since F {Qp is unramified, it follows by
[Hok24, Thm 3] that L is crystalline.
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Proof of Theorem 3.1. Let M be the Zp-local system on Srig corresponding to M on Ŝ, and N “ pfrigq˚M
the pullback. By Lemma 3.8, N is crystalline, hence corresponds to a Fontaine–Laffaille module N on X̂ .
Now by Lemma 3.7 we see that we have maps r1 : g˚M Ñ LZpg´1DpMq˚q and r2 : π˚N Ñ LZpπ´1DpNq˚q,
and natural isomorphisms g´1DpMq˚ Ñ π´1DpNq˚ giving induced isomorphisms

s : LZpg´1DpMq˚q Ñ LZpπ´1DpNq˚q.

We claim that the images of the maps r1, r2 are identified by s. To prove this its enough to work at every
Qp-point. So let F 1{Qp be a local field and O1 its ring of integers and ι : Spf O1 Ñ X 1 an arbitrary point.
Note that by Lemma 3.6 we have that MFpg ˝ ιqpMq is a Fontaine-Laffaille module, and DpMFpg ˝ ιqpMqq –

ι´1g´1DpMq, and that DpMFpg ˝ ιqpNqq – ι´1π´1DpNq.
By Lemmas 3.6, 3.7 we obtain maps

ι˚r1 : ι˚g˚M Ñ ι˚LZpg´1DpMq˚q – LZpDpMFpg ˝ ιqpMqq˚q.

Moreover, this map is canonical and therefore so is its image. It follows that the images of ι˚r1 and ι˚r2
agree. Thus, the images of r1 and r2 agree, as desired. It follows that g˚M and π˚M are isomorphic as
filtered flat bundles, and thus the Griffiths bundle of g˚pM,∇, F ‚Mq is trivial on π´1pxq, as desired.

It follows by Lemma 2.17 that if the Griffiths bundle of pM,∇, F ‚Mq is ample, the map g descends to
X , completing the proof.

4 Criteria for local integral canonical models
The goal of this section is to give a general setting in which local integral canonical models exists, in the
sense of Definition 2.15. For simplicity, we first give the smooth case.

Theorem 4.1. Let F {Qp be a finite unramified extension with ring of integers O. Let S{O be a smooth
O-scheme equipped with:

1. A log smooth compactification S̄{O of S with natural boundary.

2. A Fontaine-Laffaille module M P MFr0,wspŜq with ample Griffiths bundle.

Then if p ą w ` 1, S is an integral canonical model.

See Definition 2.2 and Definition 2.27 for the definitions of (π-)natural boundary and the Griffiths bundle.
In the normal case, we will additionally need a form of stratified resolution.

Definition 4.2. Let O be a Dedekind domain and Y{O a normal finite type flat O-scheme. A stratified
resolution of Y consists of:

1. An increasing sequence of closed subspaces Y1 Ă . . . Ă Ym “ Y, each flat over O, such that YjzYj´1

is smooth over O for each j. Let Y 1j Ñ Yj be the normalization.

2. For each j, a resolution π1j : Sj Ñ Y 1j and a log smooth compactification S̄j{O with the property that
the composition Sj Ñ Y 1j Ñ Yj (which we call πj : Sj Ñ Yj) is an isomorphism over YjzYj´1.

We say the stratified resolution:

3. is uniform if the resolution of the top stratum πm : Sm Ñ Ym “ Y is uniform.

4. has natural boundary if each S̄j has πj-natural boundary.

Theorem 4.3. Let F {Qp be a finite unramified extension with ring of integers O. Let Y{O be a normal
finite type flat O-scheme equipped with:
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1. A uniform stratified resolution tπj : Sj Ñ Yju with natural boundary.

2. A filtered bundle pV, F ‚V q on Ŷ with ample Griffiths bundle.

3. For each j a Fontaine-Laffaille module Mj P MFr0,wjspŜjq and a proper dominant generically finite
morphism qj : T j Ñ Sj from a smooth T j{O such that

q̂j˚pM j , F ‚M jq – q̂j˚π̂j˚pV, F ‚V q

as filtered vector bundles.

Then if p ą maxpwjq ` 1, Y is an integral canonical model.

Note that Theorem 4.3 directly implies Theorem 4.1 by taking the trivial stratification and T m “ Sm “

Y “ S.

4.1 Extension in codimension ě 2

We now use the results of Section 3 to show that, in the presence of a Fontaine–Laffaille module with ample
Griffiths bundle, morphisms from smooth sources which are defined outside of a set of codimension ě 2
extend.

Proposition 4.4. Assume the setup of Theorem 4.3. Let X {O be a smooth finite type O-scheme and
f : X zZ Ñ Y a morphism for Z Ă X a subset of codimension ě 2 which is contained in the special fiber.
Then there is an extension f : X Ñ Y.

Proof. If j is minimal such that Y j contains the image of the generic fiber X, then the image of X meets
Y jzY j´1, so there is a dense open set of X which lifts to Sj . By purity of the branch locus, X zZ Ñ X
induces an isomorphism on fundamental groups, so the map X Ñ Y is O-admissible. It follows by Lemma 2.4
that there is a finite type flat X 1{O, a proper morphism π : X 1 Ñ X which is an isomorphism on a dense
open subset, and a morphism X 1 Ñ Sj whose generic fiber lifts the morphism X Ñ Y j .

There is nothing to prove for dimX ď 1. For dimX ě 2, we argue as in [dJO97] (see also [MB85,FC90])
by induction on dimX starting with the base case dimX “ 2 and using deformation theory for the induction
step.

Assume first that dimX “ 2, so there is a finite set of points Σ in the special fiber of X such that π
is an isomorphism on the complement X zΣ. By resolution of singularities for surfaces ([Lip78], specifically
[Sta23, Tag 0AHI]), there is a composition of blow-ups at points lying above Σ, Xn Ñ ¨ ¨ ¨ Ñ X1 Ñ X , whose
composition factors as Xn Ñ X 1 Ñ X . Note that the map X zΣ Ñ Y lifts to Sj . To show that X 1 Ñ Sj Ñ Y
factors through X 1 Ñ X (and hence the existence of the required extension), it suffices (for instance by
Lemma 2.17) to show the following:

Claim. The composition Xn Ñ X 1 Ñ Sj Ñ Y contracts all exceptional curves.

Proof. Applying Theorem 3.1 to the diagram

Xn Sj

X zΣ X

we obtain that the Griffiths bundle of Mj is trivial on every exceptional divisor E. For each E we may take
a curve C in T j dominating E, and it follows that the Griffiths bundle of V is trivial on C, hence it is degree
0 on E. Thus, every exceptional divisor is contracted in Y.
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We now treat the general case dimX ą 2 by induction via deformation theory. It will be sufficient to show
that for any x P Z, f extends on an étale neighborhood of x. In particular we may assume X is affine and Y
is a closed subscheme of a smooth affine O-scheme V. Let H Ă X be a divisor containing x such that HXZ
is codimension ě 2 in H. By induction, the map HzZ Ñ Y extends to fH : H Ñ Y. Let gH : H Ñ V be the
composition with the embedding Y Ă V. Let Hi be the ith order thickening of H in X . Given a lift Hi Ñ Y of
fH : H Ñ Y, lifts to a morphism Hi`1 Ñ V are unobstructed since the obstruction lies in H1pH,OHp´iHqb

g˚
HTVq “ 0; the set of such lifts is naturally a torsor under H0pHi,OHp´iHq b g˚

HTVq. Likewise, lifts of
HizZ Ñ Y to Hi`1zZ Ñ V are a torsor under H0pHzZ,OHp´iHq b g˚

HzZTSv
q – H0pH,OX p´iHq b g˚

HTVq,
since OHp´iHq b g˚

HTV is locally free and codimH Z ě 2. In particular, there is a lift Hi`1 Ñ V which
agrees with the given map Hi`1zZ Ñ Y Ñ V. Since the ideal of Hi in Hi`1 is locally free (over H), this
lift factors through a morphism Hi`1 Ñ Y. Letting X^

H denote the completion of X along H, it follows that
there is a formal map X^

H Ñ Y whose restriction to pX zZq^
HzZ agrees with the completion of f : X zZ Ñ Y

along HzZ.
Let W be the closure of the graph of X zZ Ñ Y in X ˆ Y; note that since X 1 Ñ X is proper, it follows

that W Ñ X is as well. Since the ideal sheaf of Hi in Hi`1 is locally free (over H) for each i, the natural
formal map X^

H Ñ X ˆ Y factors through W as it does so over pX zZq^
HzZ . Thus, the projection W Ñ X

admits a section over X^
H . Say the image of w is x; then the map SpecpOW,wq Ñ SpecpOX ,xq admits a

formal section. Since W Ñ X is proper and birational, the following lemma implies it is an isomorphism
above x.

Lemma 4.5. Let q : W Ñ X be a proper birational morphism of finite-type integral O-schemes, w a closed
point of W and x “ qpwq. If the induced map SpecpOW,wq Ñ SpecpOX ,xq admits a formal section then it is
an isomorphism at w.

Proof. The claim is étale-local on X . By Artin approximation [Art69, Corollary (2.5)] (see also [Sta23, Tag
0CAU]), after replacing X with an étale cover there is an algebraic map X Ñ W agreeing with the formal
section to first order. But the composition X Ñ W Ñ X agrees with the identity to first order, and therefore
is an isomorphism. We may assume it is in fact the identity, in which case W Ñ X admits an algebraic
section. It follows that the short exact sequence of OX ,x-modules

0 Ñ OX ,x Ñ OW,w Ñ OW,w {OX ,x Ñ 0

splits. Since q is birational, OW,w {OX ,x is torsion, hence must be zero since OW,w is a domain.

Proof of Theorem 4.3. By assumption, Y admits a uniform resolution. Given smooth X {O and an O-
admissible fF : X Ñ Y , by Corollary 2.5 fF extends in codimension 1 and by Proposition 4.4 the rest
of the way.

Remark 4.6. The dimX “ 2 step in the proof of Proposition 4.4 in the setting of Theorem 4.1 follows
immediately from the last claim of Theorem 3.1.

4.2 Local models of images of period maps
In this section we give a slightly different formulation of Theorem 4.3 which deduces the existence of the Mj

at each level of the resolution from a single global M.

Proposition 4.7. Let F {Qp be a finite unramified extension with ring of integers O. Let Y{O be a normal
finite type flat O-scheme equipped with:

1. A uniform stratified resolution tπj : Sj Ñ Yju with natural boundary.
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2. A smooth P{O with a proper dominant h : P Ñ Y with OY
–

ÝÑ h˚OP and a Fontaine-Laffaille module
M P MFr0,wspP̂q such that:

(a) The filtered flat vector bundle pM,∇, F ‚Mq underlying M is pulled back from pV,∇, F ‚V q on Ŷ.

(b) The Griffiths bundle of pV,∇, F ‚V q is ample.

(c) The local system etVp on Prig corresponding to M under the Fontaine–Laffaille correspondence
descends to Yrig.

3. We finally suppose for each j there is a smooth T j{O and a commutative diagram

T j P

Sj

Y 1j Y

qj

tj

h

π1j

where qj is proper dominant and étale over a dense open subset of Sj.

Then if p ą w ` 1, Y is an integral canonical model.

Before the proof we need the following:

Lemma 4.8. Let F {Qp be a finite unramified extension with ring of integers O. Let S, T be smooth O-
schemes.

1. If f : T Ñ S is finite étale of prime to p degree and etVp is a Zp-local system on Srig such that
pfrigq˚petVpq is crystalline, then etVp is crystalline.

2. Suppose given:

(a) f : T Ñ S a proper dominant morphism;

(b) U Ă S a dense open set with preimage V “ f´1pUq such that f |V : V Ñ U is étale and SzU is flat
over O;

(c) Fontaine–Laffaille modules M P MFr0,wspT̂ q and NU P MFr0,wspÛq as well as an extension
pN,∇, F ‚Nq of the underlying filtered flat vector bundle of NÛ to Ŝ;

(d) an isomorphism of filtered flat bundles f̂˚pN,∇, F ‚Nq Ñ pM,∇, F ‚Mq whose restriction to V
underlies an isomorphism f̂˚NÛ

–
ÝÑ M|V̂ .

Then there is a Fontaine–Laffaille module N on Ŝ and an isomorphism f̂˚N Ñ M extending the above
isomorphism.

Proof. The category of Fontaine–Laffaille modules is a full subcategory of the category of local systems, so
the descent datum of f˚

etVp also descends the corresponding Fontaine–Laffaille modules [Fal89].
We now prove (2). The Frobenius morphism on M gives a morphism ϕM : f̂˚F˚pM,∇q Ñ f̂˚pM,∇q

which is compatible with the one on f̂˚pN,∇q, and we have natural solid commutative diagrams

f̂˚f̂
˚F˚pN,∇q f˚f

˚pN,∇q f̂˚f̂
˚F˚pN,∇q|Û f̂˚f̂

˚pN,∇q|Û

restricting to

F˚pN,∇q pN,∇q F˚pN,∇q|Û pN,∇q|Û .

f̂˚ϕM f̂˚ϕM |Û

ϕ ϕNÛ

(4.2.1)
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where in the top row we push-forward just the underlying vector bundles. Since T ,S are smooth and f is
proper dominant, OS Ñ f˚OT has torsion-free cokernel. Indeed, since S, T are smooth, OS Ñ f˚OT is
a split summand outside codimension 2, and both sheaves are reflexive. As N and F˚N are locally free,
the vertical arrows in the left square of (4.2.1) have torsion-free cokernel as well, and it follows that f̂˚ϕM
restricts to an extension ϕ : F˚pN,∇q

–
ÝÑ pN,∇q. The extension ϕ is flat since it is on Û .

For the strong divisibility condition, note that by eq. (3.1.1) F˚pM,∇q has a natural flat filtration which
is locally given by F̃ iM “

ř

0ďjďi p
jϕ˚F i´j , and ϕM is divisible by pi on F̃ i. The strong divisibility condition

is then equivalent to p´wϕM : F̃wM Ñ M being an isomorphism. Using the analog of the diagram eq. (4.2.1)
for this morphism, since p´wf̂˚ϕM : F̃wM Ñ f˚M is an isomorphism and restricts to p´wϕN on Û , we conclude
that p´1wϕN is an isomorphism.

Proof of Proposition 4.7. By assumption, for each j, we have a Fontaine–Laffaille module t̂j˚M on T̂ j whose
corresponding local system is pulled back from Yrig. Moreover, the underlying filtered flat vector bundle
of t̂j˚M is pulled back from pV,∇, F ‚V q on Ŷ. Applying part 1 of Lemma 4.8 to the open set U j of Sj
over which qj is finite étale, we conclude that there is a Fontaine–Laffaille module NÛj which pulls back
to pt̂j˚Mq|

pq̂jq´1pÛjq
. Applying part 2, we find that NÛj extends to a Fontaine–Laffaille module Nj which

pulls back to t̂j˚M. In particular, we have q̂j˚pN j , F ‚N jq – q̂j˚π̂j˚pV, F ‚V q. Thus, all the conditions of
Theorem 4.3 are satisfied.

4.3 Making period maps proper
We will need a result allowing us to extend geometric Fontaine–Laffaille modules when the underlying filtered
flat vector bundle extends.

Proposition 4.9. Let F {Qp be a finite unramified extension with ring of integers O. Let P{O be smooth
with a partial log smooth compactification pP 1,Dq{O. Let f : Z Ñ P be a smooth projective morphism with
geometrically connected fibers of relative dimension ă p. Let M “ Hk

DRpZ{Pq be the Fontaine–Laffaille
module with underlying filtered flat vector bundle the De Rham cohomology of Z{P. Assume:

1. There is a generically finite proper morphism g : pQ, Eq Ñ pP 1,Dq from a log smooth pQ,∆q{O and
a semistable morphism pW,∆q Ñ pQ, Eq from a log smooth pW,∆q{O extending the base-change of f
(possibly after shrinking P).

2. The filtered flat vector bundle pM,∇, F ‚Mq extends to pM 1,∇1, F ‚M 1q on P 1.

3. g1˚pM 1,∇1, F ‚M 1q – Hk
DRppW,∆q{pP 1,Dqq via an isomorphism extending the natural one, where

Hk
DRppW,∆q{pP 1,Dqq is the relative log De Rham cohomology.

Then pM 1,∇1, F ‚M 1q underlies an extension M1 of M to P 1 as a Fontaine–Laffaille module.

Proof. According to [Fal89, Thm 6.2], the completion of the filtered flat bundle Hk
DRppW,∆q{pP 1,Dqq natu-

rally underlies a log Fontaine–Laffaile module [Fal89, §2i]. By assumption the connection has trivial residue,
so it follows it is in fact a Fontaine–Laffaille module. Now apply Lemma 4.8(2).

5 Existence of integral canonical models
In this section, we deduce the existence of integral canonical models for sufficiently large primes.

5.1 Proof of Theorem 1.3
In this section we show that models of Shimura varieties satisfy the conditions of Theorem 4.1 for large
primes, thereby proving Theorem 1.3. Let S “ SKpG,Xq be a Shimura variety. We let E denote the reflex
field. SKpG,Xq carries a flat principal G-bundle E{S, which admits a canonical model over E. A choice of
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Hodge co-character defines a parabolic subgroup P Ă G, and gives a parabolic bundle P{S, along with a
canonical morphism P Ñ E , where all this data descends to EG. We note that P is not flat for the connection
on E .

Let V denote a faithful rational representation of G, and V Ă V denote a lattice. The choice of V specifies
a compact open subgroup of GpAf q by considering the stabilizers of VẐ. We choose the level structure K to
be a subgroup of this compact open subgroup, such that it is neat, and such that it acts trivially on V{3V.
Corresponding to V there is a family of Qℓ local systems etVℓ with Zℓ sub-systems etVℓ. Moreover, there
is a filtered flat vector bundle

dR
V over SKpG,Xq – indeed we have that

dR
V is defined by E ˆG V . The

filtration is induced by the fact that
dR
V is also canonically isomorphic to P ˆGE

VE . Now, let p be a prime
and let v | p be a prime of E.

By choosing N to be a large enough integer, we may assume that SKpG,Xq spreads out to a smooth
integral model SKpG,Xq{OEr1{N s such that:

• G has a reductive model G{Zr1{N s. There are elements sα P Vr1{N sb whose point-wise stabilizers
define the group G.

• For every p ∤ N , we have K “ GpZpq ¨ Kp, where Kp is the prime-to-p level structure.

• P Ă GE is induced by a parabolic subgroup of G defined over OEr1{N s.

• The map P Ñ E is induced by a map P Ñ E over S, where E is a flat principal G bundle and P is a
principal bundle for the parabolic of G defined over OEr1{N s.

Note that this gives us an integral model
dR
V{SKpG,Xq for the filtered flat bundle

dR
V (where the flat

bundle is defined as E ˆG Vr 1
N s, and the filtration is induced by P Ñ E ).

Lemma 5.1. After increasing N we have the following.

• SKpG,Xq admits a log-smooth compactification over OEr1{N s.

• The local systems etVℓ extend to SKpG,Xqr1{ℓs.

• For each finite place v of OEr1{N s, etVppmq is crystalline on SKpG,XqEv for m sufficiently small so
that V pmq has positive Hodge degrees.

• For each finite place v of OEr1{N s, let
cris

V{SKpG,XqOEv
denote the Fontaine-Laffaille module cor-

responding to etVp under the Fontaine-Laffaille correspondence. Then the Griffiths bundle of
cris

V is
ample.

Proof. The first condition follows by choosing a log smooth compactification over the generic fiber.
For the second condition, we use the following result of [KP23a, Thm 1.3]:

Theorem 5.2 (Klevdal-Patrikis). There is an integral model S of SKpG,Xq over Zr1{N s for some N such
that for each ℓ the local systems etVℓ all extend to Sr1{ℓs.

The third condition is [PST`21, Thm 7.1]
The final condition follows because the same is true for the filtered flat bundle

dR
V over the generic

point.

It follows from Theorem 4.1 that SKpG,XqOEv
is an integral canonical model. It remains to argue that

SKpG,XqOEv
is the unique model admitting a log smooth compactification. Let S be another such model.

The extension property yields that the identity map over the generic fiber extends to f : S Ñ SKpG,XqOEv
,

and by purity of the branch locus this map is an open immersion. Let W Ă S̄ ˆS̄KpG,XqOEv
be the closure

of the graph of f . Over the generic point, the inverse image of the boundary of S̄ in W must map to the
boundary of S̄KpG,XqOEv

, since every boundary divisor has infinite local monodromy, and the same is
therefore true for W. Thus, the extension is an isomorphism.
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5.2 Proof of Theorem 1.8
Suppose F is a number field, P {F a smooth variety, and f : Z Ñ P a smooth projective family. Let hF :
P 1 Ñ Y be the Stein factorization of the (compactification) of the period map associated to WZ :“ Rf˚ZZan

as described in 2.7. Then hF is defined over F . By spreading out over O :“ OF r1{ns and inverting finitely
many primes, we may assume we have smooth P,Z{O, a log smooth partial compactification pP 1,Dq{O of
P, and Y{O normal finite type flat as well as:

1. f : Z Ñ P smooth projective.

2. h : P 1 Ñ Y proper with OY
–

ÝÑ h˚OP 1 .

3. Y admits a uniform stratified resolution tπj : Sj Ñ Yju.

4. For each j there is a smooth T j{O and a commutative diagram

T j P 1

Sj

Y 1j Y

qj

tj

h

πj

where qj is proper dominant and étale over a dense open subset of Sj .

5. By [ALT20] there is a semistable model pW,∆q Ñ pQ, Eq for the family f up to a smooth alteration
g : pQ, Eq Ñ pP 1,Dq.

6. The filtered flat vector bundle pV,∇, F ‚V q on Y extends to pV,∇, F ‚Vq on Y, and its pullback to P is
identified with the filtered flat vector bundle underlying Hk

DRpZ{Pq. Moreover, pV,∇, F ‚Vq has ample
Griffiths bundle by Theorem 2.28.

7. By Corollary 2.24, the local system Hk
etpZ{Pr1{ℓs,Zℓq extends to P 1 and descends to etVℓ on Yr1{ℓs.

By Lemma 2.25 and Lemma 2.8, it follows that the stratified resolution has natural boundary.

This yields part 1a, and both 2 and 3 follow from 1b by Corollary 2.19 and Proposition 2.16. Part 4 is clear
from construction. Thus it remains to show the extension property in 1b, and since by Lemma 2.25 we have
the extension in characterstic 0, it suffices to show Yv is an integral canonical model for each finite place v.
By Theorem 4.3 we must show for each finite place v of O that there is a Fontaine–Laffaille module M on
P 1
v with the required properties. The filtered flat vector bundle underlying Hk

DRpZv{Pvq extends to P 1
v, and

so by Proposition 4.9 it extends as a Fontaine–Laffaille module whose underlying filtered flat vector bundle
is the pullback of pV,∇, F ‚VqOv

on Yv.

6 Tate-semisimplicity and special points
The aim of this section is to first prove that prime-to-p Hecke correspondences extend to the integral model
over OE,v where v | p and use this to prove that the Frobenius endomorphism on etVℓ,x is semisimple for
every x P SKpG,XqpFqq. The main theorem of this section is:

Theorem 6.1. Let p ∤ N be a prime, and x P SKpG,XqpFqq where k is a finite field of char. p. Then etφℓ,x
acts semisimply on Vℓ,x.
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This is a special case of a folklore conjecture that posits that the Frobenii at closed points are semisimple
for any irreducible local system defined over a smooth Fq-variety. We will then use this to show that every
Fp-point of SKpG,Xq is special. As the proof of Theorem 6.1 strongly uses Hecke correspondences, we will
start this section with a discussion on Hecke correspondences in characteristic zero and their extension to
SKpG,Xq. We will then reformulate the notion of special points in terms of the Hecke action, and then
prove Theorem 6.1 and use that to deduce that every Fp-point of SKpG,Xq is special.

6.0.1 Extension of Hecke correspondences

Let V be a lattice in a faithful representation V of G, such that VbZ Ẑ stabilized by K. Let Kpnq denote the
kernel K Ñ AutpV{nVq, and consider the congruence covers Sn :“ SKpℓnqpG,Xq. We focus on the towers
Sℓn for a fixed prime ℓ. Over the generic fiber this is a (possibly disconnected) Galois cover of S “ S1. By
taking the total space of the local systems V{ℓnV we obtain smooth integral models Sn with log-smooth
compactifications over the base, that are Galois over SKpG,Xq “ S1.

We recall some basics about Hecke correspondences. Let h P GpZr1{ℓsq. Let ℓn be such that h´1Kℓpℓ
nqh Ă

Kℓ. Then there are well defined maps πh : Sℓn Ñ S1 for large enough n. Let π : Sℓn Ñ S1 denote the standard
projection.

Then π´1x is corresponds to (a subset of) mod ℓn-equivalence classes of trivializations of t : Vx – V, and
πhpx1q “ πhpx2q for πpx1q “ πpx2q “ x if and only if tx2

t´1
x1

P Kℓ.

Theorem 6.2. For h P GpQℓq the map πh : Sℓn Ñ S - which exists for large enough n - extends as an etale
map over Zr1{ℓN s

Proof. This is an immediate consequence of Theorem 1.3.

With this in hand, we have:

Definition 6.3. The ℓ-power Hecke correspondence τh associated to h on SKpG,Xq{OEr1{ℓN s is defined
as τhpxq “ πhpπ´1pxqq.

Let p ∤ ℓN be a prime, let F be a p-adic local field with OF Ă F its ring of integers. Let y P

SKpG,XqpOF q. We then have that τhpyq “ ty1 . . . ynu for some integers n, where yi P SKpG,XqpOFi
q where

Fi{F are finite unramified extensions. There is a canonical Galois action of π1pOF q on the set ty1 . . . ynu

induced by the action of π1pOF q on etVℓ,x. Further, we have that the field of definition Fi of yi is just the
extension corresponding to the stabilizer of yi in π1pOF q. Finally, the Galois action of π1pOFiq on etVℓ,yi is
induced by the Galois action of π1pOF q on etVℓ,x “et Vℓ,x b Qℓ by considering etVℓ,yi “ t´1

i hetVℓ Ăet Vℓ,x
(here, ti is the choice of mod ℓn-trivialiazation corresponding to the point yi). This description also holds
with OF replaced with finite fields, as π1pOF q “ π1pFqq where Fq is the residue field of OF .

This discussion has the following immediate consequence.

Lemma 6.4. Let y P SKpG,XqpOF q (resp. SKpG,XqpFqq). Let σ P π1pOF q (resp. π1pFqq) denote
the geometric Frobenius endomorphism, and let etφℓ,x denote the automorphism of etVℓ,x induced by σ.
Let h P GpQℓq be some element, and let τhpyq “ ty1 . . . ynu. We have yi is in SKpG,XqpOF q (resp.
SKpG,XqpFqq) if σpt´1

i hVℓq “ t´1
i hVℓ. Further, if we were to identify Vℓ with etVℓ,y using ti, we obtain

the identification hVℓ –et Vℓ,yi , with the Frobenius at yi acting as h´1
et φℓ,xh.

6.1 Special points
Proposition 6.5. Let x P SKpG,XqpCq. The following are equivalent:

1. x is a special point.

2. For infinitely many primes ℓ at which G is split, there exists a finite set S :“ tx “ x1, . . . , xnu Ă

SKpG,XqpCq and a maximal split torus T Ă G defined over Qℓ such that τhpxq X S ‰ H for every
h P T pQℓq.
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Proof. Assume 1. Then there is a Q-torus T Ă G and a cocharacter h : S1 Ñ TR which lands in X. By
enlarging T assume that T is maximal. Then conjugating by elements of T does not change h, and the
statement follows.

Now assume 2. Let y “ y1, . . . , yn P GpAq{K be lifts of the xi. Without loss of generality we may assume
that for every i “ 1, . . . , n there is an element ci P GpQq such that ci ¨y “ yi. Moreover, we let zi :“ yi,R P X.

Now let H Ă GQ denote the largest Q-subgroup fixing z “ z1. Note that HpRq is compact and therefore
H is reductive. Let ℓ be a sufficiently large prime such that G,H are both split, Kℓ and Kℓ X HpQℓq
are hyperspecial, the torus T exists as in assumption 2, and all the yi have component 1 ¨ Kℓ at ℓ. Then
@h P T pQℓq, τh´1pyq consists of the union of hi ¨ y where the multiplication takes place in the ℓ’th co-ordinate
only, and hi ranges over elements of Kℓh

´1Kℓ. Therefore, there is an element γ P GpQq such that

• γℓ P KℓhKℓ

• γ ¨ z P tz1, . . . , znu

The second condition is that for some i, γ P ci ¨ H, and thus we see that

m
ď

i“1

ci ¨ HpQℓq ↠ KℓzGpQℓq{Kℓ.

Let Z Ă G be a maximal, split Qℓ-torus such that Z 1 :“ Z X H is also a maximal, split Qℓ torus of H.
Let W,W 1 be the Weyl groups of pG,Zq, pH,Z 1q. By [Tit79, Pg. 51], we have

KℓzGpQℓq{Kℓ – X˚pZq{W

and similarly
pKℓ X HqzHpQℓq{pKℓ X Hq – X˚pZ 1q{W 1.

Let PH`
Ă P` be the coroots in a positive Weyl Chamber for Z 1, Z respectively. Let us write

Ťm
i“1 KℓciCℓ

as
Ť

λPS KℓλpℓqKℓ for S Ă P`. Then

GpQℓq “

m
ď

i“1

Kℓci ¨ HpQℓqKℓ Ă

˜

m
ď

i“1

KℓciKℓ

¸

¨ KℓHpQℓqKℓ

Ă
ď

λPS

KℓλpℓqKℓ

ď

λ1PP`
H

Kℓλ
1pℓqKℓ.

Note that the containments must in fact be equalities. By [Tit79, Pg. 148] we see that this latter product
contains µpℓq for µ P P` only if µ is dominated by some root in S ` P`

H . But S is finite, P`
H is contained in

a sublattice of X˚pZq, so this is only possible if Z 1 “ Z.
Thus H has the same rank as G. Thus z has a stabilizer containing a maximal Q-torus, and therefore x

is a special point, as desired.

Let R denote a ring of characteristic p. In the case of Shimura varieties of Hodge type, one defines an
R-valued point to be special if the abelian variety associated to the point has complex multiplication. Guided
by Proposition 6.5, we make the following definition.

Definition 6.6. Let R be a ring of characteristic p. We say that x P SKpG,XqpRq is special if there exists
a finite set x “ x1, x2, . . . xn P SKpG,Xq, and split maximal tori Tℓ Ă GQℓ

for infinitely many primes ℓ such
that τhpxq X tx1, . . . , xnu ‰ H for every h P T pQℓq.

We will end this section by proving Theorem 6.1 and using it to prove that every Fp-valued point of
SKpG,Xq is special as per our definition.
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6.2 Tate semisimplicity
We will now prove Theorem 6.1.

Proof. We first fix a G-equivariant identification etVℓ,x – Vℓ. Suppose that etφℓ,x doesn’t act semisimply –
let petφx,ℓq “ φss ¨ φunip. Note that the Jordan decomposition implies that φss, φunip are elements of GpQℓq.
A sufficiently ℓ-divisible power of φunip will preserve Vℓ,x and hence by increasing the field Fq we may and
do assume φss, φunip lies in Kℓ.

We will find hecke operators in GpQℓq which preserve Fq-rationality, and therefore which eventually give
us that our point is stable under that appropriate operator, which we will use to deduce semisimplicity. In
order to preserve Fq-rationality, we pick our Hecke operator as follows. Let H Ă G denote the centralizer of
φss – it contains φx and φunip. Note that H is semisimple by [Con14]. Using the Jacobson-Morozov lemma,
we can find an element h P HpQℓq such that h´1φuniph “ φℓ

2

unip. Let τh denote the corresponding Hecke
correspondence. One of the points of τhpxq (which we call x1) will correspond to the lattice hVℓ Ă Vℓ b Qℓ,
and as this lattice is stable under the action of φ, the point will also be defined over Fq by Lemma 6.4.
The action of φx1

is just φx on the lattice hVℓ Ă Vℓ, again by Lemma 6.4. Therefore, we have that
φx1

“ h´1φxh “ φssφ
ℓ2

unip by construction. Therefore, φx1,unip ´ 1 is strictly more divisible by ℓ then
φx,unip ´ 1, and therefore x ‰ x1.

Iterating this process over and over, we get a sequence of mutually distinct k-rational points. This is
contradiction arising from our assumption that φunip is nontrivial.

Theorem 6.1 and its proof has the following immediate consequence.

Corollary 6.7. Every x P SKpG,XqpFpq is special.

Proof. It suffices to prove that the image of x in the adjoint Shimura variety is special, and so we suppose
that G is an adjoint group. The point x is defined over some Fq. Let H denote the centralizer of ℓϕx,
where ℓϕx is the Fq-Frobenius at x acting on et,ℓVx. The argument in the proof of Theorem 6.1 yields that
τhpxq X SKpG,XqpFqq ‰ H for every h P HpQℓq. By Theorem 6.1, we have that H must contain a maximal
torus of G defined over Qℓ. Therefore, if we were to set S “ tx “ x1, . . . xnu “ SKpG,XqpFqq and T to
be some maximal torus of H defined over Qℓ, we would have that τhpxq X S ‰ H for every h P T pQℓq.
Therefore, it suffices to prove that there exist infinitely many ℓ such that some power of ℓϕx is contained in
a split maximal Qℓ-torus of G.

By the main theorem of [KP23b], the conjugacy class of ℓϕx is Q-rational, and does not depend on ℓ.
Therefore, we may choose ℓ such that GQℓ

is split, and such that the characteristic polynomial of ℓϕx on
some faithful representation of G splits over Qℓ. By replacing ℓϕx by a power (i.e. replacing q by a power),
we may also assume that the roots of this characteristic polynomial do not differ by a non-trivial root of
unity. It follows that ℓϕx is contained in split torus. However, in a quasi-split (and therefore split) group,
every split torus is contained in a maximal split torus.

7 Complete local rings for large primes
Let notation be as in Section 5.1, and let p ∤ N denote a prime. As we will exclusively work over a p-adic
field, we let G denote GZp

. Throughout this section, the level structure at p is GpZpq.
The goal of this section is to fully describe the Fontaine-Laffaille data restricted to complete local rings

of SKpG,Xq at Fp-points x, and to describe the Fontaine-Laffaille data at W -valued points of SKpG,Xq in
terms of picking a filtration on an appropriate F -crystal. For such a point x, we let SKpG,Xqx denote the
formal neighbourhood of SKpG,Xq at x. Let Rx denote the complete local ring at x, and let crisVx denote
the restriction of crisV to SKpG,Xqx. Similarly, we let crisVx denote the restriction of crisV to any W -point
of SKpG,Xq. Let

cris
Vx denote the induced F -crystal at x P SKpG,XqpFq. We will treat

cris
Vx as a free
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W -module equipped with a semi-linear Frobenius endomorphism. We let φu denote Frobenius on crisVx, and
φx̃ denote Frobenius on crisVx̃.

7.1 The Fontaine-Laffaille module on complete local rings
7.1.1 F-crystals with G-structure and G-split filtrations.

We refer to [SZ21, Section 2] for the notion of an F -crystal with G structure. Recall that we have ten-
sors sα P Vb

1
N

. These tensors induce global sections of the p-adic etale local system etVb
p (defined over

SKpG,Xq{OEr 1
pN s) – we will refer to them as etale tensors etsα,p Pet Vb

p .
Via the Riemann-Hilbert correspondence, the tensors sα give rise to flat sections

dR
sα P

dR
V b. We have

the following proposition:

Proposition 7.1. The tensors
dR
sα descend to integral tensors in

dR
Vb over OEr 1

N s.

Proof. This follows directly from the existence of the integral model E {OEr 1
N s of the flat principal G-bundle.

Then we have the isomorphism
dR
Vb » E ˆG Vb (7.1.1)

over OEr 1
N s. Using this isomorphism, the tenors sα induce canonical flat sections of

dR
Vb. These are

precisely the flat sections
dR
sα, and the proposition follows.

Let v denote some prime of E above p, and consider the p-adic etale local system etVp{SKpG,Xq{Ev. As
in [Kis10, Section 1.3.3], we may apply the Fontaine-Laffaille functor to the tensors etsα,p to obtain tensors
cris

sα P
cris

Vb, which by construction are fixed by Frobenius and contained in Fil0.
Recall that the integral structures on

dR
V {SKpG,XqEv

induced by
cris

V and
dR
V are the same. We have

the following proposition:

Proposition 7.2. Under the identifications above, we have crissα “
dR
sα.

Proof. As both sets of tensors are flat, it suffices to prove that the two sets of tensors agree at some point –
we will show that they agree at a special point. Indeed, at a special point y, all the data ?V arise from the
cohomology of a CM abelian variety. Similar to [Kis10, Section 2.2.2], the equalities follow from the work of
Blasius-Wintenberger [Bla94].

Corollary 7.3. There is an (non-canonical4) isomorphism of Rx-modules ιx : VpbRx Ñ crisVx which sends
the tensors sα to crissα.

Proof. This follows directly from the ismorphism in Equation (7.1.1) and the fact that E |SKpG,Xqx is trivi-
alizable (Note that the connection however is not trivializable as a principal bundle).

Now, let x̃ P SKpG,XqpW q denote a W -valued lift of x. Let
cris

Vx̃ denote the Fontaine-Laffaille module
pulled back to x̃. Corollary 7.3 has the following immediate implication:

Corollary 7.4. There are isomorphisms ιx̃ : Vp b W Ñ
cris

Vx̃ and
cris

Vx̃ b Rx
ι

ÝÑ
cris

Vx that respect the
tensors sα, and such that ι ˝ ιx̃ “ ιx.

We will now prove that the second isomorphism in Corollary 7.4 can be chosen to respect filtrations.

Proposition 7.5. The isomorphism ι in Corollary 7.4 may be chosen such that Fil‚pcrisVx̃q b Rx maps
isomorphically onto Fil‚p

cris
Vxq.

4The non-canonicity is because any choice of isomorphism can be pre-composed by some element of GpRxq.
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Proof. Consider the subgroups of GLpcrisVx̃q and GLpcrisVxq that fix the tensors sα and the filtrations Fil‚.
The existence of the integral model of P{SKpG,Xq implies that these are parabolic subgroups PW Ă GW

and PRx Ă GRx respectively – the identification ιx̃ and ιx in Corollaries 7.3 and 7.4 allow us to think of
the parabolic subgroups as subgroups of GW and GRx . Further, PRx clearly specializes to PW via the point
x̃. Consider now the two parabolic subgroups PRx and PW b Rx of FRx . These two subgroups are equal
(and therefore conjugate) at the unique closed point. By [Con14, Corollary 5.2.7], the two parabolics are
GpRxq-conjugate. Conjugating ι by this element still respects the tensors (which are fixed by elements of G)
and now respects the filtrations by construction. The proposition follows.

Finally, we have that Fil‚ is induced by a G-split co-character. In other words, we have:

Corollary 7.6. The filtration on Fil‚p
cris

Vx̃q is induced by a GW -valued co-character.

Proof. We will let x̃ also denote the W r1{ps-point of SKpG,Xq. By [Kis10, Lemma 1.1.4], it suffices to prove
that the filtration on

dR
Vx̃ is induced by a GW r1{ps-valued co-character. Further, we have (by [DLLZ23]) that

dR
Vx̃ and D

dR
petVp,x̃q are isomorphic as filtered vector spaces. The fact that the filtration on D

dR
petVp,x̃q is

induced by a G-valued co-character now follows from [Kis10, Lemma 1.4.5].

7.1.2 Explicit coordinates

We pick coordinates on Rx and write it as W rrx1, . . . , xnss, such that the point x̃ is given by setting all
the xi “ 0. We choose a lift of Frobenius σu on Rx that extends the usual Frobenius σ on W and satisfies
σupxiq “ xpi . Using the isomorphisms ιx̃, ι

x, we may now write φu “ buσu and φx̃ “ bσ, where the fiber of
bu P GpRxr1{psq at x̃ is b P GpW r1{psq. We also fix a choice of GW -valued co-character µ that induces the
filtration on

cris
Vx̃) and on

cris
Vx via ι.)

Proposition 7.7. We have bu P GpRxqσpµppqq.

Proof. Let crisVxi denote the weight spaces of crisVx under µ. Clearly, Filn “ ‘iěncrisVxi . The strong-
divisibility condition yields that ‘i

1
pi bupσp

cris
Vxi qq “

cris
Vx. Here, σ denotes the semi-linear Frobenius on

W , and acts as the identity on the coordinates xi. Further, the action on
cris

Vx is via the Zp structure given
by Corollary 7.3.

By definition, we have that µppqp
cris

Vxi q “ pi
cris

Vxi . Therefore, we have that
cris

Vx “ ‘i
buσpµppq´1

cris
Vxi q,

whence crisVx “ buσpµppq´1qpcrisVxq. It therefore follows that buσpµppq´1q P GLpcrisVxq. The proposition
follows as GpRxq “ GpRxr1{psq X GLp

cris
Vxi q.

We have the immediate corollary:

Corollary 7.8. We have b P GpW qσpµppqq.

7.1.3 The Fontaine-Laffaille module on complete local rings

We will now prove the main result of this section, which is to give a description of the Fontaine-Laffaille data
on SKpG,Xqx analogous to the case of abelian type Shimura varieties following Kisin [Kis10]. Let notation
be as in the previous subsections. Recall that we have chosen an isomorphism

cris
Vx̃bRx Ñ

cris
Vx of filtered

modules compatible with the G-structure defined in Subsection 7.1.1. We note that such an isomorphism is
unique only up to an element of P pRxq, where P is the parabolic subgroup of G defined by the filtration.
Also recall that we have chosen a G-valued co-character (defined over W ) that splits Fil‚. Let Uopp denote
the opposite unipotent of µ, and let pUopp denote the completion of Uopp at the identity mod p.

We now fix ιx̃. We note that the choice of ι fixes the choice of ιx.

Theorem 7.9. The isomorphism of filtered modules ι :
cris

Vx̃ bRx Ñ
cris

Vx can be chosen so that bu “ u ¨ b,
where u P UopppRxq. Further, the map induced by the point u : Spf Rx Ñ pUopp is an isomorphism.
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Proof. We will first prove that we may choose ι such that u P pUopp, and will then use the versality of the
Kodaira Spencer map to show that the tautologocal map u induces is an isomorphism. The first part of the
proof will follow [KLSS21, Proposition 4.7].

Let I Ă Rx denote the kernel of Rx x̃
ÝÑ W . We have that bu “ u1b, where u1 P GpRxq with u1 ” Id modI.

Therefore, we also have that u1 P Uopp mod I. We may write u1 “ λu with λ P P and u P Uopp, with
both λ and u reducing to the identity modulo I. Replacing ι by λ ˝ ι has the effect of replacing bu by
λ´1u1bσpλq “ upbσpλqb´1qb. Define u1p1q to be upbσpλqb´1q. As σpIq is generated by tpi , we have that
u1p1q P pUopp mod Ip, and we may thus write u1p1q “ λp1qup1q, with λp1q P P reducing to the identity
modulo Ip and up1q reducing to the identity modulo I. Iterating this process, we may change coordinates
by an element of P again and replace bu by u1p2qb “ up1qpbσpλp1qqb´1qb, whence u1p2q P Uopp mod Ip

2

.
Iterating this process is equivalent to modifying j by the convergent product . . . λp2q ¨ λp1q ¨ λ, and has the
effect of writing bu “ u ¨ b with u P UopppRxq as required.

We will now prove that the tautological map Spf Rx Ñ pUopp induced by u is an isomorphism. The
leading order term of the connection is du (see [Kis10, Proof of Lemma 1.5.2]5). Therefore, the Kodaira
spencer map reduces mod I to the element dux̃ : HompTx̃R

x Ñ EndpGrcris Vx̃qq, where dux̃ is the restriction
of du to the tangent space of Tx̃T x of Rx at x̃. The image of dux̃ is contained in LieUopp

x̃ . The versality of
the Kodaira-Spencer map implies that dux̃ is an immersion. As the dimension of pUopp is the same as the
dimension of Rx, it follows that u is an isomorphism.

7.2 Versality of Filtrations
The setting and notation will be as in Section 7.1.3. Let x̃1 denote a W -valued lift of x. The F -crystals under-
lying the Fontaine-Laffaille modules crisVx̃ and crisVx̃1 are canonically isomorphic, and indeed are canonically
isomorphic to the F-crystal crisVx. This canonical isomorphism is obtained by considering the horizontal
continuation s∇ of elements s P

cris
Vx̃ to

cris
Vx with respect to the connection ∇ on

cris
Vx. We will use this

identification to view Fil‚p
cris

Vx̃q and Fil‚p
cris

Vx̃1 q as filtrations on
cris

Vx, i.e. different filtrations on the same
underlying F -crystal. The content of the following proposition is that points x̃ P RxpW q are in bijection
with filtrations of the form g ¨ Fil‚p

cris
Vx̃q, where g P pUopppW q. This result will be used crucially in a later

section to define the canonical lift of (µ-)ordinary and then prove our CM lifting theorems.

Proposition 7.10. There is a bijection between pUopppW q and points x̃1 P RxpW q, where the bijection assigns
to g P pUopppW q the Fontaine-Laffaille module with underlying F -crystal

cris
Vx and filtration g ¨ Fil‚p

cris
Vx̃q.

We will first need the following result about flat sections on
cris

Vx. Let O denote the ring of rigid-analytic
functions on the rigid-analytic space given by the tube of SKpG,Xq over x. The tube is just a SKpG,Xq-
dimensional open unit ball around x̃. Note that Rxr1{ps Ă O is the subset of bounded functions. Recall that
we have the coordinates xi P Rx whose vanishing defines x̃. Let yi P O be defined by yi “ xi

p . We have the
inclusion O Ă W r 1p sxyiy, given by restricting functions on the open unit ball to the closed ball with radius
1
p . We let W xyiy denote functions on this closed ball that are bounded above by 1. We are now ready to
state the following lemma.

Lemma 7.11. We have the following results:

1. The connection ∇ has a basis of solutions over O. Further, p
cris

Vx,∇q|W xyiy is isomorphic to p
cris

Vx∇“0bW

W xyiy, dq . Consequently, the horizontal continuation of every s P
cris

Vx̃ is an element of
cris

Vx bRx

W xyiy.

2. Let s Pcris Vx̃ be some element. Let s̃ denote the element s b 1 P crisVx under the isomorphism in
Theorem 7.9. Let s∇ denote the horizontal continuation of s to

cris
Vx b O. There exists a unique

element g P GpOq such that g ¨ s̃ “ s∇ where g is independent of s. Further, g P GpW xyiyq.
5Note that in loc. cit., the leading order term is described as u´1 ¨ du. As u ” Id mod I, du and u´1du have the same

leading term.
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3. g ” u´1 mod pxiq
2, where u is the tautological point u P pUopppRxq as in Theorem 7.9. Further, the

coefficients of the series expansion of g in the coordinates yi are divisible by p2 for the non-linear and
non-constant terms.

Proof. This lemma is proved by direct calculation. First note that p
cris

Vx,∇q has a full set of solutions over
W r1{psrrxiss, with flat sections given by:

s∇ “
ÿ

w⃗

ź

i

p´xiq
wi

i!

ź

i

∇p
d

dxi
qwips̃q, (7.2.1)

where the sum is taken over all tuples w⃗ “ pwiq of non-negative integers.

1. That ∇ has a basis of solutions over O follows from the Frobenius structure (Dwork’s trick). The fact
that the flat bundle p

cris
Vx,∇q|W xyiy is trivial is a general fact about vector bundles with flat connection

on W rrxiss pulled back to W xyiy for primes p ą 2. Indeed, the connection matrix has entries valued
in W rrxiss, and after substituting xi “ pyi, it is evident that the resulting expressions are contained
in W xyiy, and indeed, we have s∇|W xyiy ” s̃|W xyiy mod p.

2. By [Kis10, Lemma 1.5.2] and [Kis17, E.1]6, it follows that ∇ P LieGbΩ1
Rx . Therefore, g is indeed a point

of G, a-priori valued in W r1{psrrxiss. The fact that it is an O-valued point (and indeed, a W xyiy-valued
point ) of G follows from the first part (and the fact that GpW xyiyq “ GLpW xyiyq XGpW r1{psrrxissq).

3. This follows from Equation (7.2.1) and the fact that the leading term of ∇ is du.

With this in hand, we will now prove Proposition 7.10:

Proof. Let h “ g´1. By Lemma 7.11 (3), we have that h ” u mod pyiq
2 X pp2q. We have that s̃ “ h ¨ s∇.

We let Fil‚ denote the filtration Fil‚pcrisVx̃q. The filtration on crisVx is given by ĄFil‚ “ Fil‚ bW Rx. Let
Fil‚∇ denote the horizontal continuation of Fil‚. We then have that h ¨ Fil‚∇ “ ĄFil‚. Let PFil‚∇

Ă G be the
parabolic subgroup of G stabilizing the filtration Fil‚∇. We may write h “ u1 ¨ λ1, where u1 P UopppW xyiyq

and λ1 P PFil‚∇
pW xyiyq – we have that ĄFil‚ “ u1 ¨ Fil‚∇. Note that u1 ” h mod pyiq

2 X pp2q.
Let Uopp

1{p Ă pUopp,rig denote the closed ball of radius 1
p around the identity. The element u1 induces

a rigid-analytic map SpW xyiy Ñ pUopp,rig, and the conditions on u1 imply that the image is contained
in Uopp

1{p . Note that unipotent groups are uniquely p-divisible, and so the map “dividing by p” gives an
isomorphism Uopp

1{p Ñ Uopp,rig. Here, we abuse notation and also allow Uopp to denote the formal scheme
obtained by p-adic completing Uopp. Therefore, by composing u1 by the “dividing by p” map, we obtain
a map u2 : SpW r1{psxyiy Ñ Uopp,rig. Both these rigid spaces admit natural integral models – SpfW xyiy
and Uopp. The congruence conditions on u1 imply that u2 is induced by a map on these integral models.
It suffices to prove that u2 is an isomorphism, which would follow from the claim mod p. The congruences
established in Lemma 7.11 together with Theorem 7.9 imply that u2 is an isomorphism modulo pyiq

2, and
that the coefficients in the series expansion of u2 in the coordinates yi are divisible by p for the non-linear
and non-constant terms. It is now clear u2 is an affine linear map mod p, and it suffices to check that it
is an isomorphism at the tangent space of some closed point. But this follows from the fact that u2 is an
isomorphism mod pyiq

2. The proposition follows from here.

6As the erratum indicates, the conclusion that ∇ P LieU b Ω1
Rx is false without extra assumptions (for example, the point

x being ordinary), but the weaker claim ∇ P LieG b Ω1
Rx is true.
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8 The µ-ordinary locus: CM lifts and Tate’s isogeny theorem
In this section, we will define the notion of µ-ordinariness. This notion generalizes the notion of ordinary
abelian varieties. We will then prove that the µ-ordinary locus is open-dense, and that every µ-ordinary
point admits a lift to a special point. This generalizes the Serre-Tate canonical lift of an ordinary abelian
variety (and generalizes work of Moonen for Shimura varieties of PEL type, and work of [SZ21] in the case
of Hodge type Shimura varieties).

We keep the notation of the previous section. Let B Ă G be a Borel subgroup defined over Zp, and let
T Ă B Ă G be a maximal torus that splits over an etale extension of Zp(that G{Zp is reductive implies
that these objects exist). Let x P SKpG,XqpFq. Associated to the F -crystal

cris
Vx is the Frobenius element

bx P GpLq, which is well defined up to σ-conjugation by GpW q. Let νx P X˚pT q be the dominant element that
is conjugate to νbx , the Newton cocharacter associated to bx (see work of Kottwitz [Kot85] and [Kot97] for
definitions and more details). Note that the conjugacy class of νbx depends only on the σ-conjugacy class of bx,
and so the definition of νx is independent of the choice of representative of the σ-conjugacy class of bx. We note
that νx is defined over Zp. Let µx P X˚pT q denote the dominant co-character with bx P GpW qσpµxqppqGpW q.
The co-character µx might not be defined over Zp, and let µ̄x “ 1

rEp:Qps

ř

τPGalpEp{Qpq τpµxq denote the Galois
average of µ, where Ep{Qp is some finite unramified extension splitting T . We have that νx ĺ µ̄x (for example,
see [Gas10]), where two dominant fractional cocharacters satisfy µ1 ĺ µ2 if and only if µ2 ´µ1 can be written
as a non-negative rational linear combination of positive co-roots. We have the following definition.

Definition 8.1.

1. The point x is said to be µ-ordinary if νx “ µ̄x.

2. The point x is said to be ordinary if it is µ-ordinary and if µx is defined over Zp.

We remark that when G “ T is itself a torus, then every point is µ-ordinary. The notion of µ-ordinariness
was first introduced by Rapoport in his ICM talk (see also [Wor13], [Moo04], and [SZ21]). The µ-ordinary
locus will be open-dense if nonempty. This was done in [Wor13] in the case of Shimura varieties of abelian
type, when the level structure at p is hyperspercial (see also [Bül01]). We prove this in the case when p is a
large enough prime – we remark that our proof works both in the abelian and exceptional cases.

Theorem 8.2. Let p be a large enough prime and let v | p be a prime of E. Then the µ-ordinary locus of
SKpG,XqFv

is non-empty.

We will prove this result at the end of this section. The content of [Wor13, Proposition 7.2] is the following
result:

Proposition 8.3 (Wortman). Let x P SKpG,XqpFq be a µ-ordinary point with bx, νx and µx as above.
Then there exists g P GpW q such that g´1bxσpgq “ pσµxqppq.

We now change coordinates on (by σ-conjugating by an element of GpW q) and we may assume that
bx “ σpµxqp. The following proposition defines the canonical lift of a µ-ordinary point.

Proposition 8.4. Consider the Fontaine-Laffaille module with underlying F -crystal
cris

Vx, and with the
filtration defined by the co-character µx. This corresponds to a (necessarily) unique point of SKpG,Xqx.

Proof. This result follows almost immediately from Proposition 7.7. Indeed, let x̃ denote some W -valued
lift of x, and let µ denote a co-character inducing the filtration on

cris
Vx̃. The Fontaine-Laffaille conditions

imply that filtrations induced by µx and µ agree on
cris

Vx̃ mod p.
Consider the parabolic subgroups of Px Ă G and Pµ Ă G induced by µx and µ respectively. That the

filtrations agree modulo p implies that Px “ Pµ mod p. By [Con14, Corollary 5.2.7], the two parabolics are
conjugate over some etale extension of W , and therefore over W itself. As the two parabolics agree modulo
p, they are conjugate by an element g P ÛopppW q (with Ûopp the opposite unipotent of µ). Therefore,
Filx “ g ¨ Filµ, and so the proposition follows by Proposition 7.7.
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Definition 8.5. Let x P SpG,XqpFq be a µ-ordinary point. We let xcan denote W -valued lift constructed
in Proposition 8.4, and call it canonical lift of x.

In the ordinary case, this construction directly generalizes the Serre-Tate canonical lift of an ordinary
abelian variety. More generally, this generalizes the notion of canonical lifts of µ-ordinary points of PEL-type
Shimura varieties defined by Moonen in [Moo04], and of µ-ordinary points of Hodge-type Shimura varieties
defined in [SZ21]. Analogous to those cases, we will shortly prove that xcan is actually a CM point. For
now, we remark that the canonical lift is functorial in prime-to-p Hecke correspondence. Indeed, prime-to-p
Hecke correspondences are finite etale correspondences on the integral model, and therefore every ỹ P τpx̃q is
a W -valued point of SKpG,Xq whenever x̃ is. Further, the action of prime-to-p Hecke correspondences on
W -valued points preserves the isomorphism class of the Fontaine-Laffaille modules attached to these points.
Therefore, we have the immediate corollary:

Corollary 8.6. Let xcan denote the canonical lift of a µ-ordinary point x, and let ỹ P τpxcanq where τ is a
prime-to-p Hecke correspondence. Let y be the specialization of ỹ. Then, ỹ “ ycan. In particular, ỹ “ xcan

if y “ x.

We can now apply this in conjunction with Proposition 6.5 and Corollary 6.7 to obtain the following
result:

Theorem 8.7. Every µ-ordinary point lifts to a characteristic-zero special point.

We obtain the following corollary.

Corollary 8.8. Let x P SKpG,XqpFqq be µ-ordinary, with q “ pn, and let
cris

φx be the crystalline (semi-
linear) Frobenius endomorphism on Dx. Then, the linear map

cris
φnx is semisimple.

8.1 Non-emptiness of the µ-ordinary locus
We will now prove that the µ-ordinary locus is non-empty at all large enough primes v of the reflex field E,
by constructing zero-dimensional Shimura varieties that specialize mod v to µ-ordinary points. It suffices to
treat the case of adjoint groups, so we assume throughout that G is adjoint. Let pT, hq Ñ pG,Xq denote
an embedding of Shimura data such that the image of T is a maximal torus of G. Let ET denote the reflex
field of pT, hq – note that this is just the field of definition of the Hodge co-character µh associated to h. Let
w be a place of ET dividing the place v of E. Let p denote the rational prime that v divides. We make the
following definition.

Definition 8.9. Let T 1 Ă G1 denote a maximal torus inside a reductive group defined over Zp. We say that
T 1 is quasi-split if T 1 is contained in a Borel subgroup B Ă G defined over Zp.

We remark that quasi-split tori always exist, they are all conjugate to each other over Zp, and a torus
inside a Zp-reductive group is quasi-split if and only if it contains a maximal split torus.

Proposition 8.10. The zero-dimensional Shimura variety modulo w induces a µ-ordinary of SKpG,XqFv

if the following two conditions are satisfied:

1. T is quasi-split at p.

2. The co-character µh P X˚pTET,w
q is dominant with respect to a Borel subgroup of G defined over Zp.

Proof. As remarked earlier, the mod w zero-dimensional Shimura variety is µ-ordinary for the group T .
Therefore, we have that the Newton co-character is the Galois average of µh. However, in order to show that
we also have µ-ordinariness for the group G, we must show the same equality but after replacing both the
Newton and the Hodge co-character with their dominant conjugates (dominant with respect to some Borel
subgroup defined over Qp). However, µh is dominant by definition, and as B is defined over Qp, so is its
Galois average. The result follows.
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The absolute Galois group of Q acts on X˚pT q. We recall Chai and Oort’s definition from [CO12].

Definition 8.11. We say that pT, hq is a Weyl special point if the image of the Galois action GalpQ{Qq on
the co-character lattice X˚pT q contains the Weyl group.

Given this setup, let EpGq denote the finite extension of Q such that the image of the Galois action
GalpEpGq{EpGqq equals the Weyl group. Let E1

T denote the splitting field of T . Note that EpGq contains
E and E1

T contains ET .

Proposition 8.12. Let pT, hq be as above. Suppose that T is quasi-split at p, and that pT, hq is a Weyl
special point. Then there exists a place w of ET that satisfies the second condition of Proposition 8.10.

Proof. It suffices to replace E, and ET with EpGq, and E1
T respectively. Abusing notation by letting v denote

a place of EpGq dividing the original place of E, we must find a place w | v of E1
T such that µh P X˚pTE1

T,w
q

satisfies the positivity condition with respect to a Zp-Borel. Given a co-character µ defined over E1
T and a

place w | v, we let µw denote the base-change of µ to ET,w. We also fix a choice of Borel subgroup over Zp
containing T .

We now pick a place w1 | v. By construction, the Weyl-group orbit of µh is defined over E1
T and

therefore over E1
T,w1 . As T is split over E1

T , we have that µw
1

h and any other element in its Weyl orbit are
conjugate over E1

T,w1 . Let g be the Weyl group element satisfying g ¨ µw
1

h is dominant with respect to B.
Let τ P GalpE1

T {EpGqq satisfy τpµhq “ g ¨ µh. Then by construction, τpµhqw
1

P X˚pTE1
T,w1

q is dominant.

But this is equivalent to µ
τ´1

pw1
q

h P X˚pTE1

T,τ´1pw1q
q being dominant as B is defined over Qp. Therefore, the

proposition follows by picking w “ τ´1pw1q.

We are now ready to prove Theorem 8.2.

Proof. By Propositions 8.10 and 8.12, it suffices to find a Weyl special point pT, hq where T is quasi-split at
p. But this follows directly from [CO12, Proposition 5.11] by choosing Σ1 “ tp,8u, U8 as in Remark 5.12
of loc. cit., and Up to be the set of set of elements in LieGpZpq which reduce to an element of LieGpZpq

whose stabilizer in GFp
is equal to a maximal torus containing a maximal split torus.

8.2 An analogue of Tate’s isogeny theorem for ordinary points
We will now prove prove an analogue of Tate’s isogeny theorem for abelian varieties in the setting of ordinary
points.

Theorem 8.13. Let x, y P SKpG,XqpFqq be ordinary points such that the ℓ-adic Frobenii φx and φy are
conjugate in GpQℓq. Then, the rational Hodge structures associated to the canonical lifts xcan and ycan are
isomorphic.

In the setting of (ordinary) abelian varieties, this result would translate to abelian varieties over finite
fields being isogenous if their ℓ-adic Frobenii are conjugate.

Proof. Let pTx, µxq and pTy, µyq denote the zero-dimensional Shimura data inducing the special points xcan

and ycan. Let Ex denote the reflex field of pTx, µxq and let v be the place of Ex such that x “ xcan mod v.
Recall that we have fixed V , a Q-representation of G, which we will now consider as a representation of
Tx. By [Mil94], there exists a surjective morphism of Shimura data pT, µq Ñ pTx, µxq where pT, µq is a
zero-dimensional Shimura datum of Hodge type. Let E denote the reflex field of pT, µq (E contains Ex), and
let v1 | v be some place of E above Ex. Let W be the tautological symplectic representation of T associated
to a Hodge embedding. Let z P SpT, µq be a point that maps to x̃ and let A denote the CM abelian variety
associated to z. Note that T is the Mumford-Tate group of A. Let β P EndpAq denote the endomorphism
that specializes to the Frobenius endomorphism of A mod v1. We will abuse notation and let β P T pQq also
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denote the Betti-realization of the endomorphism β. Let etβp and
dR
β denote the endomorphisms of etVp

and
dR
V induced by β. Restricting the Galois representation to the local Galois group at v, we may apply

the Crystalline functor D
cris

to etβ and obtain an endomorphism of
cris

V,Fil‚ – this endomorphism is just
the power of the crystalline Frobenius operator on

cris
V,Fil‚, and equals

dR
β under the crystalline-deRham

comparison isomorphism. All of this follows from the fact that β P T pQq is induced by an endomorphism of
the abelian variety A.

We set q “ pn. Let α P TxpQq denote the image of β. As V is in the Tannakian category generated
by W (as T -representations), we have that the same compatibility holds for the various realizations of α.
That is, we have that etαℓ acts as Frobenius etφx,ℓ on etVx,ℓ for ℓ ‰ p, and the Crystalline functor D

cris

applied to etαp the nth power of the Crystalline Frobenius
cris

φx on
cris

Vx, and therefore that p
cris

φxqn “
dR

α
under the Crystalline-deRham comparison isomorphism. We will now prove that the group generated by
α is Zariski-dense in Tx. Let L denote any field containing Ex. Let

dR
Tα Ă GLp

dR
Vx̃,Lq denote the torus7

defined by taking the Zariski-closure of the group generated by
dR
α. It suffices to prove that the Hodge

co-character factors through
dR
Tα (note that this doesn’t depend on the field L). We pick L “ W pFqqr1{ps.

By the Crystalline-de Rham comparison (and the compatibility outlined above), we may replace
dR
α and

dR
Vxcan,L,Fil

‚ by
cris

φn and
cris

Vx̃,Fil
‚. As the point x is ordinary, we have a direct sum decomposition

of the crystal
cris

Vx,cris φx “
À

cris
V i
x ,‘

cris
φi, where cris

φi

pi is a bijective σ-linear Frobenius morphism. By
definition, the Hodge filtration on

cris
Vx defined by the canonical lifting is Filj “

À

iďj cris
V i
x . We have that

dR
α is just the nth iterate of

cris
φx, and the eigenvalues of

dR
α on

cris
V i
x have p-adic valuation exactly equal

to ni. In order to prove that the Hodge co-character factors through Tα it suffices to prove the following
general claim:
Claim. Let K be a finite extension of Qp, let T 1 be a and let V 1 be a faithful algebraic representation of T 1

defined over K. Let µ : Gm Ñ T 1 be a co-character that induces weight decomposition V 1 “
À

V 1,i. Let
α1 P T 1pKq be an element that acts on V 1,i with eigenvalues having valuation ni. Then, µ factors through
T 1
α1 - the Zariski closure of the group generated by α1.

Proof. By replacing K by a finite extension if need be, we may assume that T 1 is a split torus. Without
loss of generality, we may also assume that the rank of T 1 equals the dimension of V 1. Let χ denote any
character of T 1 such that χpα1q “ 1. It suffices to prove that χ ˝ µ is the trivial character on Gm. We may
write T 1 “

ś ś

T 1,i according to the decomposition V 1 “
À

V 1,i. Picking coordinates on V 1,i, we may write
T 1,i “

ś

Gm, with the diagonal Gm acting by scalars on V 1,i. In these coordinates, α1 will decompose as
pα1,iq with the entries of α1,i having p-adic valuation ni. Let χ be a character on T 1. Then we may write χ
as

ś

i χi, with χi “ pai,1, . . . ai,Niq, where χippxjqq “
ś

x
ai,j
j for pxjq P T 1,i “

ś

Gm. A necessary condition
for χpα1q “ 1 is that the p-adic valuation of χpα1q is 0, i.e.

ř

i nipai,1 ` . . . ai,Ni
q “ 0. On the other hand,

the co-character µ is given by µ “
ś

µi, with µipzq “ pzi, zi, . . . ziq. Therefore, χ ˝ µ is trivial if and only if
ř

i ipai,1 ` . . . ai,Ni
q “ 0. Therefore, we’ve shown that if χpαq “ 1, then χ ˝ µ is trivial, and therefore µ does

factor through Tα1 as required.

Therefore, we have that Tα “ Tx as required. We have the analogous statement for the Frobenius element
associated to y and the Torus Ty. By assumption, the Frobenii satisfy the same characteristic polynomial
on V . Therefore, there exists a Q-endomorphism X P GLpV q with X´1αX “ γ. As the groups generated
by α and γ are respectively Zariski dense in Tx and Ty respectively, we have that X´1TxX “ Ty. Finally,
the Hodge co-characters are conjugate to each other because the CM-types are uniquely determined by the
elements α and γ. The proposition follows.
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