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Abstract. We build on the arguments of van Geemen and Voisin [24] to prove a
conjecture of Matsushita that a Lagrangian fibration of an irreducible hyperkähler
manifold is either isotrivial or of maximal variation. We also complete a partial
result of Voisin [26] regarding the density of torsion points of sections of Lagrangian
fibrations.

Let X be an irreducible compact hyperkähler manifold, that is, a simply-connected
compact Kähler manifold X for which H0(X,Ω2

X) = Cσ for a nowhere-degenerate
holomorphic two-form σ. A Lagrangian fibration ofX is a proper morphism f : X → B
to a normal compact analytic variety B whose generic fiber is smooth, connected, and
Lagrangian (see [14] for a recent survey). By a result of Voisin (see for example [6]),
it follows that every smooth fiber is an abelian variety. We let B◦ ⊂ B be a dense
Zariski open smooth subset over which the base-change f◦ : X◦ → B◦ is smooth. By
the period map of f we mean the period map φ : B◦ → S to an appropriate moduli
space S of polarized abelian varieties associated to the natural variation of (polarized)
weight one integral Hodge structures on B◦ with underlying local system R1f◦∗ZX◦ .
We say f is isotrivial if the period map is trivial (equivalently if R1f◦∗ZX◦ has finite
monodromy) and of maximal variation if the period map is generically finite.

Our main result is to resolve a conjecture of Matsushita:

Theorem 1. Let X be an irreducible hyperkähler manifold (or more generally a Q-
factorial terminal primitive symplectic variety in the sense of [2]). Then any La-
grangian fibration f : X → B is either isotrivial or of maximal variation.

Both possibilities in Theorem 1 occur for K3 surfaces S—see for example [13, Chap-

ter 11]—and therefore also for their Hilbert schemes S[g] in each (even) dimension.
Primitive symplectic varieties are the natural singular analog (as far as deformation
theory is concerned) of irreducible hyperkähler manifolds; see below for the definition
and the precise meaning of a Lagrangian fibration in this context.

Theorem 1 has previously been treated in two main contexts. First, the Beauville–
Mukai system of an ample divisor on a K3 surface has been shown to be of maximal
variation in many cases by Ciliberto–Dedieu–Sernesi [7] by studying the extendability
of a canonically embedded curve to a K3 surface (where in fact the period map is shown
to be quasifinite) and by Dutta–Huybrechts [10] by understanding the derivative of the
period map. In particular, Dutta–Huybrechts show that Theorem 1 implies a complete
answer:

Corollary 2. Let H be a basepoint-free ample divisor on a K3 surface S. Then the
complete linear system |H| is of maximal variation.

Proof. The genus 2 case is proven unconditionally in [10, Prop. 5.4], and the genus
g ≥ 3 case in [10, Prop. 5.2] assuming Theorem 1. □

Second, van Geemen and Voisin have proven Theorem 1 generically for b2 ≥ 7.
More precisely, let T0 ⊂ H2(X,Q) be the rational transcendental lattice, namely, the
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smallest rational Hodge substructure containing [σ] ∈ H2,0(X). Assuming that X is
projective, T0 has generic (special) Mumford–Tate group (namely SO(T0, qX), where
qX is the Beauville–Bogomolov–Fujiki form), and rkT0 ≥ 5, van Geemen and Voisin
[24, Theorem 5] show that any fiber of a Lagrangian fibration that is not of maximal
variation must be a factor of the Kuga–Satake variety of T0, hence the fibration is
locally constant. Their result in particular applies to the very general projective de-
formation of f : X → B assuming b2(X) ≥ 7, which includes all known deformation
types.

The argument of van Geemen–Voisin therefore eventually relies on the largeness
of the generic Mumford–Tate group. We will adapt their proof to prove Theorem 1
by replacing this input with the near simplicity of the complex variation of Hodge
structures on R1f◦∗CX◦ which holds without any genericity assumption. We first recall
the basic properties of complex variations. A complex variation of Hodge structures of
weight w on a smooth analytic variety (see for example [8]) consists of a C-local system
V and a holomorphic (resp. antiholomorphic) descending filtration F • (resp. F ′•) such
that we have a splitting of the sheaf of C∞ sections A0(V ) =

⊕
pA

0(V p,w−p) where

V p,w−p := F p∩F ′w−p and the flat connection maps A0(V p.w−p) to A1,0(V p−1,w−p+1)⊕
A1(V p,w−p) ⊕ A0,1(V p+1,w−p−1). We refer to the p-grading of V p,w−p as the Hodge
grading and we say the level of the variation is the difference pmax − pmin where pmax

(resp. pmin) is the maximum (resp. minimum) Hodge degree p for which V p,w−p ̸= 0.
Observe that the level of a tensor product V ⊗W is the sum of the levels of V and
W . A polarization of the variation is a flat hermitian form h for which the splitting is
orthogonal and (−1)ph is positive definite on V p,w−q. In this case F ′w−p = (F p+1)⊥.
A variation which admits a polarization is said to be polarizable. We define C(−r,−s)
to be the polarizable complex Hodge structure on V = C of weight r+s with V r,s = V .

Recall that the category of polarizable complex variations of Hodge structures is
semi-simple. For the remainder we assume the base is compactfiable. Then for two
polarizable complex variations V,W , the theorem of the fixed part [23, (7.22) Theo-
rem] (applied to Hom(V,W )) says that the group Hom(V,W ) of morphisms of local
systems has a natural complex Hodge structure whose degree (r, s) part is exactly
the morphisms of complex variations V → W (r, s). We have the following further
consequence due to Deligne:

Theorem 3 ([8, 1.13 Proposition]). Suppose V is a C-local system underlying a po-
larizable complex variation of Hodge structures on a compactifiable base and that we
have a splitting of C-local systems

(1) V =
⊕
i

Ni ⊗Ai

where the Ni are irreducible and pairwise non-isomorphic and the Ai are nonzero
complex vector spaces. Then

(1) Each Ni underlies a polarizable complex variation of Hodge structures, unique
up to tensoring by C(r, s) (that is, shifting the bigrading).

(2) Each polarizable complex variation of Hodge structures with underlying local
system V arises from (1) by equipping each Ni with its unique (up to shifts)
polarizable complex variation of Hodge structures and each Ai with a uniquely
determined polarizable complex Hodge structure, namely Ai = Hom(Ni, V ).

In particular, the theorem implies a polarizable complex variation is irreducible if
and only if the underlying local system is, and so we may unambiguously speak of the
irreducible factors of a polarizable complex variation.
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Remark 4. The C-local system V underlying a polarizable complex variation of Hodge
structures on an algebraic space is semi-simple, see [8, §1.12]. This is a consequence of
an unpublished result of Nori (see [8, §1.12]) and uses that the orthogonal complement
of flat subbundle with respect to the Hodge metric (which is a harmonic metric) is flat.
In our setting, we will only need to apply this to V underlying a polarizable integral
variation of Hodge structures. In this case, the semi-simplicity of the underlying Q-
local system is a result of Deligne [9, 4.2.6]. Note that for a perfect field K and a
field extension K ⊂ L, a K-local system V is semi-simple if and only if VL is, as
semi-simplicity is equivalent to being generated by simple sub-local systems, see for
example [5, §12.7].

Given an R-local system V , a polarizable real variation of Hodge structures of weight
w on V in the usual sense naturally induces a polarizable complex variation of weight
w on VC. Conversely, a polarizable complex variation of weight w on VC comes from a
polarizable real variation on V if complex conjugation flips the Hodge grading, or more
precisely if for some (hence any) polarization h the isomorphism of local systems VC →
V ∨
C given by y 7→ h(−, y) induces an isomorphism of complex variations VC → V ∨

C (−w).
Indeed, if this is the case then V p,w−p

∼=−→ (V w−p,p)∨ so V p,w−p = V w−p,p. Moreover,
for even w (resp. odd w) a real polarization is provided by the symmetric (resp.
antisymmetric) real form q(x, y) = h(x, y)+h(y, x) (resp. q(x, y) = i(h(x, y)−h(y, x))),
since q(x, x) = h(x, x) + h(x, x) (resp. −iq(x, x) = h(x, x) − h(x, x)) is definite of
alternating sign on V p,w−p.

The category of polarizable real variations is also semi-simple. Observe that by
Theorem 3 any isotypic componentW of an R-local system V underlying a polarizable
real variation is canonically a real subvariation, as the same is true over C and the iso-
morphism VC → V ∨

C (−w) coming from h restricts to an isomorphism WC →W∨
C (−w).

If V is a single isotypic factor, then VC either has one self-conjugate irreducible factor
N or has two non-isomorphic conjugate irreducible factors N,N . Note that N∨ ∼= N
as local systems via the polarization. Note also that the level of a polarizable real
variation V is at least as large as the level of any of the irreducible factors of VC.

We say that a real or complex variation is isotrivial if the Hodge filtration is flat,
or equivalently if the irreducible factors of the complexification are level zero1. To
summarize the above discussion:

Lemma 5. Let V be an irreducible polarizable real variation of Hodge structures of
level one. Then V is either isotrivial, or every irreducible factor of VC is level one.

Before turning to the proof of Theorem 1 we recall the definition of a primitive
symplectic variety. A complex analytic variety X is a symplectic variety in the sense
of Beauville2 [3] if it has rational singularities and a nowhere degenerate 2-form σ
on its regular locus Xreg. A primitive symplectic variety X is a compact Kähler
symplectic variety such that H1(X,OX) = 0 and H0(Xreg,Ω2

Xreg) = Cσ. As the
singularities are rational, for any resolution π : Y → X the form σ extends to a
two-form on Y [15, Corollary 1.7]. Moreover, π∗ : H2(X,Q) → H2(Y,Q) is injective,
so the Hodge structure on H2(X,Q) is pure, and we have an induced isomorphism
π∗ : H2,0(X) → H2,0(Y ) (see [2] for details). In particular we have a well defined class
[σ] ∈ H2,0(X).

By a Lagrangian fibration of a primitive symplectic variety we still mean a proper
morphism f : X → B to a normal compact analytic variety B whose generic fiber is

1Or equivalently, if the monodromy is unitary (by Theorem 3); since there may not be an integral
structure, this does not necessarily mean the monodromy is finite.

2This definition is equivalent to Beauville’s original one, by the results of [15].
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smooth, connected, and Lagrangian. Each smooth fiber will still be an abelian variety,
by Voisin’s argument.

Lemma 6. For f : X → B a Lagrangian fibration of a primitive symplectic variety,
B is projective.

Proof. First, X has no nonzero 1-forms and a unique 2-form up to scaling (which
is not pulled back from B), so B cannot admit nonzero 1-forms or 2-forms on its
regular locus. Moreover, B is Kähler by applying [25, Corollaire to Théorème 3] since
f is equidimensional by Matsushita’s argument [20, Theorem 1] (see also [14, Lemma
1.17]) now using functorial pullback of reflexive forms [15, Theorem 1.11] and the
fact that Rπ∗ωY

∼= ωX
∼= OX by the rationality of the singularities of X [17, §5.1].

Putting these two things together, B is Moishezon (as it admits a projective resolution),
so an algebraic space. By Saito’s decomposition theorem and the rationality of the
singularities of X, R(f ◦ π)∗OY = R(f ◦ π)∗ωY is split, so by a theorem of Kovács [18,
Theorem 1] this implies the singularities of B are rational. It then follows B admits
a line bundle L whose cohomology class is a Kähler class, and by Nakai–Moishezon
for algebraic spaces (see for example [16, Theorem 3.11]) L is ample, hence B is
projective. □

We use the same notation as above: B◦ ⊂ B is a dense Zariski open smooth subset
over which the restriction f◦ : X◦ → B◦ is smooth and φ : B◦ → S is the period map
associated to the variation of (polarized) weight one integral Hodge structures on B◦

with underlying local system R1f◦∗ZX◦ .

Proof of Theorem 1. Let VZ := R1f◦∗ZX◦ . We start with the following result of Voisin,
whose proof we give for convenience (and to extend it slightly).

Lemma 7 ([26, Lemma 5.5]). VR is irreducible as a polarizable real variation of Hodge
structures.

Proof. First assume X is smooth. By a result of Matsushita [19, Lemma 2.2] the
restriction map H2(X,R) → H2(Xb,R) to a generic fiber of f◦ is rank one and by
Deligne’s global invariant cycles theorem H2(X,R) → H0(B◦, R2f◦∗RX◦) is surjective
[9]. If VR splits as a variation then the polarizations of the factors would yield a larger
than one-dimensional space of sections of R2f◦∗RX◦ = ∧2VR, which is a contradiction.

Now if X is a Q-factorial terminal3 primitive symplectic variety, one easily checks
using the results of [2] that Matsushita’s proof carries through verbatim and that
H2(X,R) → H0(B◦, R2f◦∗RX◦) is still surjective, since the cokernel of π∗ : H2(X,R) →
H2(Y,R) is generated by exceptional divisors for a log resolution π : Y → X. □

Suppose now that f is not of maximal variation. Define the real transcendental
lattice T ⊂ H2(X,R) to be the polarizable real Hodge substructure spanned by [σ] and
[σ]. We next claim that the polarizable real variation of Hodge structures VR⊗T∨ has
a nontrivial subvariation of level at most one after a finite base-change; the argument
below is that of [24] at its core, with some mild modifications.

By trivializing sufficiently high level torsion of VZ, we obtain a finite Galois étale
cover ν : B◦′ → B◦ for which the pull-back V ′

Z := ν∗VZ is pulled back along its
period map φ′ : B◦′ → S′, where S′ → S is the corresponding finite cover of S.
Note that up to replacing B◦′ with a further finite Galois étale cover (so as to make
the local monodromy unipotent), we may assume φ′ can be embedded in a proper

3In fact, we only use the Q-factoriality, and this is the only time the singularity assumption is used.
Moreover, since a Lagrangian fibration of a primitive symplectic variety induces one on its Q-factorial
terminalization, we may deduce Theorem 1 without the singularity assumption provided X admits a
Q-factorial terminalization, for instance if X is projective.
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map φ′ : B
◦′ → S′ [12, Propositions 9.10 and 9.11]. Denote by B

◦′ → Z → S′

the Stein factorization of φ′, by ψ : B◦′ → Z the resulting map, and by V ′′
Z the

variation on Z so that V ′
Z = ψ∗V ′′

Z . The map φ′ and its image Z are in fact algebraic
[4, Theorem 3.1]. We shrink Z (and B◦, B◦′, X◦) so that it is smooth and so that
R1ψ∗RB◦′ is a local system, naturally underlying a graded polarizable real variation of
mixed Hodge structures by Saito’s theory of mixed Hodge modules [21, 22]), since B is
projective. Note that the only nonzero Hodge components of R1ψ∗RB◦′ have bidegrees
(0, 0), (1, 0), (0, 1), (1, 1), as the same is true of the fibers and base-change holds on an
open set. Let f◦′ : X◦′ → B◦′ be the base-change of f .

Consider the natural restriction map η : pt∗Z T → R2(ψ ◦ f◦′)∗RX◦′ along with the
Leray spectral sequence computing R(ψ ◦ f◦′)∗RX◦′ = Rψ∗Rf

◦′
∗ RX◦′ . The natural

map H2(X,C) → H0(B◦′, R2f◦′∗ CX◦′) sends [σ] and hence TC to zero since the fibers
of f are Lagrangian. Thus, the Leray spectral sequence implies η factors through
a nonzero morphism pt∗Z T → R1ψ∗V

′
R

∼= V ′′
R ⊗ R1ψ∗RB◦′ in the category of real

variations of mixed Hodge structures. This map is nonzero, for otherwise the Leray
spectral sequence would again imply that [σ] is pulled back from Z, which is absurd
since σ is symplectic and the fibers of ψ ◦ f◦′ are greater than half-dimensional.

Thus, there is a nonzero morphism of real variations

(2) grW−1 ψ
∗(R1ψ∗RB◦′)∨ → V ′

R ⊗ T∨.

As the category of polarizable real variations of (pure) Hodge structures is semi-simple,
we therefore have a splitting

V ′
R ⊗ T∨ = U ⊕W

of real variations, where U ̸= 0 is the image of (2). In particular, U has level at most
one and weight -1.

Now by Lemma 7 the Galois group of ν acts transitively on the isotypic factors of V ′
R.

In particular, if f (and therefore VR) is not isotrivial, no factor of V ′
R (as a variation)

is isotrivial, or else its entire isotypic component would be, and so would VR. But then
there can be no nonzero morphism of variations V ′

R ⊗ T∨ → U . Indeed, by Lemma
5, an irreducible factor N of V ′

C has level one of degrees (1, 0), (0, 1), and N ⊗ T∨
C

can only map nontrivially to an irreducible factor of UC of the form N(1, 1), while
Hom(N ⊗ T∨

C , N(1, 1)) = TC(1, 1) ∼= C(−1, 1) ⊕ C(1,−1) has no degree 0 elements.
Thus, f must be isotrivial. □

Remark 8. Van Geemen and Voisin use the Künneth decompostion (which requires a
projectivity assumption) in place of the Leray spectral sequence for the same step in
their proof. We briefly describe this perspective as it is more geometric. Through a
very general point b ∈ B◦′, say above a point z ∈ Z, let F be the positive-dimensional
fiber of ψ through b. The restricted family XF → F has trivial monodromy, and in
the projective case we have XF

∼= Xb × F (possibly after a further base-change). We
then have the diagram

TC //

��

(V ′′
C ⊗R1ψ∗CB◦′)z

��

H2(XF ,C) // H1(Xb,C)⊗H1(F,C)

where the bottom map is the Künneth projection. The image of [σ] is then nonzero
in the bottom right corner as follows: (i) σ is nonzero when restricted to XF since
dimXF > 1

2 dimX; (ii) σ|XF
extends to a smooth compactification since σ extends

to a smooth compactification of X◦, so [σ] ̸= 0 ∈ H2(XF ,C); (iii) the image of [σ] in
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H2(Xb,C) ⊗H0(F,C) vanishes and [σ] is not in the image of H0(Xb,C) ⊗H2(F,C),
as it is not pulled back from F .

Example 9. We revisit the example [24, §4] from van Geemen and Voisin as well. Let
p ≥ 5 be a prime and λ a pth root of unity. Consider a family of abelian varieties
f : X → B with a cyclic automorphism such that the induced automorphism α
of VR = R1f∗RX has λ as an eigenvalue on V 1,0 but not on V 0,1. Let α′ be the
automorphism of T∨ with eigenvalue λ−1 on (T∨)−2,0 and eigenvalue λ on (T∨)0,−2.
Then VR⊗T∨ has a level one factor, namely the 1 eigenspace (VR⊗T∨)1 of α⊗α′. But

the condition on the eigenvalues means the eigenspaces (VC)
λ and (VC)

λ−1
are level

zero, and the real variation (VC)
λ ⊕ (VC)

λ−1
is an isotrivial real factor.

We close by discussing an application of Theorem 1 using a result of Gao, which is a
simple application of the Ax–Schanuel theorem for universal families of abelian varieties
[11, Theorem 1.1]. Recall that for a projective family f : X → B of g-dimensional

abelian varieties4 equipped with a section s and letting B̃ → Ban be the universal
cover, the Betti map β : B̃ → H1(Xb,R) is the real analytic map obtained by taking
the coordinates of the section s with respect to the flat real-analytic trivialization of
f . Observe that β−1(H1(Xb,Q)) is the set of points of B̃ at which s is torsion. If
φ : B → S is the period map of f and X → S the universal family of abelian varieties,
then s naturally yields a map B → X lifting φ. We say that s is of maximal variation
if B → X is generically finite.

Proposition 10 ([11, Theorem 9.1]). Let f : X → B be a projective family of g-
dimensional abelian varieties with dimB ≥ g and whose very general fiber has no
nontrivial isogeny factor. Let s : B → X be a non-torsion section of f which is
of maximal variation. Then the Betti map β : B̃ → H1(Xb,R) associated to s is
generically submersive.

Corollary 11. Let X be a Q-factorial terminal primitive symplectic variety and f :
X → B a Lagrangian fibration. Let L be a line bundle whose restriction to the smooth
fibers is topologically trivial. Then the set of points b ∈ B◦(C) for which L|Xb

is torsion
is analytically dense in B.

Corollary 11 was proven by Voisin [26, Theorem 1.3] assuming either f is of maximal
variation and dimX ≤ 8 or isotrivial with no restriction on the dimension. Our use of
Proposition 10 replaces the results of André–Corvaja–Zannier [1] in [26].

Proof of Corollary 11. By Voisin’s result and Theorem 1 we may assume f is of maxi-
mal variation. Note that Voisin’s proof works equally well in the singular case; we leave
the details to the reader. Consider the family of abelian varieties h : Pic0(X◦/B◦) →
B◦ and the section s : b 7→ L|Xb

. Let ν : B◦′ → B◦ be a Galois finite base-change for
which the base-change of h is isogenous to a product of families whose very general
fibers are simple. As the Galois group of ν acts transitively on the isogeny factors by
Lemma 7, the d isogeny factors all have the same dimension g′, and the image of the
period map of each factor must have dimension ≥ g′, or else the image of the period
map of f would have dimension smaller than dg′ = dim(X◦/B◦) = dim(B◦). The
base-change of the section s is also Galois invariant, so it suffices to prove the density
statement for its projection to a single simple factor Y ◦ → B◦′. Applying Proposition
10, the Betti map β : B̃ → H1(Yb,R) is submersive, so β−1(H1(Yb,Q)) is analytically

dense in B̃ as claimed. □

4Meaning X is an abelian scheme over B, so there is in particular a 0-section of f .
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Corollary 11 has an interesting interpretation in terms of the Beauville conjecture
for irreducible hyperkähler manifolds X, see the discussion in [26, §1.2]. There it is
also shown how corollaries 2 and 11 can be used to construct constant cycle curves on
K3 surfaces.
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