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Abstract. We prove a mixed version of a conjecture of Griffiths: that the closure
of the image of any admissible mixed period map is quasiprojective, with a natural
ample bundle. Specifically, we consider the map from the image of the mixed period
map to the image of the period map of the associated graded. On the one hand, we
show in a precise manner that the parts of this map parametrizing extension data
of non-adjacent-weight pure Hodge structures are quasi-affine. On the other hand,
extensions of adjacent-weight pure polarized Hodge structures are parametrized by
a compact complex torus (the intermediate Jacobian) equipped with a natural theta
bundle which is ample in Griffiths transverse directions.

Our proof makes heavy use of o-minimality, and recent work with B. Klingler
associating a Ran,exp-definable structure to mixed period domains and admissible
mixed period maps.

1. Introduction

Let X be an algebraic space and M a moduli space of graded-polarized integral
mixed Hodge structures, henceforth referred to as a period space. There is a period
space D parametrizing the associated graded objects of the points in M with a map
M→ D, and to any period map ϕ : X →M corresponding to a variation of graded-
polarized integral mixed Hodge structures there is a period map grϕ : X → D for the
associated graded variation. By the results of [2] we have a factorization

X D

Z

grϕ

g ε

where g is algebraic and dominant (meaning OZ → g∗OX is injective) and ε is a
closed immersion. Moreover, the Griffiths bundle on Z is algebraic and ample, and in
particular Z is quasiprojective.

Our main result is to extend this picture to the mixed case. Precisely, we show:

Theorem 1.1. Let X be a separated algebraic space of finite type over C and ϕ : X →
M the period map associated to an admissible1 variation of (graded-polarized integral)
mixed Hodge structures. Then there is a factorization

X M.

Y

ϕ

f ι

where f is dominant algebraic and ι is a closed immersion. Moreover, the natural theta
bundle on Y is algebraic and relatively ample over the image Z of the period map of
the associated graded. In particular, Y is quasiprojective.

1See Definition 2.1 for the definition of admissibility over nonreduced bases.

1



2 B. BAKKER, Y. BRUNEBARBE, AND J. TSIMERMAN

The period space M is naturally a quotient Γ\M of a graded-polarized integral
mixed period domain M by an arithmetic group Γ, but the same result for the quotient2

Γmon\M by the image of the monodromy representation easily follows from Theorem
1.1 (see Corollary 2.11).

As in [2], we for instance obtain as a corollary the following:

Corollary 1.2. Let X be a separated Deligne–Mumford stack of finite type over C
admitting a quasi-finite admissible1 mixed period map. Then the coarse moduli space
of X is quasi-projective.

The factorization statement in Theorem 1.1 follows easily from [1] and [2], and the
main content is the relative ampleness of the theta bundle. This is especially interesting
compared to the corresponding result in the pure case as the positivity does not stem
from the negative curvature of M; indeed, the fibers of M→D are flat.

The theta bundle is loosely constructed as follows (see section 2.5 for details). For
any polarized integral pure Hodge structure V = (VZ, F

•V, qZ) of weight −1, extensions
of the form

(1) 0→ V → E → Z(0)→ 0

are parametrized by the intermediate Jacobian

J(V ) = VC/F
0V + VZ

which is a (compact) complex torus. The polarization of V endows J(V ) with a
natural theta bundle which is positive in Griffiths transverse directions. Now for a
general variation of graded-polarized integral mixed Hodge structures E, we obtain
from each variation grW[w−1,w]E := WwE/Ww−2E an extension of the form (1) via the

natural pullback:

0 grWw−1E ⊗ (grWw E)∨ E′ Z(0) 0

0 grWw−1E ⊗ (grWw E)∨ grW[w−1,w]E ⊗ (grWw E)∨ grWw E ⊗ (grWw E)∨ 0

The theta bundle of Theorem 1.1 is then the product Θ :=
⊗

w Θ[w−1,w] of the theta

bundles Θ[w−1,w] associated to each of the grW[w−1,w]E. In fact, it is easy to see that⊗
i Θaw

[w−1,w] is f -ample for any aw > 0.

There are two main difficulties in establishing the relative ampleness of Θ. First, we
must show Θ is algebraic. This follows for X smooth by work of Brosnan–Pearlstein
[4] and in general by definable GAGA [2]. We also give a new proof of the result of
Brosnan–Pearlstain, see Remark 2.19.

Second, the theta bundle only accounts for the compact parts of the extension data,
and the rest of the argument is devoted to showing that the remaining extension data is
affine. More precisely, there are period maps for which Y → Z has positive-dimensional
fibers but for which all of the grW[w−1,w]E are locally constant on the fibers, and in this

case the theorem requires OY to be relatively ample—i.e., that Y is quasiaffine over Z.
This ultimately relies on the geometry of mixed period spaces parametrizing extensions
as in (1) with V of weight ≤ −2 and our argument critically uses the work of Saito.

2Such quotients are not good moduli spaces however as they do not in general have a tame geometry.
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1.1. Outline. In §2 we prove the factorization part of Theorem 1.1 and the algebraicity
of the theta bundle. In §3 we prove an ampleness criterion in terms of point separation
by definable sections. We also apply the work of Saito to prove some results on the
local monodromy of the unipotent part of a variation of mixed Hodge structures. In
§4 we prove the quasiprojectivity part of Theorem 1.1.

1.2. Acknowledgements. Y.B. would like to thank P. Brosnan for an interesting
discussion related to the biextension bundle. B.B. was partially supported by NSF
grants DMS-1702149 and DMS-1848049.

1.3. Notation. Unless otherwise stated, by definable we mean definable in the o-
minimal structure Ran,exp. All algebraic spaces are assumed to be separated and of
finite type over C; all definable analytic spaces (resp. analytic spaces) are complex
definable analytic spaces (resp. complex analytic spaces). We generally do not distin-
guish notationally between algebraic spaces, their associated definable analytic spaces,
or their associated analytic spaces.

2. Algebraicity of period maps and theta bundles

Throughout, we use the following terminology. Let (VZ,W•VQ) be a free finite
rank Z-module with an increasing rational filtration. We denote by grWw VZ the wth
graded object grWw VQ with the integral structure induced by VZ. For each w let a
(−1)w-symmetric form qw on grWw VZ be given. There is an associated graded-polarized
mixed period domain M parametrizing graded-polarized mixed Hodge structures on
(VZ,W•VQ, q•). By a graded-polarized mixed period space we mean the quotientM =
Γ\M by an arithmetic subgroup Γ ⊂ G(Z) := Aut(VZ,W•VQ, q•). We have that M is
naturally an Ralg-definable analytic space by [1]. When the weight filtration has one
nonzero graded piece we refer toM (resp. M) as a polarized pure period space (resp.
domain), and usually denote it by D (resp. D). We also denote by M̌ the “compact”
dual of M—the space of filtrations F • on VC with fixed dim grpF grWw VC such that the

induced filtration F • grWw VC is qw-isotropic—which is naturally a complex algebraic
variety. See for instance [18, 12, 1] for background on mixed period spaces.

2.1. Admissible period maps. For a definable analytic space X, by a definable
period map we mean a definable locally liftable map ϕ : X → M which is tangent
to the Griffiths transverse foliation of M on the reduced3 regular locus. A defin-
able period map is equivalent to a variation of graded-polarized integral mixed Hodge
structures, which consists of: a filtered local system (VZ,W•VQ, q•) locally modeled on
(VZ,W•VQ, q•) and a locally split filtration F • of VZ⊗ZOX by definable coherent sub-
sheaves which satisfies Griffiths transversality on the reduced regular locus and which
is fiberwise a graded-polarized integral mixed Hodge structure.

We briefly recall the notion of admissible variations; see for instance [11] for details.
Let (VZ,W•VQ, F •) be a variation of graded-polarizable integral mixed Hodge struc-

tures on the punctured disk ∆∗ with unipotent monodromy. Let V and W •V denote
the canonical extensions of VZ⊗ZO∆∗ and W•VQ⊗QO∆∗ to ∆ respectively, equipped
with their logarithmic connections. Recall that the variation (VZ,W•VZ, F •) is called
pre-admissible if the following conditions hold:

(1) The residue at the origin of the logarithmic connection on V , which is an
endomorphism of the fiber V |0 of V at the origin, admits a weight filtration

relative to W •V |0.

3Note in particular that we do not require the nilpotent tangent directions to be Griffiths transverse,
though it is not clear that this level of generality is useful: variations coming from geometry will satisfy
Griffiths transversality in the nilpotent directions as well.
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(2) The Hodge filtration F • extends to a locally split filtration F
•

of V such that

grp
F

grWk V is locally-free for all p and k.

Given a Zariski-open subset S in a reduced complex analytic space S, we say that
a graded-polarizable variation (VZ,W•VQ, F •) on S is admissible with respect to the

inclusion S ⊂ S if for any holomorphic map f : ∆→ S such that f(∆∗) ⊂ S and f∗VZ
has unipotent monodromy, the pull-back variation on ∆∗ is pre-admissible. One easily
verifies that a variation on ∆∗ with unipotent monodromy which is pre-admissible
is admissible with respect to the inclusion ∆∗ ⊂ ∆. Moreover, if a variation over a
complex algebraic variety S is admissible with respect to an algebraic compactification
S of S, then it is admissible with respect to any other algebraic compactification of S.

Definition 2.1. Let X be an algebraic space. We say a period map ϕ : X → M is
admissible if it is definable and the reduced map ϕred : Xred →M is admissible.

See Corollary 2.7 for some further discussion on the admissibility condition in the
nilpotent directions.

2.2. Properness of admissible period maps. We will need an extension property
for mixed period maps in Lemma 2.4 that is analogous to Griffiths’ result in the pure
case [8, Theorem 9.5]. This is most likely known to experts, but we include a full
argument for the reader’s convenience.

We first prove a criterion of properness for definable analytic maps analogous to the
valuative criterion of properness for algebraic maps.

Lemma 2.2. Let X be an algebraic space, M a definable analytic space and ϕ : X →
M a definable analytic map. Then the map ϕ is proper if, and only if, the following
property holds: a definable holomorphic map v : ∆∗ → X extends to ∆ as soon as
ϕ ◦ v : ∆∗ →M does.

Proof. Clearly we can assume that both X andM are reduced. Let X be an algebraic
space compactifying X and let X̃ denote the topological closure of X in X×M. Then
X̃ is definable and analytic by Bishop’s theorem [3, Theorem 3], as definable sets have

locally bounded volume. Since X is proper the induced holomorphic map ϕ̃ : X̃ →M
is proper, and the map ϕ : X →M is proper exactly when X = X̃. Assume first that
ϕ is not proper, so that there exists x̃ ∈ X̃ − X. Since X̃ − X is a closed analytic
subset of X̃ (as it is the intersection of (X −X)×M with X̃), there exists v : ∆→ X̃
a definable holomorphic map such that v(∆∗) ⊂ X and v(0) = x̃. Then the map
ϕ ◦ v : ∆∗ → M does extend to ∆ but v does not. Conversely, let v : ∆∗ → X be
a definable holomorphic map such that ϕ ◦ v extends to ∆. The induced definable
holomorphic map ∆∗ → X ×M extends to ∆→ X ×M and takes values in X̃ = X,
hence we are done.

�

We now apply this criterion to our situation. Let X be a smooth algebraic space,
ϕ : X →M an admissible period map, and let X ⊂ X be a smooth compactification
such that X\X =

⋃
iDi is a normal crossing divisor. Note that for any i the local

monodromy around Di is quasi-unipotent. We may cover X by polydisks P ∼= ∆nP

such that P ∩X ∼= (∆∗)rP ×∆sP . For each polydisk P we choose a basepoint xP ∈ P ,
and let NP

i be the logarithm of the unipotent part of the local monodromy operator
associated to the Di meeting P . For each P let CP be the cone generated by {NP

i }.

Lemma 2.3. The period map ϕ is proper if, and only if none of the cones CP contains
0.
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When M is a pure period space, it follows from the strong version of the nilpotent
orbit theorem [5, Theorem 1.15] that the cone CP contains 0 only if one of the NP

i ’s
is zero, in accordance with Griffiths’ result.

Proof. Let v : ∆∗ → X be a definable holomorphic map. Thanks to the nilpotent orbit
theorem [1, Proposition 4.3], the composition ϕ ◦ v : ∆∗ → M extends to ∆ exactly
when the monodromy around 0 is zero. On the other hand, after shrinking one can
assume that v : ∆∗ → X takes values in one of the polydisk P . Then the logarithm
of the unipotent part of the monodromy around 0 is of the form

∑
i ai ·NP

i for some
non-negative integers ai, and conversely every integral element of Cp arises from a
definable holomorphic map ∆∗ → P . Since the map v : ∆∗ → X extends to ∆ → X
exactly when all the ai’s are zero, we conclude using Lemma 2.2.

�

Proposition 2.4. Let X be a smooth algebraic space and ϕ : X →M an admissible
period map. Then there exists a log smooth partial compactification X ⊂ X̃ for which
the period map extends to a proper map ϕ : X̃ →M.

Proof. Let X be a log smooth compactification of X. For any polydisk P , consider the
positive octant RrP≥0. The assignment of the monodromy operator Ni to the standard
basis vector ei yields a linear map RrP → g to the Lie algebra. Its kernel is an
integral linear subspace of RrP , and we denote by K its intersection with RrP≥0. We

may find an integral simplicial subdivision of the standard fan on RrP≥0 for which K is

a union of facets. This subdivision corresponds to a (global) monomial modification
XP → X for which the condition of Lemma 2.3 is satisfied on the preimage of P , once
we extend the period map over the boundary components with no monodromy using
the nilpotent orbit theorem [1, Proposition 4.3]. Notice that any further monomial
modification Z → XP will also satisfy the condition above P . Thus, taking Z to be a
monomial modification of X that dominates each of the XP and extending the period
map over the boundary components with no monodromy, the condition of Lemma 2.3
is satisfied. �

Example 2.5. Unlike in the pure case, some blow-ups may be necessary. Consider the
mixed period space Gm = Ext1

ZMHS(Z(0),Z(1)) and the period map A1 ×Gm → Gm

which is just the second projection. Take A1 × Gm ⊂ A2 ⊂ P2 as a log smooth
compactification. On each vertical line A1 × {z} the period map extends as it is
trivial, but the period map does not globally extend over the line at infinity. In this
case if the monodromy logarithm around A1 × {0} is N , then the monodromy around
infinity is −N .

2.3. Algebraicity of the Hodge filtration. For any definable analytic space X and
a C-local system E , E⊗CX

OX is naturally a definable analytic coherent sheaf by taking
flat trivialization on a definable cover by simply-connected open sets. The following is
a nonreduced version of the Deligne extension which is essentially contained in [2, §5].

Proposition 2.6. Let X be an algebraic space and E a C-local system whose local
monodromy has unit norm eigenvalues. Then the definable analytic coherent sheaf
EX := E ⊗CX

OX is algebraic.

Proof. First assume Xred is smooth. Let Z be a compactification of X for which
(Zred, Zred\Xred) is log smooth. We may take a Ran-definable cover of Zan by open
sets P for which P red ∼= ∆n is a polydisk and (P ∗)red ∼= (∆∗)r×∆s where P ∗ = P ∩X.
As P is Stein (since ∆n is), we may lift the coordinates to functions qi on P , which are
Ran-definable after shrinking P . Now the Ran,exp-definable analytic space structure on
P ∗ induces one on any chosen Ran,exp-definable simply-connected fundamental set of
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the covering map Hr ×∆s → (∆∗)r ×∆s; call this space Φ. The qi are Ran-definable
morphisms P → C and as the multivalued function log : C∗ → C is definable on angular
sectors, the logarithms zi = log qi are Ran,exp-definable on Φ. We then define a Deligne

extension E of EX locally using the lattice ṽ := exp(
∑

i ziNi)v for flat sections v of
E where the Ni are logarithms of the local monodromy, and the same proof as in the
reduced case shows these extensions patch (see for instance [6, Proposition 5.4]). Now
by ordinary GAGA [16], the extension E is algebraic, and an algebraic frame can be
written analytically (hence Ran-definably) in terms of the ṽ, while the change-of-basis
to the flat frame exp(

∑
i ziNi) is Ran,exp-definable as the Ni are imaginary.

In the general case, by performing blow-ups along reduced centers we may produce
a proper map π : Y → X which is dominant on an open set U of X and for which Y red

is smooth. Let X ′ be the image of Y in X. For a sufficiently big thickening S of the
reduced complement Xred\U red, the following square is a pushout

S ×X X ′

��

// X ′

��

S // X.

As π′ : Y → X ′ is dominant and EX′ ⊂ π′∗EY , by definable GAGA [2, Theorem 3.1]
EX′ is algebraic, while by Noetherian induction ES is algebraic. EX is the pushout of
ES and EX′ , hence algebraic. �

Corollary 2.7. Let X be an algebraic space with an analytic period map ϕ : X →M
whose reduction ϕred : Xred →M is admissible. Then the following are equivalent:

(1) ϕ is definable (or equivalently admissible);
(2) The Hodge filtration pieces F •X are definable analytic subbundles of the ambient

flat vector bundle;
(3) The Hodge filtration pieces F •X are algebraic subbundles of the ambient flat

vector bundle.

Proof. (2) ⇔ (3) is immediate given the proposition and definable GAGA. For (1) ⇔
(2), let Ui be a definable cover of X by simply-connected open sets. The definability
of ϕ (given the definability of ϕred) is equivalent to the definability of the lifts Ui →M
to the universal cover M of M, which is in turn clearly equivalent to the definability
of F •X as a subbundle of the ambient flat bundle with its flat definable structure. �

Remark 2.8. Recall by [17] that all variations of graded-polarized integral mixed Hodge
structures coming from geometry are admissible. From the corollary it is clear that
this is true over possibly non-reduced bases as well.

To algebraize theta bundles in Section 2.5, we will need the following result, which
formalizes the idea that the deformation theory of variations of Hodge structures is
algebraic, even in the singular setting.

Proposition 2.9. Let M be a graded-polarized mixed period space and X ⊂ M an
algebraic Griffiths-transverse closed definable analytic subspace. Then for any n the
nth order thickening of X in M is algebraic.

Proof. By definable GAGA we may assume X is reduced. Let (VC,W•VC) be the
filtered C-local system underlying the mixed variation on X, and let (V,W•V, F

•V ) be
the associated bifiltered vector bundle with its canonical algebraic structure. Consider
Fl = Fl(W•V ) the relative flag variety of filtrations F ′•V of V which intersect W•V
with the same dimensions as F •V and for which the induced filtration F ′• grWk V is
qk-isotropic for each k. We have a section s : X → Fl of the natural map π : Fl → X
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given by F •V ; let Sn ⊂ Fl be the nth order thickening of s(X) in Fl, which is clearly
algebraic.

There is a natural admissible period map ι : Sn → M extending the inclusion
X ⊂M which we claim is the closed embedding of the nth order thickening. Indeed,
Sn can also be analytically constructed as follows. Let X̃ be the universal cover
of X, so we have a closed embedding X̃ ⊂ M where M is the universal cover of
M. Let S̃n be the nth order thickening of X in M , considered as a subspace of
M × M̌ via the diagonal embedding M → M × M̌ where M̌ is the “compact” dual.
Now if Γ is the image of the monodromy representation, then we have an embedding
San
n = Γ\S̃n ⊂ Fl = Γ\(M × M̌) where Γ acts diagonally on M × M̌ .
That Sn is analytically the closed embedding of the nth order thickening is now

obvious, and the definability of ι : Sn →M follows from Corollary 2.7.
�

2.4. Algebracity of images.

Proposition 2.10. Let X be an algebraic space and ϕ : X → M a definable mixed
period map. Then there is a factorization

X M.

Y

ϕ

f ι

where f is dominant algebraic and ι is a closed immersion.

Proof. First assume X reduced and let π : X ′ → X be a resolution. By Lemma 2.4
there is a partial compactification X ′ ⊂ Z ′ for which the period map of X ′ extends to
a proper map ϕ : Z ′ →M. Now apply [2, Theorem 4.2].

In general, let Y be the closure of the image of Xred, which is algebraic by the
above. By definable GAGA, the pullback Xn ⊂ X of the nth order thickening of Y
to X is an increasing sequence of subspaces set-theoretically supported on all of Xred,
which by Noetherian induction [2, Cor. 2.32] on the supports of the ideal sheaves
IXn is eventually all of X. By Proposition 2.9 and definable GAGA, the claim for X
follows. �

Corollary 2.11. Let Γmon ⊂ G(Z) be the image of the monodromy representation of
the variation of mixed Hodge structures associated to ϕ, and ϕmon : X → Γmon\M the
corresponding lift of ϕ. Then there is a factorization

X Γmon\M.

Y

ϕmon

f ι

where f is dominant algebraic and ι is a closed immersion.

Proof. As in the above proof we may assume ϕ and therefore ϕmon is proper. Taking
Γ′mon ⊂ Γmon to be a finite-index torsion-free normal subgroup, Y will be the quotient
of the image of X in Γ′mon\M by Γmon/Γ

′
mon, so we may assume Γmon to be contained

in a torsion-free normal arithmetic subgroup Γ ⊂ G(Z). Now Y is a finite étale cover
of the image in Γ\M and therefore algebraic. �

2.5. Theta bundles. Let D be a polarized pure period space parametrizing polarized
weight −1 Hodge structures V on (VZ, qZ). We can consider the graded-polarized
mixed period spaces M resp. M′ of extensions

0→ V → E → Z(0)→ 0
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resp.

0→ Z(−1)→ E → V → 0

both of which map to D. We may also consider the graded-polarized mixed period
space B parametrizing mixed Hodge structures E with weights [−2, 0] with

grW−2E = Z(−1)

grW−1E = V

grW0 E = Z(0).

The natural map B →M×DM′ is canonically an analytic Ext1
ZMHS(Z(0),Z(−1)) ∼=

Gm torsor which we call the biextension torsor; the associated analytic line bundle
P on M×DM′ we call the biextension bundle. Viewing M → D as the universal
intermediate Jacobian

J(V) := VC/F 0V + VZ
and M′ → D as the dual J(H∨), the biextension bundle P is naturally thought of as
the universal Poincaré bundle.

Remark 2.12. While the total space B, the map to M×DM′, and the Gm-action are
all definable analytic, it is not clear that B is a definable analytic Gm-torsor as it is
not clearly that it is definably locally trivial.

Proposition 2.13. Let X be an algebraic space and ϕ : X →M×DM′ an admissible
period map. Then the pullback BX of the biextension torsor has a natural algebraic
étale Gm-torsor structure for which the map BX → B is definable.

Proof. We start by making some preliminary observations. First, note that BX has
a natural definable structure, as it is the base-change of B. Thus, it suffices to show
that the space underlying BX has an algebraic structure compatible with the definable
structure. Indeed, this algebraic structure is unique by definable GAGA, hence the
naturality. Since both the map to X and the Gm-action are pulled back from B, they
are likewise algebraic, and as BX → X clearly admits an fppf-local section (over BX
for instance) it follows that it is an étale Gm-torsor.

Now to show that the underlying space of BX is algebraic we proceed by considering
successively more general cases.

Step 1. For X smooth, the proposition is a result of Brosnan–Pearlstein:

Theorem 2.14 (Thm. 241 of [4]). In the above situation and assuming X smooth, BX
(as a sheaf) admits a natural meromorphic extension to any log smooth compactifica-
tion X whose sections correspond to admissible liftings ϕ̃ : X → B of ϕ. In particular,
BX is an étale Gm-torsor.

Note that this algebraic structure is indeed compatible with the definable structure:
étale locally the map BX → B is identified with

BX ∼= Gm ×X → Gm × B → B
where the left isomorphism is induced by a local section of BX → X, the middle map
comes from the corresponding admissible lift X → B, and the right map is the action.

Step 2. For X reduced, by taking the closure of the image we may assume ϕ : X →
M×DM′ is a closed immersion by Proposition 2.10. Let π : Y → X be a resolution.
By the previous step, BY is algebraic and the natural map BY → B is an admissible
period map. It follows by Proposition 2.10 again that the image of BY → B is algebraic,
and this is just the underlying space of BX .
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Step 3. For general X we may still assume ϕ : X → M×DM′ a closed immersion.
By the previous step BXred is algebraic, and by Proposition 2.9 and definable GAGA
we conclude that the total space BX is algebraic, hence BX is algebraic.

�

Corollary 2.15. In the setup of the proposition, the pullback PX of the biextension
bundle is naturally an algebraic line bundle.

Note that we have a natural definable map

σ : J(V)→ J(V∨)

commuting with the projection to D which on fibers is the map Ext1
ZMHS(Z(0), V )→

Ext1
ZMHS(Z(0), V ∨) coming from the polarizing form q : V → V ∨.

Definition 2.16. Let X be an algebraic space and ϕ : X →M an admissible period
map. The line bundle ΘX on X which is the pullback of P along ϕ × (σ ◦ ϕ) : X →
M×DM′ endowed with the natural algebraic structure of Proposition 2.13 is the theta
bundle of ϕ.

Proposition 2.17. Let X be an algebraic space, V a polarized pure Hodge structure of
weight −1, and ϕ : X → J(V ) an admissible quasifinite period map. Then the image
ϕ(X) is contained in a translate of a subtorus which is an abelian variety.

Proof. By Proposition 2.10 we may assume X is proper, reduced, irreducible, and
a closed subspace X ⊂ J(V ) containing the split point 0 ∈ J(V ). By replacing X
with the image of the difference map X × X → J(V ) we may eventually assume X
is a sub-group. If HZ is the image of the monodromy H1(X,Z) → VZ and HC ⊂ VC
the complex span, then X = HC/F

0V ∩ HC + HZ. The tangent bundle of J(V ) is
canonically VC/F

0V and the Griffiths transverse subbundle is F−1V/F 0V , so we have
HZ ⊂ F−1V . As X is definable, it must be a compact real torus, so we must have
HR ∼= HC/F

0V ∩HC via the quotient map. It follows that HZ underlies a polarized
sub Hodge structure of level one. �

Corollary 2.18. In the setup of the proposition, ΘX is ample.

Proof. The theta bundle on J(V ) is clearly the line bundle associated to the hermitian
form q(u, v), and restricts to the usual theta bundle of HC/F

0H +HZ. �

Remark 2.19. Considerations as in the previous proposition can be used to give a new
proof of Theorem 2.14 as follows. Consider a diagram

X //

��

M×DM′

��

Y // D
where the horizontal maps are Griffiths transverse closed immersions and X,Y are
reduced. After base-changing along an étale map Y ′ → Y with dense image, X ′ :=
X ×Y Y ′ → Y ′ admits a section. As in the proof of the proposition, using Proposition
2.10 we may replace X ′ with the image of the difference map X ′ ×Y ′ X ′ → M×D
M′, and after finitely many iterations we may assume (after shrinking Y ′) there is a
factorization

X ′

$$

// A×Y ′ A∨ //

��

M×DM′

��

Y ′ // D
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where A→ Y ′ is a smooth definable analytic family of polarized abelian varieties whose
fibers are the subgroups generated by the corresponding fibers of X ′ → Y ′. Then A
is pulled back along a definable hence algebraic map of Y ′ to a Shimura variety and
the universal Poincaré bundle is algebraic, so A, BA×Y ′A

∨ , and therefore BX′ are all
algebraic. The closure of the image of BX′ in B is BX , and therefore algebraic by
Proposition 2.10.

While the argument in the remark directly shows that BX is algebraic on a strat-
ification, the global definable structure is needed to glue these algebraic structures
together since the fiber dimension may jump, as shown in the example(s) below.

It is not hard to provide examples where fiber dimensions jump, even in the mixed
Shimura setting. In fact, consider the universal abelian variety Xg over the moduli
stack Ag (one may add level structure to rigidify everything into schemes). Now one
may simply take a curve C inside a fiber over Ag, and a generic surface S containing it.
This is an example of a mixed variation of weights 0,1 with jumping fiber dimensions
over the associated graded.

We give below what we consider a more interesting example, where the fibers over
the graded are generically finite simply for lack of hodge classes in the associated pure
variation, but then over points in the graded which acquire hodge classes, the fiber
dimension jumps. This kind of example is harder to construct “artificially” in the
manner above, and appears to be a more intrinsic geometric phenomenon.

Example 2.20. Let K be a sufficiently high level cover of the moduli space of K3
surfaces polarized by the lattice ( 0 2

2 0 ), so that it is an irreducible quasiprojective variety.
Let f1, f2 be the divisor classes of the two elliptic pencils and let S be the moduli
space of pairs (X,E) with X ∈ K and E a smooth section of f1. S is also irreducible
and admits a forgetful map S → K. Consider the cohomology of the complement
H2(X\E,Z) which sits in an extension

0→ H2(X,Z)/Zf1 → H2(X\E,Z)→ H1(E,Z)(−1)→ 0.

Let H2
v (X,Z) := H2(X,Z)/(Zf1 + Zf2), which yields an extension

0→ H2
v (X,Z)→ H2

v (X\E,Z)→ H1(E,Z)(−1)→ 0.

Let ϕ : S → M be the resulting mixed period map for the variation H2
v (X\E,Z),

and grϕ : S → D that of the associated graded. It is easy to see that H2
v (X,Z) ⊗

H1(E,Z)∨(1) generically has no nontrivial sub Hodge structures, so the generic fiber
of grϕ is 0-dimensional. On the other hand, if X is the Kummer surface of E × E′
with the elliptic pencil given by the first factor E × {0}, then for p ∈ E\E[2] we have

H2(X\E × {p},Q) = H2(BlE[2]×E′[2](E × E′\{±p}),Q)±1

= Q(−1)17 ⊕H1(E,Q)⊗H1(E′\{±p},Q)

so the associated graded is constant on the fiber of S → K above X.

3. Setup for the proof of quasiprojectivity

In this section we collect several results that will be needed for the proof of the
quasiprojectivity part of Theorem 1.1. The first is an ampleness criterion in terms of
definable sections; the second allows us to endow the cohomology groups of variations
of mixed Hodge structures with mixed Hodge structures over arbitrary bases; the
third gives some control on the monodromy of extensions of variations of mixed Hodge
structures, again over arbitrary bases.
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3.1. Definable-analytically quasiaffine maps. We first show that to prove f -
ampleness of an algebraic line bundle L and an algebraic map f : X → Y , it suffices
to show the definable stalks of f∗L

n separate points. Note that this is weaker than the
assumption that f∗L

n separates points definably locally on Y .

Proposition 3.1. Let f : X → Y be a map of reduced algebraic spaces, L a line bundle
on X. Assume for any point y ∈ Y and any 0-dimensional subspace P ⊂ X supported
on the fiber Xy above y that the restriction on stalks

(fdef
∗ (Ln)def)y → (fdef

∗ (Ln|P )def)y

is surjective for n� 1. Then L is f -ample.

Proof. By Zariski’s main theorem, it is enough to show for all y and P as in the
statement of the theorem that the restriction map

(f∗(L
n))y → (f∗(L

n|P ))y

is surjective for n � 1. Let g : Z → Y be a relative compactification of X, so g is
proper and there is an open immersion X → Z over Y . Let S be the complement of
X in Z. By assumption there is an n, an analytic open neighborhood U ⊂ Y an of y
and finitely many sections of (Ln)def(f−1(U)) separating P , since (fdef

∗ (Ln|P )def)y is
a finite-dimensional vector space. We may assume there is a line bundle M extending
Ln, and by the following lemma definable sections extend meromorphically.

Lemma 3.2. Let Z be a reduced definable analytic space and S ⊂ Z a closed definable
analytic subspace. Any definable analytic f : Z\S → C extends meromorphically to Z.

Proof. The closure of the graph Γ(f) ⊂ (Z\S)×C in Z × P1 is definable and analytic
by for example Bishop’s theorem [3, Theorem 3], as definable sets have locally bounded
volume. �

It thus follows that

(gan
∗ (Hom(ImS ,M)an)y → (gan

∗ (LnP )an)y

is surjective for m� 0, and by ordinary GAGA this means the horizontal map below
is surjective, finishing the proof.

(g∗(Hom(ImS ,M))y

((

// (g∗L
n
P )y

(f∗L
n)y

99

�

Lemma 3.1 provides a particularly easy criterion for X → Y to be quasiaffine.

Definition 3.3. We say that a map X → Y of definable analytic spaces is definable-
analytically quasiaffine if analytically locally on Y it factors as

X

##

ι // CN × Y
π2
��

Y

where ι is a definable analytic locally closed immersion and π2 the second projection.

Recalling that an algebraic map X → Y is quasiaffine if and only if OX is relatively
ample [9, II.5.1.6], we have:

Corollary 3.4. Let f : X → Y be a map of algebraic spaces which is definable-
analytically quasiaffine. Then f is quasiaffine.



12 B. BAKKER, Y. BRUNEBARBE, AND J. TSIMERMAN

3.2. Hodge modules and period maps. To equip the cohomology of variations of
mixed Hodge structures over arbitrary bases with functorial mixed Hodge structures,
we will rely crucially on Saito’s formalism of mixed Hodge modules [14, 15]. Briefly,
for any reduced algebraic space X there is an abelian category MHM(X) of graded
polarizable mixed Hodge modules and a faithful functor

rat : Db MHM(X)→ Db
c(QX)

which is exact with respect to the perverse t-structure and such that the usual functors
Rf∗, f

∗, f!, f
!,⊗L, RHom on derived categories of constructible sheaves lift to functors

f∗, f
∗, f!, f

!,⊗,Hom. For X smooth, a mixed Hodge module consists of a filtered D-

module M and a Q-perverse sheaf P with a quasi-isomorphism DR(M)
∼=−→ PC where

DR(M) is the de Rham complex of M , while in the general case they are patched
together from such objects via local embeddings into smooth ambient spaces.

Definition 3.5. For X a reduced algebraic space we say E ∈ Db MHM(X) is smooth
if its underlying rational structure is a local system in degree 0 (with respect to the
standard t-structure on Db

c(QX)).

For smooth X, there is a natural equivalence of categories [15, Theorem 3.27]

(2)

{
admissible variations of rational
mixed Hodge structures on X

}
→
{

smooth objects of Db MHM(X)
}

which is compatible with pull-backs along algebraic maps f : X → Y .

Proposition 3.6. The functor (2) uniquely extends to a fully faithful functor for any
reduced algebraic space X which is compatible with pull-backs along algebraic maps
f : X → Y . If X is moreover seminormal then the extension is an equivalence of
categories.

In particular, to every admissible period map X → M we obtain a “pullback ob-
ject”4 EHX ∈ Db MHM(X) whose underlying rational structure is the local system EX .

Proof. The uniqueness and functoriality are consequences of the uniqueness and func-
toriality for smooth X and the following fact:

Lemma 3.7. Let X be a reduced algebraic space. For smooth E,F ∈ Db MHM(X)
and any dense open set j : U → X we have

Hom(E,F ) ∼= Hom(j∗E, j∗F )

via the natural map.

Proof. Let E = rat(E) and F = rat(F ). On the level of sheaves

Hom(E ,F) ∼= Hom(j∗E , j∗F)

via the natural map, while

Hom(E,F ) = Hom(QH
X ,Hom(E,F ))

= Hom(Q(0),pt∗Hom(E,F ))(3)

= Hdg0(Hom(E ,F))Q

where we equip Hom(E ,F) with its mixed Hodge structure as rat(H0 pt∗Hom(E,F ))
and define Hdgk(H)Q := Hom(Q(−k), H) = F kH ∩W2kHQ in general for a rational
mixed Hodge structure H. Likewise for Hom(j∗E, j∗F ). �

4EH
X of course depends on ϕ.
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It therefore suffices to show the existence of an extension of EHXreg on the regular

locus Xreg ⊂ X to an object E ∈ Db MHM(X) with rational structure EX . We proceed
by induction on dimX, the 0-dimensional case being obvious.

Let π : X ′ → X be a resolution, let S ⊂ X be the singular locus, and let S′ ⊂ X ′ be
the reduced preimage of S. By induction we may assume EHS and EHS′

∼= π∗ES exist,

and by stipulation EHX′ exists. We have a triangle in Db MHM(X)

(4) QH
X → π∗QH

X′ → A→ QH
X [1].

As π is proper the middle map has an adjoint

QH
X′ → π!A.

Consider the map

EHX′ → EHX′ ⊗ π!A

obtained from tensoring by EHX′ . We have natural identifications

EHX′ ⊗ π!A ∼= EHS′ ⊗ π!A ∼= π!(EHS ⊗A)

the first because π!A is supported on S′ and the second because EHS is smooth. We

therefore obtain a map EHX′ → π!(EHS ⊗ A), and we define E to be the cone of the
adjoint:

(5) E → π∗E
H
X′ → EHS ⊗A→ E[1].

The image of (5) under rat is easily seen to be isomorphic to the natural sequence

EX → Rπ∗EX′ → ES ⊗ rat(A)→ EX [1].

obtained by tensoring the rat of (4) by EX . Moreover, restricting (5) to the regular
locus we see (by proper base-change) that EHXreg

∼= EHX′ |Xreg ∼= E|Xreg .
For the second claim, assume that X is seminormal and let π : X ′ → X be a

resolution. Let E ∈ Db MHM(X) be a smooth object and let us prove that it comes
from an admissible variation of rational mixed Hodge structures on X. Since we
can argue Zariski-locally, let’s assume that π∗E is associated to a period map ϕ :
X ′ → M. Clearly ϕ is pointwise constant on any fiber of π. Since M is smooth
and X seminormal, it follows that ϕ factors through X. Here we’ve used that the
analytification of a seminormal algebraic space is weakly normal [7, Cor. 6.14] so that
the regular functions are continuous meromorphic functions. �

Remark 3.8. The seminormality hypothesis is necessary in the second statement of
Proposition 3.6 as in general the seminormalization X ′ → X is a universal homeomor-
phism and the functor rat : Db MHM(X)→ Db

c(QX) is faithful.

3.3. Monodromy of extensions. Let Y be a reduced algebraic space with an admis-
sible variation of rational mixed Hodge structures VY . Let X be a reduced algebraic
space with a map f : X → Y and an admissible variation of rational mixed Hodge
structures EX which sits in an extension

0→ VX → EX → QX(0)→ 0

where VX = f∗VY . We have a corresponding exact sequence of rational structures

0→ VX → EX → QX → 0.

Given a point y ∈ Y , let U ⊂ Y be a small neighborhood. The local system EX
restricted to XU := f−1(U) has monodromy landing in VY,y, and we will need two
lemmas controlling the image.
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Lemma 3.9. In the above situation, the image of the extension class of EX in Ext1(QX ,VX) ∼=
H1(X,VX) under the composition

(6) H1(X,VX)→ H1(Y,Rf∗VX)→ (R1f∗VX)y

is Hodge of weight 0 for any y ∈ Y .

Note that in the statement of the lemma we are using that VX underlies an object
V H
X ∈ Db MHM(X) by Proposition 3.6, and that the sequence (6) underlies

H1 pt∗(V
H
X )→ H1 pt∗(f∗V

H
X )→ H1(i∗yf∗V

H
X )

where iy : y → Y is the inclusion. All three groups in (6) are therefore equipped with
mixed Hodge structures and the maps are morphisms of mixed Hodge structures.

Proof. The triangle

VX → EX → QX → VX [1]

lifts to a triangle

V H
X → EHX → QH

X → V H
X [1]

in Db MHM(X) as the morphisms exist by Lemma 3.7 and exactness can be checked
on the underlying rational structures. Moreover,

Hom(Q(0), H1 pt∗ VX) = Hom(Q(0),pt∗ V
H
X [1]) = H1 pt∗(V

H
X )

and the group on the left is the weight 0 Hodge classes of H1(X,VX). �

Note that f∗V
H
X = V H

Y ⊗ f∗(QH
X) and that

H1(i∗yf∗V
H
X ) ∼= i∗yV

H
Y ⊗H1(i∗yf∗QH

X) ∼= Hom(H1(XU ,Q),VY,y)

as mixed Hodge structures. Furthermore, under this identification the image of the
extension class of EX under (6) is precisely the monodromy representation of EX re-
stricted to XU .

The previous lemma therefore implies that the monodromy representationH1(XU ,Q)→
VY,y is a morphism of mixed Hodge structures; the following lemma controls the Hodge
numbers of H1(XU ,Q).

Lemma 3.10. For any map f : X → Y of reduced algebraic spaces and any y ∈ Y ,
the nonzero Hodge numbers hp,q of (Rnf∗QX)y satisfy 0 ≤ p, q ≤ n.

Remark 3.11. The claim is true for Y a point (for instance see [13, Thm. 5.39]), and
therefore for proper f by proper base-change.

In the following proof the sheaves/morphisms between them naturally underlie ob-
jects in the derived category of mixed Hodge modules (and thus possess/preserve
natural mixed Hodge structures), but we phrase the argument entirely in terms of the
rational structures for simplicity.

Proof. We proceed by induction on dimX, the claim being obvious ifX is 0-dimensional.
Choose a relative compactification Z and let F be the fiber over y.

X

f ��

j
// Z

g

��

F
ioo

��
Y y

iy
oo
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Let Z ′ be a log resolution of (Z,Z \ X) and let X ′, F ′ be the reduced preimages of
X,F .

S′
ι′ //

γ

��

X ′

ϕ

��

j′
// Z ′

π
��

F ′
i′oo

p

��

S ι
// X

j
// Z F

i
oo

The map ϕ is an isomorphism on a dense Zariski open set V ⊂ X; let ι : S → X be
the inclusion of the complement of V and ι′ : S′ → X ′ the preimage.

There is a natural morphism QX → Rϕ∗QX′ . Let A be the cone, so we have a
triangle

(7) QX → Rϕ∗QX′ → A→ QX [1]

and note that H i(A) = 0 for i < 0. Applying RΓi∗Rj∗ we obtain an exact sequence

(8) Hn−1(i∗Rj∗A) // Hn(i∗Rj∗QX) // Hn(i∗Rj∗Rϕ∗QX′)

(Rnf∗QX)y Hn(i′∗Rj′∗QX′)

where the vertical identifications are by proper base-change. The object A is supported
on S, so pulling (7) back to S we obtain a triangle

QS → Rγ∗QS′ → ι∗A→ QS [1]

and after applying RΓi∗Rj∗ι∗ an exact sequence

Hn−1(i∗Rj∗ι∗Rγ∗QS′′) // Hn−1(i∗Rj∗A) // Hn(i∗Rj∗ι∗QS)

(Rn−1(f ◦ ι ◦ γ)∗QS′′)y (Rn(f ◦ ι)∗QS)y.

By the induction hypothesis, it follows that the nonzero Hodge numbers hp,q ofHn−1(i∗Rj∗A)
have 0 ≤ p, q ≤ n, and by (8) it is therefore enough to prove:

Claim. The nonzero Hodge numbers hp,q of Hn(i′∗Rj′∗QX′) satisfy 0 ≤ p, q ≤ n.

Proof. Recall that Rj′∗ is exact in the perverse t-structure; let M = j′∗QH
X′ [d] where

d = dimX (we may assume X ′ irreducible). Recall that

grWd+kM =
⊕
|I|=k

QH
DI

(−k)[d− k]

where DI =
⋂
i∈I Di is the Ith boundary stratum of Z ′\X ′. Defining F ′I := F ′ ∩DI to

be the reduced intersection, we have i′∗QH
DI

= QH
F ′I

(as this is clearly true on the level

of underlying rational structures), so

i′∗ grWd+kM =
⊕
|I|=k

QH
F ′I

(−k)[d− k].

To prove the claim, it suffices to show the claimed vanishing of Hodge numbers for
Hn−d(i′∗ grWd+kM) for all k. This in turn follows because Hn−k(F ′I ,Q)(−k) satisfies
the vanishing for all k (see Remark 3.11).

�

�
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4. Proof of quasiprojectivity

4.1. Induction step. LetMw be a mixed period space parametrizing graded-polarized
integral mixed Hodge structures E with weights ≤ w and let Mw−1 (resp. M[w−1,w],
Dw−1) be the graded-polarized mixed period space parametrizing mixed Hodge struc-
tures H of the form Ww−1E (resp. grW[w−1,w]E, grWw−1E). We naturally have a definable

analytic morphism
Mw →Mw−1 ×Dw−1M[w−1,w]

From section 2.5 we have an analytic theta bundle Θ[w−1,w] on M[w−1,w]; we also
denote by Θ[w−1,w] the pullback to Mw. As no confusion is likely to occur, for any
period map ϕ : X →Mw we also denote by Θ[w−1,w] the pullback to X together with
its natural algebraic structure as in Proposition 2.13.

The main result of this section is:

Proposition 4.1. Let X,Y, Z be algebraic spaces together with a diagram

X

f

��

g

��

//Mw

��

))

Y //

h
��

Mw−1 ×Dw−1M[w−1,w]

vv

Z //Mw−1

whose horizontal maps are definable Griffiths transverse closed immersions. Then OX
is g-ample and the theta bundle Θ[w−1,w] is h-ample.

Corollary 4.2. In the above situation, Θ[w−1,w] is f -ample.

Before the proof we make some observations. As in the introduction, Mw embeds
into the mixed period space M′0 parametrizing extensions of the form

0→Ww−1E ⊗ grWw E∨ → E′ → Z(0)→ 0

and likewise we have embeddings of Mw−1,M[w−1,w],Dw−1,Mw−1 ×Dw−1 M[w−1,w]

into the corresponding spacesM′−1,M′[−1,0],D
′
−1,M′−1×D′−1

M′[−1,0] associated toM′0
that are compatible with the obvious maps. Finally, Θ[w−1,w] is pulled back fromM′0.

Thus we may assume w = 0 and grW0 E ∼= Z(0), andM0 parametrizes extensions of
the form

0→ V → E → Z(0)→ 0

for V in M−1. In this case, M0 is isomorphic to the intermediate Jacobian

J(V) := VC/F 0V + VZ
over M−1 where VZ is the universal Z-local system and F •V is the universal Hodge
filtration. Moreover, we have maps

J(W−2V)→ J(V)
π−→ J(grW−1 V)

of definable analytic spaces by interpreting each as mixed period spaces. In particular,
M−1×D−1M[−1,0] is isomorphic to J(grW−1 V) overM−1 and π has a definable action by

J(W−2V) which around every point of J(grW−1 V) admits an analytic (hence definable,
after shrinking) trivializing section.

For any y ∈ J(grW−1 V), let U ′ ⊂ J(grW−1 V) be a small ball neighborhood, and for
z ∈M−1 the image of y let U ⊂M−1 be the (open) image of U ′. Denote

JHdg
z (W−2VU ) := (W−2VU )C/F

0W−2VU + Hdg−1(W−2Vz)Z,
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where Hdgk(H)Z := F kH ∩W2kHZ. We have a diagram

JHdg
z (W−2VU )→ J(W−2VU )→ U.

Note that independently of the choice of a basepoint there is an identification of the fun-

damental group of J(W−2VU ) withW−2VZ, that of JHdg
z (W−2VU ) with Hdg−1(W−2Vz)Z,

and that the first map is a covering map with covering group VZ/Hdg−1(W−2Vz)Z.

We endow JHdg
z (W−2VU ) with a definable structure as follows. We may choose a

definable analytic splitting

W−2VU ⊗OU = F 0W−2VU ⊕ (Hdg−1(W−2Vz)Z ⊗OU )⊕Q

where Hdg−1(W−2Vz)Z⊗OU ⊂ VU⊗OU is the constant subbundle and Q is a definable
analytic subbundle. We may therefore definably identify

JHdg
z (W−2VU ) ∼= Hdg−1(W−2Vz)Gm × CN × U

over U , where for a mixed Hodge structure H

Hdg−1(H)Gm := (Hdg−1(H)Z ⊗ C)/Hdg−1(H)Z ∼= Gn
m

with its canonical definable structure.
Choosing a definable section of π, we identify

π−1(U ′) ∼= J(W−2VU )×U U ′.

The fundamental group of π−1(U ′) (after choosing a basepoint) is canonically identified
with (W−2Vz)Z via the action of J(W−2VU ). Denote by

JHdg
U ′,y := JHdg

z (W−2VU )×U U ′

and note that JHdg
U ′,y and its definable structure don’t depend on the choices. Fur-

thermore, since JHdg
z (W−2VU ) → U is clearly definable-analytically quasiaffine (even

affine), we have:

Lemma 4.3. JHdg
U ′,y → U ′ is definable-analytically quasiaffine.

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. By [9, II.4.6.16] we may assume X,Y, Z are all reduced. We
first show that Θ[−1,0] is h-ample. Θ[−1,0] is algebraic by Proposition 2.13, and since h
is proper it suffices to show it is ample on fibers, which is Corollary 2.18.

It remains to prove that OX is g-ample. Using Lemmas 3.4 and 4.3, it is sufficient
to show the following:

Claim. For any y ∈ Y and any sufficiently small open ball neighborhood y ∈ U ′ ⊂
J(grW−1 V) as above we have a definable analytic lifting

(9) JHdg
U ′,y

��

XU ′

;;

// π−1(U ′)

where XU ′ := X ∩ π−1(U ′).

Proof. While JHdg
U ′,y → π−1(U ′) is of course not definable, we first claim:

Lemma 4.4. Any analytic lift as in (9) is definable.
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Proof. Let Ξ0 ⊂M0 be a definable fundamental set forM0 and let Ξ′ be the preimage

of XU ′ in Ξ0. Its enough to show that Ξ′ → JHdg
U ′,y is definable. Recall that M0 is

identified with VC/F
0V over M−1. Taking a resolution of X, there are finitely many

nilpotent orbits approximating the preimage of X in Ξ0; by [10, Theorem 6.2], outside
of a bounded set Ξ′ is within a finite distance (with respect to the standard metric on
VC/F

0V ) of finitely many nilpotent orbits whose monodromy is trivial in M−1. It thus
suffices to verify that each such nilpotent orbit (restricted to a product of bounded

vertical strips) has definable image in JHdg
U ′,y . But possibly after shrinking U ′, each such

nilpotent is v +
∑

i tini for v ∈ VC/F 0V and ni ∈ Hdg−1(Vz)Z = Hdg−1(W−2Vz)Z, for
which the claim is obvious. �

By Lemma 3.9 the monodromy of the extension

0→ VX → EX → ZX
restricted to XU ′ is an element ξ of (R1g∗VX)y which is Hodge of weight 0. We have
an exact sequence

(10) (R1g∗W−2V)y → (R1g∗V)y → (R1g∗ grW−1 V)y

and as the extension

0→ grW−1 VX → grW[−1,0]E → ZX → 0

is pulled back from Y , ξ maps to 0 under the right map of (10). Thus, ξ comes from
a class of (R1g∗W−2V)y which is Hodge of weight 0, and by Lemma 3.10 this is an
element of

Hom(H1(XU ′ ,Q),Hdg−1(W−2Vy)Q).

�

�

4.2. General case. Let M be a mixed period space parametrizing graded-polarized
integral Hodge structures E. Let Dw be the polarized pure period space of the asso-
ciated graded object grWw E and M[w−1,w] the graded-polarized mixed period space of

grW[w−1,w]E. We have a diagram

M

��

((∏
wM[w−1,w]

vv

D :=
∏
w Dw

where the bottom diagonal map arises from the fact that the natural map
∏
wM[w−1,w] →

D ×D factors through the diagonal.
Consider a diagram

X

f

��

g

��

//M

��

&&

Y //

h
��

∏
wM[w−1,w]

xx
Z // D
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where X,Y, Z are algebraic spaces and the horizontal maps are Griffiths transverse
closed immersions. The proof of the quasiprojectivity claim of Theorem 1.1 is com-
pleted by the following:

Lemma 4.5.

(1) OX is g-ample;
(2) ΘX :=

⊗
w Θ[w−1,w] is h-ample.

Proof. (1) If wmin (resp. wmax) is the minimum (resp. maximum) weight w for
which grWw E 6= 0, then by taking images we have diagrams

Xw
//

fw
��

Mw

��

//M[w−1,w]

Xw−1
//Mw−1

with X = Xwmax ,M =Mwmax , Z = Xwmin , and D =Mwmin . By Corollary 4.2
the theta bundle Θ[w−1,w] is fw-ample, and it follows that L :=

⊕
w Θaw

[w−1,w] is

f -ample for some aw > 0 [9, II.4.6.13]. As L is pulled back from Y , it follows
that OX is g-ample.

(2) ΘX is ample on the fibers of h by Corollary 2.18, and since h is proper, it
follows that it is h-ample.

�
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