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Abstract. Given a smooth proper family φ : X → S, we study the (quasi)-periods of the fibers of
φ as (germs of) functions on S. We show that the field they generate has the same algebraic closure
as that given by the flag variety co-ordinates parametrizing the corresponding Hodge filtration,
together with their derivatives. Moreover, in the more general context of an arbitrary flat vector
bundle, we determine the transcendence degree of the function field generated by the flat coordinates
of algebraic sections. Our results are inspired by and generalize work of Bertrand–Zudilin.
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1. Introduction

1.1. The cohomology groups of algebraic varieties.
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1.1.1. Periods. Let X be a smooth complex algebraic variety. The singular cohomology groups
Hk(Xan,C) of the associated complex analytic variety Xan with its euclidean topology are topolog-
ical invariants which come equipped with several algebraically defined structures.

By a theorem of Grothendieck, Hk(Xan,C) can be computed using the de Rham cohomology of
algebraic forms [BGK+87]. This group is somewhat complicated in general, but if X is affine then
Hk(Xan,C) is isomorphic to the group of closed algebraic k-forms modulo exact algebraic k-forms.
The isomorphism is by integration: it associates to the class [α] of a closed algebraic k-form the
integration map γ 7→

∫
γ α on k-cycles. The integrals

∫
γ α are called periods. When X is defined

over a subfield L ⊂ C (for example a number field) and α is taken to be L-rational, the periods are
in general highly transcendental numbers, and conjecturally algebraic relations between them come
from geometry (see for example [BT22] and the references therein).

1.1.2. Hodge filtrations. Algebraic de Rham cohomology also endows Hk(Xan,C) with an alge-
braically defined filtration F •—the Hodge filtration—which detects geometry in a slightly different
way, via the Hodge conjecture. For X a smooth projective variety, F p is given by the smooth de
Rham cohomology classes which can be represented by a type (r, s) form with r ≥ p, and the Hodge
conjecture asserts that rational cohomology classes α ∈ H2k(Xan,Q) contained in F k should come
from geometry.

In this paper we are concerned with the relationship between the periods and the Hodge filtration
in algebraic families, specifically with regard to their transcendence properties.

1.2. Periods in families. Suppose f : X → S is a smooth algebraic family over a smooth affine
base S which is real analytically locall trivial. Assume for simplicity that X is affine. Then we can
take a fiberwise closed algebraic k-form α, a point s ∈ S, a class γ ∈ Hk(X

an
s ,C), and a contractible

neighborhood s ∈ U ⊂ San, and form an analytic function U → C given by u 7→
∫
γ(u) α|Xu where

γ(u) ∈ Hk(X
an
u ,C) is the cycle obtained from γ by a local real analytic trivialization of f . In

the general case, these functions make sense for α an algebraic de Rham cohomology class (see for
example [HMS17]), and we define them to be the periods of α at s. Once again the period functions
are highly transcendental, but in this case algebraic relations can be proven to come from geometry
in an appropriate sense, see [BT22].

1.3. Period maps. See [Voi02] for background on period maps. The cohomology groups of fibers
Hk(Xan

t ,C) can be canonically identified locally on San using a real analytic trivialization. With
respect to these local identifications, the Hodge filtration F •t on Hk(Xan

t ,C) varies in a holomorphic
way. By analytically continuing these identifications and using it to transport F •t to Hk(Xan

s ,C),
we obtain a holomorphic map φ : X̃ → Ď where X̃ → Xan is a universal cover of Xan and Ď is
a flag variety parameterizing filtrations of the given type on Hk(Xan

s ,C). If f is quasiprojective,
then in fact φ lands in a semialgebraic subset of an algebraic subvariety, namely the mixed period
domain—see [PS08] for details. Such a φ is called the period map associated to the natural variation
of Hodge structures on Rk(fan)∗CXan .

If X is once again affine, then around the basepoint s we may take forms αi which can be refined
to a basis of each F p; in general, the same can be done for algebraic de Rham cohomology. Taking
a lift of the neighborhood U to X̃, the algebraic coordinates of φ restricted to U are then rational
functions in the ratios of certain minors of the matrix of periods

∫
γj(u) αi|Xu with respect to a chosen

basis of γj of Hk(X
an
s ,C). We call such functions the Hodge filtration coordinates at s.
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1.4. Comparison. Clearly the Hodge filtration coordinates are rational functions in the period, but
a priori contain much less information. For example, the field generated over the rational function
field K(S) by the periods is in fact closed under algebraic derivations - since the Lie derivative along
an algebraic vector field is algebraic - whereas the field generated by the Hodge filtration coordinates
are usually not differentially closed. On the other hand, the Hodge filtration coordinates are often
more accessible.

1.5. Main results. We now state a simplified version of our main theorem (Theorem 3.9), which
clarifies the relationship between the fields generated by the periods and the Hodge filtration coor-
dinates.

Theorem 1.1. Let f : X → S be a smooth algebraic family for which Rk(fan)∗CXan is a local
system and let φ : X̃ → Ď be the period map associated to the natural variation of Hodge structures
on Rk(fan)∗CXan. Let s ∈ S be a basepoint and consider the following two subfields of K(OSan,s),
the field of germs of meromorphic functions at s.

(1) Let K(Rk(fan)∗CXan)s be the subfield generated over K(S) by the periods of degree k alge-
braic de Rham cohomology classes at s.

(2) Let K(φ)s to be the subfield generated over K(S) by the Hodge filtration coordinates at s
and let K∂(φ)s to be closure of K(φ)s under algebraic derivations.

Then

a) K∂(φ)s ⊂ K(Rk(fan)∗CXan)s.

b) Assume that the local system Rk(fan)∗CXan does not admit a summand of the form V1⊗V2,
where V2 is a unitary local system with infinite monodromy. Then the algebraic closures
coincide: K∂(φ)s = K(Rk(fan)∗CXan)s.

Remark 1.2. Condition (b) above is also necessary. Indeed, if V is a complex variation of Hodge
structures underlying a unitary local system, then the corresponding period map is constant, so the
field K∂(φ)s will be trivial. However, if the local system is non-trivial, then V will give transcen-
dental periods (see §2).

Remark 1.3. Condition (b), and therefore the equality of fields, holds for Shimura varieties corre-
sponding to reductive groups without compact real factors.

The main theorem (see Theorem 3.9) generalizes Theorem 1.1 in several ways:

(1) The fieldK(Rk(fan)∗CXan) may be replaced withK(V ) where V is any complex local system
on San with norm one eigenvalues at infinity. Briefly, the field K(V ) is generated over K(S)
by the germs of the flat coordinates of algebraic sections of the canonical algebraic structure
on the flat vector bundle (OSan ⊗CSan V,∇) given by the Riemann–Hilbert correspondence.
This algebraic structure is uniquely associated to V , and in the case V = Rk(fan)∗CXan

recovers relative algebraic de Rham cohomology, which is why the notation only references
the local system.

(2) The map φ may be replaced by any Ran,exp-definable π1(Xan, x)-equivariant map φ : X̃ →
Y an, where x ∈ X is a basepoint, Y is an algebraic variety with a faithful action by a linear
algebraic group G and the π1(Xan, x)-action on Y is via a homomorphism ρ : π1(Xan, x)→
G(C).
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In particular, the theorem applies more generally to any local system V underlying a mixed variation
of complex Hodge structures.

1.6. Previous work. The paper is largely inspired by the work of Bertrand–Zudilin [BZ03], who
prove several results on the transcendence degree of fields generated by Siegel modular forms and
their derivatives. The moduli space of principally polarized abelian varieties can be identified with
the quotient Aan

g = Sp2g(Z)\Hg, and Siegel modular forms can be interpreted as the algebraic
coordinates on Ag composed with the uniformization π : Hg → Aan

g . As such, they are the inverse
functions to the Hodge filtration coordinates of the universal family of abelian varieties. Theorem
1.1 then recovers the second part of [BZ03, Theorem 1]. Note that in the general context the inverse
functions of the the Hodge filtration coordinates are not well-defined, since the period map will only
be a local isomorphism in very special circumstances.

1.7. Outline of Paper. In §2, using the Riemann-Hilbert correspondence we define a Riemann-
Hilbert field for an arbitrary local system which generalizes the notion of periods. In §3 we relate
definable meromorphic functions with finite-dimensional monodromy to the Riemann-Hilbert field
of the corresponding local system, and we use this to prove the general form of our main theorem.
We rely heavily on the Chow theorem of Peterzil–Starchenko [PS03] and its generalization in [BBT].
In §4.1 we return to studying periods of algebraic families and prove our main result. We then work
out in detail in §4.2 the fields under question in the case of the universal elliptic curve. In §4.3
we explain that even in the general case, periods of algebraic De-Rham cohomology classes can be
thought of as integrals of meromorphic forms.

2. Riemann–Hilbert fields of local systems

Let X be a smooth connected complex algebraic variety. Let V be a complex local system on
X. The associated locally free OXan with flat connection (VOXan ,∇) where VOXan := OXan ⊗CX

V
admits a canonical structure (VOX

,∇) of a locally free OX -module with flat connection with regular
singularities by the Riemann–Hilbert correspondence [Del70]. We associate a field K(V ) generated
by the components of algebraic sections of VOX

with respect to a flat basis as follows:

Definition 2.1. Given a local system V on X, for any point x ∈ X we have a canonical evaluation
〈 , 〉 : VO,x⊗CV

∨
x → OXan,x of OX,x-modules, and we define K(V )x to be the subfield of the fraction

field K(OXan,x) generated by the image.

Concretely, K(V )x is the field generated by (germs of) the entries of the change of basis matrix
between flat and algebraic frames of VOXan , and we refer to it as the Riemann–Hilbert field of V .
Note that a choice of (homotopy class of) path from x to y gives an isomorphism K(V )x → K(V )y
by analytic continuation.

We have the following basepoint-free definition of K(V )x given a universal cover:

(1) Let VK(X) be the K(X)-module of rational sections of VOX
. Let π : X̃ → Xan be a universal

cover of Xan and x̃ a lift of x. Then using the connection we obtain a canonical π1(Xan, x)-
equivariant trivialization π∗V ∨ ∼= CX̃ ⊗C V

∨
x and therefore a π1(Xan, x)-equivariant homo-

morphism VK(X) ⊗C V
∨
x → K(X̃) whose image is independent of x (and x̃) and which is

naturally isomorphic to K(V )x via pullback. We refer to this image as K(V ) ⊂ K(X̃); we
suppress the dependence on X̃ as any isomorphism with any other universal cover respects
the subfield K(V ). Observe that K(V ) is stable under the action of π1(Xan, x), and the
action of π1(Xan, x) on K(V ) factors through the monodromy representation of V .
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(2) Let E := A(V ∨OX
⊗C Vx) be the geometric total space of the locally free sheaf V ∨OX

⊗C Vx.
Concretely, E is the vector bundle of homomorphisms Vy → Vx as y ∈ X in varies. The
sheaf E has a natural flat connection and there is a natural holomorphic map T : X̃ → Ean

sending x̃ to the identity which parameterizes the flat leaf through the identity. In other
words, thinking of ỹ ∈ X̃ as a homotopy class of path from y = π(ỹ) ∈ X to x, Tỹ : Vy → Vx
is the the parallel transport operator thought of as an element of V ∨y ⊗ Vx. Note that the
map T depends on x̃, but the image of T does not.

In coordinates the map T is given as follows. Let ti be a basis of Vx, t̃i the flat continuation
of the ti, si a basis for VK(X). Then at least over the open set of X on which the sections si
are regular, with respect to the basis si(y) on Vy and ti on Vx the matrix of Tỹ has entries
t̃∨j (π∗si)(ỹ). Thus, there is an natural isomorphism from K((img T )Zar) to K(V ) by pulling
back along T , and using the identification from (1).

In particular, we have the following:

Lemma 2.2.
trdegK(X)K(V ) = dim (img T )Zar − dimX.

We pause to record here some natural properties of K(V ). Note that the tangent sheaf TX
analytifies to TXan which pulls back to TX̃ on the universal cover. Thus, algebraic derivations of X
yield derivations on Xan and X̃.

Lemma 2.3.

(1) K(V ) ⊂ K(X̃) is closed under algebraic derivations of X.

(2) If V ′ is a subquotient of V then K(V ′) ⊂ K(V ).

(3) K(V ⊗C V
′) ⊂ K(V )K(V ′).

(4) K(V ⊗n) ⊂ K(V ) is algebraic.

(5) if f : X ′ → X is a dominant generically finite map of smooth varieties, then K(V ) ⊂
K(f∗V ) is algebraic.

Proof. (1) The connection on VOX
is algebraic.

(2) The Deligne canonical extension is functorial and V ′O,x ⊗ V ′∨x is a summand of VO,x ⊗ V ∨x
(compatibly with 〈 , 〉), at least on a dense Zariski open set.

(3) Obvious.

(4) For α1, . . . , αn ∈ Vx and s1, . . . , sn ∈ VO,x, then ⊗ni=1αi(⊗nj=1sj) =

n∏
k=1

αk(sk) ∈ K(V )x.

(5) We may pull-back flat and algebraic frames from X, and the entries of their change of basis
matrix generates K(f∗V ) over K(X ′).

�

We now relate the transcendence degree of K(V )/K(X) to the Zariski closure G of the image Γ of
the monodromy representation π1(Xan, x)→ EndC(Vx). This is a known consequence of differential
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Galois theory (see [And87, V.Cor.1]) but we include a proof more in the spirit of our geometric
approach.

Proposition 2.4. We have
trdegK(X)K(V ) = dimG

Proof. Again, let ti be a basis of Vx and t̃i its flat continuation. We identify Ean as the total
space of the local system V ∨ ⊗C Vx, and the universal cover of Ean as X̃ × End(Vx) via the map
q : X̃ × End(Vx) → Ean sending (ỹ, f) 7→ (y, f ◦ Tỹ). Via this identification, we get an induced
monodromy action on X̃ × End(Vx): explicitly γ ∈ π1(Xan, x) maps (ỹ, f) 7→ (γỹ, f ◦ T−1

γ ). Thus
if we let s : X → X × End(Vx) denote the identity section, then T = q ◦ s.

Let Z be the Zariski closure of img T . Note that q−1(img T ) is simply X̃×Γ. As q is an algebraic
isomorphism on fibers and Γ is Zariski dense in G it follows that q−1(Z) ⊃ X̃ × G(C). Let Q be
the image of X̃ × G(C) in Ean. We will show that Q is algebraic, and therefore that Z = Q is a
G-bundle over X, ‘completing the proof.

To see this, first note using Chevalley’s theorem [Mil17, Theorem 4.19] that there is a line Lx
inside a representation Wx of GL(Vx) such that G is the stabilizer of Lx. Note that Wx occurs as a
direct summand of a direct sum of tensor powers of Vx and its dual. It follows that Wx corresponds
to the fiber at x of a local systemW occcuring as a direct summand of a direct sum of tensor powers
of V and its dual, and L corresponds to a rank one sub local system of W .

It remains to observe that Q consists of those elements f : Vy → Vx of Ean such that f induces
an isomorphism from Ly to Lx. Since the Riemann-Hilbert correspondence is functorial, this latter
condition is algebraic, hence Q is algebraic as desired.

�

3. Local systems of holomorphic functions

3.1. Universal covers and definability. Throughout this section, by definable we always mean
definable in the o-minimal structure Ran,exp; see [vdD98] for details. Let X be a definable (complex)
analytic space (for example, the definabilization of a complex algebraic variety). We can think of
X as locally the zero-set of definable holomorphic functions, with definable holomorphic gluing
functions (see [BBT] for full details). Let π : X̃ → Xan be the universal cover of the associated
analytic space. We say a meromorphic function g ∈ K(X̃) is definable if for any open definable
f : U → X and any analytic lift f̃ : Uan → X̃ the pullback f̃∗g is definable. We denote by
Kdef(X̃) ⊂ K(X̃) the field of definable meromorphic functions on X̃. Likewise, for any definable
analytic space Y we say an analytic map φ : X̃ → Y an is definable if for any open definable
f : U → X and any analytic lift f̃ : Uan → X̃ the composition φ ◦ f̃ is definable.1

By a definable fundamental set for X we mean a definable analytic space F , a surjective étale
definable analytic morphism f : F → X and an analytic lift f̃ : Fan → X̃.

Lemma 3.1. Let f : F → X be a definable fundamental set.

(1) A function g ∈ K(X̃) is in Kdef(X̃) if and only if the pullback (γ ◦ f̃)∗g is definable for each
γ ∈ π1(Xan, x).

1Note that we are not endowing X̃ with the structure of a definable analytic space, since it will not in general be
covered by finitely many lifts of open definable sets in X; this will only happen if π1(X) is finite.
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(2) A map φ : X̃ → Y an is definable if and only if the map φ ◦ γ ◦ f̃ is definable for each
γ ∈ π1(Xan, x).

Proof. (1) For the necessity, it is sufficient to take γ = Id. let U1, . . . , Un be finitely many
connected definable open sets in X whose analytifications lift via ιi to X̃. Let Vj be the
connected components of f−1(Ui). Then for each Vj mapping to Ui, one may pick an element
γ′ ∈ π1(Xan, x) such that f̃ | Vj = γ′ ◦ ιi ◦ f | Vj . Now since g is definable it follows by
definition that (γ ◦ ιi)∗g is definable, and hence so is f̃∗g | Vj . The claim now follows since
the Vj cover F .

For the sufficiency, let U ⊂ X be definable open set and ι : Uan → X̃ be a lift. Let
V = f−1U and let V1, . . . , Vm be the connected components of V . Then for each i there is
an element γi ∈ π1(Xan, x) such that γi ◦ f | Vi = ι ◦ f | Vi. Now by assumption (γi ◦ f)∗g is
definable, and therefore it follows that so is (ι ◦ f | Vi)∗g, and hence so is (ι ◦ f | V )∗g. Now,
since f | V is surjective onto U , it follows by definable choice that ι∗g is also definable, as
desired.

(2) This is the exact same proof as above, replacing g by φ at each step.

�

Example 3.2. By definable triangulation [vdD98], any definable analytic space X admits a cover by
simply connected definable open sets Ui ⊂ X, and for arbitrary choices of lifts Ũi ⊂ X̃ the union
F =

⋃
i Ui (together with the lift) is a definable fundamental set for X.

Example 3.3. Let X be a smooth algebriac variety. We cover a log smooth compactification X with
polydisks ∆n ∼= Ui ⊂ X for which ∆ki × (∆∗)`i ∼= Ui ∩X. Let Σ ⊂ H be a bounded vertical strip
fundamental set for the exponential e2πiz : H → C∗ endowed with the obvious definable structure.
For each i choose a lift fi : ∆ki × Σ`i → X̃ of the composition ∆ki × Σ`i → ∆ki × (∆∗)`i ∼= Ui ⊂
X. Then after shrinking each polydisk, the union of the images of the fi form such a definable
fundamental set.

3.2. Local systems of definable meromorphic functions. Assume now that X is a smooth
complex algebraic variety with its canonical definable structure, and let x ∈ X be a choice of
basepoint. We denote by Xdef the definabilization of X, which is a definable analytic space (See
[BBT]). For a complex local system V onX, we say V has norm one eigenvalues at infinity if for some
(hence any) log smooth compactification X of X, the local monodromy of V at the boundary has
eigenvalues with (complex) norm 1. In general, the total space of V has two definable structures:
the flat one and the algebraic one (given by Riemann-Hilbert). By [BM22], if V has norm one
eigenvalues at infinity then these two definable structures on V are equivalent. Observe that:

(1) Kdef(X̃) is closed under algebraic derivations of X.

(2) Up to passing to a Zariski open set, a homomorphism of definable sheaves φ : V → OXdef for
a local system V is equivalent to a homomorphism of π1(Xan, x)-modules Vx → Kdef(X̃).

(3) If V has norm one eigenvalues at infinity, then K(V ) ⊂ Kdef(X̃).

Lemma 3.4. Suppose V has norm one eigenvalues at infinity. Then any homomorphism of π1(Xan, x)-
modules µ : V ∨x → Kdef(X̃) factors through K(V ).
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Proof. After passing to a Zariski open, let ν : V ∨ → OXdef be the resulting homomorphism of
definable sheaves. Note that the canonical algebraic structure on (V ∨)OXan is canonically (VOX

)∨.
We have a homomorphism of definable coherent sheaves id ⊗ ν : OXdef ⊗C

Xdef
V ∨ → OXdef which

by definable GAGA [BBT] comes from an algebraic homomorphism F : V ∨OX
→ OX which in turn

is equal to evaluation on a rational section s of VOX
. Thus, µ is identified with v → 〈s, v 〉, which

completes the proof. �

The main idea in the proof of the lemma also gives us a criterion for a subfield L ⊂ Kdef(X̃) to
contain K(V ). In general for a G-module U we denote by U0 the same vector space with trivial
G-action.

Lemma 3.5. Suppose K(X) ⊂ L ⊂ Kdef(X̃) is a π1(Xan, x)-stable subfield and that there is a
homomorphism of π1(Xan, x)-modules

V ∨x → L⊗C (V ∨x )0

which evaluates to an isomorphism upon specialization of K to some point of X. Then K(V ) ⊂ L.

Proof. As in the previous lemma, we obtain a map of definable sheaves V ∨ → OXdef ⊗C (V ∨x )0 and
therefore a homomorphismm F : OXdef ⊗C

Xdef
V ∨ → OXdef ⊗C (V ∨x )0 which is algebraic by definable

GAGA. It has full rank at some point of X and is therefore rationally an isomorphism. On the
one hand, choosing a rational basis si and a flat basis 1 ⊗ tj of the source OXdef ⊗C

Xdef
V ∨, the

generators of K(V ) are the matrix elements of the change of basis matrix between the si and the
1 ⊗ tj . One the other hand, the images F (1 ⊗ tj) are in L ⊗C (V ∨x )0 and the images F (si) are in
K(X) ⊗C (V ∨x ), so the change of basis matrix between F (si) and the F (1 ⊗ tj) has entries in K.
Thus, K(V ) ⊂ L. �

3.3. Generalized period maps. Suppose we have a homomorphism ρ : π1(Xan, x)→ G(C). Let
Γ ⊂ G(C) be the image of π1(Xan, x). Suppose further that Y is an algebraic variety with an action
of G with finite kernel, meaning no positive-dimensional subgroup of G(C) acts as the identity on
all of Y . Let φ : X̃ → Y an be a definable π1(Xan, x)-equivariant map.

Definition 3.6. We define K∂(φ) to be the subfield of Kdef(X̃) generated under algebraic deriva-
tions of X by pullbacks of rational functions of Y which are generically regular along img φ (or
equivalently of K(img φ)Zar).

Note that K∂(φ) contains K(X).

Remark 3.7. By definable Chow, a definable π1(Xan, x)-equivariant map X̃ → Y an up to passing
to a dense Zariski open set is equivalent to an element of Y (Kdef(X))π1(X,x), that is, a π1(Xan, x)-
invariant Kdef(X)-rational point of Y .

Lemma 3.8. Suppose f : Y ′ → Y is a G-equivariant finite map of varieties with G-action and that
we have a commutative diagram

Y ′an

X̃ Y an

fan
φ′

φ

where φ and φ′ are definable π1(Xan, x)-equivariant. Then K∂(φ) ⊂ K∂(φ′) is algebraic.
8



Proof. We may assume the image of φ (hence of φ′) is Zariski dense. Any function g′ on Y ′ satisfies
a polynomial P ∈ K(Y )[t], and (φ′)∗g′ satisfies the polynomial φ∗P ∈ K∂(φ)[t]. Let K be the field
generated by the φ′∗g′ over K∂(φ). It remains to show that K is closed under algebraic derivations.

Any h ∈ K satisfies a minimal polynomial P (t) over K∂(φ). For any algebraic derivation θ of X,
we then have

0 = (θP )(h) + P ′(h)θh

where θP is the polynomial with differentiated coefficients, and P ′(t) is the formal derivative with
respect to t (treating the coefficients as constant). Since 0 6= P ′(h), we have θh ∈ K. �

Theorem 3.9. Let Y be an algebraic variety with an action of an algebraic group G with finite
kernel in the above sense. Let U be a representation of G with finite kernel, ρ : π1(Xan, x)→ G(C)

a homomorphism, V the resulting local system on X, and φ : X̃ → Y an a definable π1(Xan, x)-
equivariant map with Zariski dense image. Then if V has norm one eigenvalues at infinity,

K(V ) = K∂(φ).

Before the proof we recall jet spaces. Let A be an artinian C-algebra. Recall that for a C-scheme
Y the jet space JAY parametrizes C-morphisms Spec(A) → Y . Precisely, C-morphisms S → JAY
are C-morphisms Spec(A)× S → Y . For any homomorphism A′ → A of artinian C-algebras there
is a natural morphism JA′Y → JAY , and in particular there is a morphism πA : JAY → Y by
taking the canonical quotient A → C. Note that if Y is smooth, then for any A the fibers of
πA are irreducible and isomorphic, hence JAY is irreducible. Moreover, for any small extension
A′ → A with ideal I, JA′Y has a canonical action over JAY by π∗ATY ⊗C I coming from the
isomorphism A′ ×A A′ → k〈I〉 ×C A

′ : (x, y) 7→ (x − y, y) where k〈I〉 is the ring of dual numbers
with tangent space I∨. For any section θ of π∗ATY ⊗C I we denote its action by tθ : JA′Y → JA′Y ,
so for a point ξ : Spec(A) → Y of JAY the pull-back map along tθ(ξ) on functions is given by
tθ(ξ)

∗ = ξ∗ + θ : OX → A. This makes JA′Y → JAY into a torsor in the Zariski topology, since
nilpotent thickenings of affine schemes lift through smooth morphisms and therefore JA′Y → JAY
has a section Zariski locally. In particular, πA : JAY → Y is affine.

For any algebraic (resp. analytic) function g on Y and α ∈ A∨ (the dual as a complex vector
space), we obtain an algebraic (resp. analytic) function dαg on JAY which evaluates on a map
ξ : Spec(A) × S → Y as (α ⊗ id)(ξ∗g) ∈ OS(S). Clearly for any algebraic or analytic map
f : Y ′ → Y and the induced map JAf : JAY

′ → JAY we have (JAf)∗dαg = dα(f∗g).

The following lemma says in particular that for smooth Y , up to passing to a Zariski cover, any
map of jet spaces admits a section through any point.

Lemma 3.10. Suppose Y is affine and q : Y → An is étale. Let z1, . . . , zn be the pullbacks of the
coordinates on An. Then:

(1) For any surjective homomorphism A′ → A of artinian rings, the resulting map p : JA′Y →
JAY has a section through any point of JA′Y .

(2) If moreover A′ → A is small with ideal I with dimC I = 1 we have p∗OJA′Y ∼= OJAY [dαz1, . . . , d
αzn]

for any α ∈ A∨ which is nonzero on I.

Proof. For the first part, any point of JAY can be pushed down to An, translated to a section
of JAAn, and lifted (uniquely) to JAY , as maps from nilpotent thickenings of affine schemes lift
uniquely through étale maps. For the second part, its enough to observe that the natural derivations
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∂i := ∂/∂zi give a trivialization of π∗ATY ⊗C I and t∗θd
αg = dαg + π∗Aα(θg), so the dαzi necessarily

give the linear affine coordinates of a trivialization JA′Y ∼= JAY × An of the torsor structure. �

Lemma 3.11. Suppose we have a section σ : X → JAX of πA : JAX → X. Then for any function
g on Xan, (σan)∗dαg is in the subsheaf of OXan generated over OX by (σan)∗g and its algebraic
derivatives.

Proof. The claim can be checked Zariski locally on X, so we may assume X is affine with an
étale map q : X → An. Let zi be the pullbacks of the coordinate functions and ∂i the associated
derivations as in the previous lemma, so that the functions zi − zi(y) generate my at every point
y ∈ X. We then have a universal Taylor series in the following sense. Denoting the ith projection
πi : X ×X → X we have

(3.3.1) π∗1g − π∗2g =
∑
J

π∗2(∂Jg)

J !
(π∗1z − π∗2z)J in lim←−

k

OX×X/Ik∆.

in the obvious notation, where ∆ ⊂ X ×X is the diagonal. The same formula holds for analytic g
as well.

Suppose σ is given by a map ξ : Spec(A)×X → X and let p2 : Spec(A)×X → X be the second
projection. Then ξ × p2 : Spec(A)×X → X ×X factors through Spec(OX×X/Ik∆) for some k, and
the claim follows from (3.3.1) since we then have

(ξan)∗g − 1⊗ g =
∑
J

1⊗ ∂Jg
J !

(ξ∗z − 1⊗ z)J in A⊗C OXan .

�

Corollary 3.12. Suppose we have a section σ : X → JAX of πA : JAX → X and a commutative
diagram

JAX̃ JAY
an

X̃ Y an

π̃A

JAφ

πan
A

φ

σ̃

where φ (hence JAφ) is definable π1(Xan, x)-equivariant. Then K∂(JAφ ◦ σ̃) ⊂ K∂(φ).

Proof of Theorem 3.9. Observe that we are free to replace X with a dense Zariski open subset. Note
that if Z ⊂ Y is a closed G-invariant subvariety then φ−1(Z) is a definable closed π1(X)-invariant
subset of X̃, and therefore descends to a definable analytic subvariety of X, which is algebraic by
definable Chow [PS03]. Thus, we may also freely replace Y with a G-invariant dense Zariski open
subset (at the cost of replacing X with a dense Zariski open subset). By Corollary 3.12 we may
further replace X with some jet space JAX and φ with JAφ after passing to a Zariski open on which
JAX → X admits a section through every point.

Lemma 3.13. Suppose G acts with finite kernel on a smooth irreducible algebraic variety Y . Then
for some jet space JAY , the induced action of G on JAY has finite stabilizers.

Proof. Choose a point y ∈ Y and let Sy be the stabilizer of y. Then Sy acts with finite kernel on
ÔY,y, and therefore on some artinian quotient OY,y/mn

y . Take An = OY,y/mn
y . Let JoAn

Y denote the
open subspace consisting of jets which are local isomorphisms. Note that all the points in a single
fiber of JoAn

Y → Y have the same stabilizer. Thus if we let Yn denote those points of Y whose fibers
10



in JoAn
Y have finite stabilizer, the Yn form an increasing chain of constructible sets whose union is

all of Y . The claim follows by Noetherianity.

�

Thus, passing to a G-invariant Zariski open of an appropriate jet space we may assume the action
of G on Y has finite stabilizers. The quotient Y → Z := G\Y exists as an algebraic space, so
by passing to a further G-invariant Zariski open of Y we may assume that there is a quotient
Y → Z := G\Y as a scheme. The map Y → Z admits a section over a finite dominant map
Z ′ → Z, and therefore its base-change is a finite map Y ′ := Y ×Z Z ′ → Y and Y ′ is identified in a
G-equivariant way with G × Z ′ where G acts by left multiplication on G and the identity on Z ′.
After shrinking X, we may assume Z ′ → Z is in addition étale, and as X̃ is simply connected, the
composition X̃ φ−→ Y an → Zan can be lifted through Z ′ → Z, and the product map is a π1(Xan, x)-
equivariant map φ′ : X̃ → Y ′an which is definable by definable choice. By Lemma 3.8 we have
K∂(φ) = K∂(φ′). By definable Chow, functions pulled back from Z ′ are in K(X) ⊂ Kdef(X̃), so we
may assume Y = G with the left action by G. Finally, we have G ⊂ End(U), so clearly we may
assume G = GL(End(U)) and Y = End(U) with the action of G by left multiplication. We will
show that in this case K(V ) = K∂(φ).

As left G(C)-modules, with this action we have End(U) ∼= U∨0 ⊗C U . We then identify the
coordinate ring R[End(U)] with Sym∗ End(U)∨ as left G(C)-modules. Thus, R[End(U)] admits
a surjection (of G(C)-modules) from a direct some of tensor powers of U∨. It follows that the
pullback of any function to Kdef(X̃) is contained in a π1(X,x) local system which is a quotient of
some tensor power of U∨.

It follows by Lemma 2.3 and Lemma 3.4 that we have K∂(φ) ⊂ K(V ).

On the other hand, by taking the linear coordinates we see that the condition in Lemma 3.5 is
met. Indeed, from the inclusion End(U)∨ ⊂ R[G], the natural map of left G(C)-modules

U∨ → C[G]⊗C U
∨
0

evaluates to idU∨0 at the identity. Thus K(V ) ⊂ K∂(φ).

�

4. Periods of algebraic varieties

In this section we relate the previous sections work on local systems to integrals of algebraic forms
in families of varieties.

4.1. Background on periods. We begin with an informal but more detailed discussion of algebraic
de Rham cohomology classes and their periods to explain how the main ideas of the previous sections
can be used to understand them.

4.1.1. Smooth de Rham cohomology. Let X be a smooth complex algebraic variety. The smooth
Poincaré resolution is acyclic so we may naturally think of the cohomology Hk(Xan,C) as classes
of closed smooth k-forms.

4.1.2. Analytic de Rham cohomology. In the analytic category we have a resolution

0→ CXan → OXan
d−→ Ω1

Xan
d−→ · · ·

11



and therefore we obtain a natural isomorphism Hk(Xan,Ω•Xan) ∼= Hk(Xan,C) where

Ω•Xan :=
[
OX

d−→ Ω1
Xan

d−→ · · · d−→ ΩdimX−1
Xan

d−→ ΩdimX
Xan

]
.

We can think of the hypercohomology Hk(Xan,Ω•Xan) in terms of Čech cohomology with respect to
a covering by Stein open sets, and any Čech cocycle can be solved by a smooth form. Alternatively,
the Dolbeault resolution provides an acyclic resolution of Ω•Xan , and in this way a hypercohomology
class may be directly despresented by the class of a smooth form. Either way, integrating such a
form provides the explicit isomorphism.

4.1.3. Algebraic de Rham cohomology. In the algebraic category we have a complex

Ω•X :=
[
OX

d−→ Ω1
X

d−→ · · · d−→ ΩdimX−1
X

d−→ ΩdimX
X

]
.

By a theorem of Grothendieck, the natural map Hk(X,Ω•X) → Hk(Xan,Ω•Xan) obtained by ana-
lytifying a Čech cocycle with respect to an affine open cover is an isomorphism. We denote the
composed isomorphism

(4.1.1)
∫
X

: Hk(X,Ω•X)→ Hk(Xan,C).

There are some circumstances in which algebraic de Rham cohomology classes can be thought
of directly in terms of certain algebraic forms and for which the map

∫
X is the usual notion of

integration along a cycle; see section 4.3 for some discussion. In general the map can always be
expressed in terms of integrating a Čech cocycle representative along the facets of a suitable singular
cycle representative (see for instance Example 4.5). There is a natural map

ker
(
H0(X,Ωk

X)
d−→ H0(X,Ωk+1

X )
)
→ Hk(X,Ω•X)

associating to a closed algebraic k-form the obvious de Rham cohomology class, and in the image∫
X is the usual integration map.

4.1.4. De Rham cohomology in families. Let f : X → S be an algebraic family which is real
analytically locally trivial. We can form the local system V = Rk(fan)∗CXan whose fibers are
the cohomologies Hk(Xan

t ,C), identified locally on San via a local trivialization of f . There is an
associated analytic flat vector bundle (VOSan ,∇) which by the relative version of the analytic de
Rham complex is computed as Rk(fan)∗Ω

•
Xan/San , where the connection is given by lifting vector

fields and taking the Lie derivative. The Lie derivative along an algebraic tangent field is algebraic,
so Rkf∗ΩX/S is naturally an algebraic flat vector bundle, and it is in fact the canonical algebraic
structure on VOSan guaranteed by the Riemann–Hilbert correspondence [Del70]. The resulting
isomorphism

OSan ⊗OSan VOS
→ OSan ⊗CSan V

fiberwise restricts to the integration isomorphism of section (4.1.1).

We now describe the flat coordinates of algebraic sections. Around any point s ∈ S we can take
a neighborhood s ∈ U ⊂ San and a trivialization Xan|U ∼= Xs × U restricting to the identity at s
which we think of as a family of diffeomorphisms fu : Xan

u → Xan
s , and the flat continuation of a

class β ∈ Hk(Xan,C) is given by β(u) := f∗uβ ∈ Hk(Xan
u ,C). Likewise we can continue a basis of

cycles γi ∈ Hk(X
an
s ,C) as γi(u) := (f−1

u )∗γi. The above isomorphism then maps an algebraic de
Rham cohomology class α to

1⊗ α 7→
∑
i

(∫
γi(u)

α|Xu

)
⊗ γ∨i (u).

12



The integrals
∫
γi(u) α|Xu therefore generate K(V ) for V = Rk(fan)∗CXan . Again, these functions

can ultimately be interpreted in terms of integrals of algebraic forms, and at the very least we have
the following:

Corollary 4.1. Let f : X → S be a family of smooth varieties which is real analytically locally
trivial, k ≥ 0, and let V be the local system Rk(fan)∗CXan on San. Then the periods of a regular
fiberwise closed k-form on X along some locally constant k-dimensional homology class lie in K(V ).

The Hodge filtration F • is in fact an algebraic filtration on Rkf∗Ω
•
X/S . In the case that f is

smooth projective, it is given by truncating the complex Ω•X/S .

We shall need the following lemma for the proof of Theorem 1.1

Lemma 4.2. Let G,H be algebraic groups with G semisimple, and let V be an indecomposable
representation of G×H. Then V ∼= V1 ⊗ V2 for V1, V2 representations of G,H respectively.

Proof. We first claim that V is isoytopic as a representation of G. Indeed, write V = ⊕mi=1V
(i)

where the V (i) are the isoytopic components of V . Then any h ∈ H gives an element of EndG V
and must therefore preserve the decomposition. Thus the V (i) are all G×H summands of V , and
the claim follows since we assumed that V is indecomposable.

Thus, there is an irreducible representation V1 which is the only irreducible G-subquotient of V ,
and since G is semisimple it follows that V ∼= V1⊗V2 as a G-representation, with G acting trivially
on V2. But now EndG(V ) ∼= End(V2) and so the action of H is induced from an action of H on V2.
The claim follows.

�

Proof of Theorem 1.1. From the above discussion, algebraic de Rham cohomology is the canonical
algebraic structure on V , and the periods

∫
γ(u) α|Xu for α an algebraic degree k de Rham cohomology

class and γ(u) a flat degree k cycle together generate K(V ). The period domain coordinates are
ratios of the periods, and K(V ) is differentially closed by Lemma 2.3, so we always have the claimed
containment. Theorem 3.9 will then imply the result once we demonstrate that the conditions on
the period map φ are met.

The definability follows from [BBKT20]. The algebraic group G can be taken to be the Zariski
closure of the image of the monodromy representation of V . Thus G is a normal subgroup of the
derived group of the generic Mumford–Tate group [And92]. Moreover, the Zariski closure of the
image of φ is a corresponding weak Mumford–Tate domain, namely a G-orbit.

It remains to show that the action of G on the weak Mumford–Tate domain Ď has finite kernel
under the assumption in the theorem. Let g be the Lie algebra of G. It is stable by the action of
the generic Mumford–Tate group, hence underlies a sub-variation of Hodge structures of End(V ).
The stabilizer of a point p ∈ Ď is exp(F 0g), so the kernel H ⊂ G of the action is the intersection of
all conjugates of exp(F 0g). Its Lie algebra h is therefore an ideal h ⊂ g which is contained in F 0g.
The Lie algebra h is also a Hodge substructure (as it is again fixed by the generic Mumford–Tate
group), and defined over R, hence we must have h ∩W−1g = 0.

We claim that we have a splitting g = h⊕ g′ as Lie algebras and Hodge structures. Indeed, since
grW0 g is pure it must be semisimple, so we may write grW0 g = h⊕ h′ for some ideal h′ which is also
a hodge substructure. Now we may take g′ to be the pre-image of h′ in g.
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Moreover, since h is a pure Hodge structure of weight 0 contained in F 0g it must be Hodge–Tate,
and is therefore unitary. Therefore by Lemma 4.2, we contradict the assumption in the theorem
unless h = 0 as desired.

�

4.2. Elliptic curves.

4.2.1. Analytic presentation. Take S be the modular curve, so that San = SL2(Z)\H, and f : X → S
to be the universal family of elliptic curves, so Xan = Z2 oSL2(Z)\C×H, where the SL2(Z) action
is (

a b
c d

)
· (z, τ) =

(
z

cτ + d
,
aτ + b

cτ + d

)
.

4.2.2. Computing the 1-form. On each fiber the form dz is the unique regular 1-form up to scale, but
this does not descend to Xan. Instead, letting γ =

(
a b
c d

)
it satisfies γ∗dz = dz

cτ+d . To remedy this,
we use the j function, which satisfies j′(γτ) = (cτ + d)2j′(τ), and so j′(γτ)

1
2 = (cτ + d)j′(τ)

1
2 , so

the form ω := j′(τ)
1
2dz does descend to San. (This is a multivalued function with finite monodromy

so we must pass to a finite étale cover to obtain a regular 1-form, but we will take algebraic closures
in the end so we will ignore this issue for now). Moreover, this is a definable 1-form so by definable
GAGA [BBT] it gives an algebraic 1-form on S. The periods of ω are simply the integrals of ω from
0 to 1 and 0 to τ so they are j′(τ)

1
2 and τj′(τ)

1
2 .

4.2.3. Computing the two other periods. Now there is another class in H1
dR

other than [ω]. We could
represent it by a meromorphic 1-form but this requires the elliptic ℘-function and integrating it is
tricky. However, we can produce a new class by applying the connection ∇∂/∂j [ω], and the resulting
periods will be the derivatives of the periods of [ω]. So we may simply differentiate the two periods
we have so far to find two others which will span the 4-dimensional vector space of periods. Doing
this gives

R1(τ) =
j′′(τ)

j′(τ)
3
2

R2(τ) = τR1(τ)− 2

j′(τ)
1
2

.

One may in fact check that SL2(Z) acts on the vector space 〈R1, R2〉 giving the standard represen-
tation. Finally, note that j(τ) is an algebraic co-ordinate on the modular curve. Thus, the algebraic
closure of the field of periods is C(τ, j(τ), j′(τ), j′′(τ)).

4.2.4. Computing K∂(φ). The period map here is simply the lift S̃an → H so the Grassmanian
co-ordinate is τ , and to compute K∂(φ) we have to differentiate with respect to τ . Note that
dτ
dj = j′(τ)−1 and dh

dj = dh
dτ

dτ
dj it is from then on sufficient to differentiate with respect to τ . Noting

that j′′′ is rational in j, j′, j′′ we conclude that

K∂(φ) = C(τ, j(τ), j′(τ), j′′(τ))

which has the same algebraic closure as the field of periods.
14



4.2.5. Necessity of the algebraic closure. Working a bit more carefully, we may pass to an étale
cover Y of S where j′(τ)

1
2 is holomorphic, and thus algebraic. Let C(Y ) denote the field of rational

functions on Y which is a finite extension of C(j). Then by the above analysis the period field is

C(Y )(τ, j′(τ)
1
2 , j′′(τ))

whereas
K∂(φ) = C(Y )(τ, j′(τ), j′′(τ)),

so we only have a containment of fields in general without taking closure.

4.3. Interpreting the Riemann-Hilbert field through periods. In general it is somewhat
complicated to describe the comparison between algebraic de Rham cohomology and singular co-
homology in terms of integration. In this section we describe some circumstances where there is a
direct link.

The simplest example is provided by an affine family.

Example 4.3. Let f : X → S be a smooth family over a smooth affine base S such that V =
Rkf∗CXan is a local system. By general theory V supports a variation of mixed Hodge structures.
If X is affine then we have Rkf∗Ω•X/S = f∗H k(Ω•X/S) = f∗Z

k
X/S/f∗B

k
X/S where

ZkY/S = ker
(

Ωk
X/S

d−→ Ωk+1
X/S

)
Bk
Y/S = img

(
Ωk−1
X/S

d−→ Ωk
X/S

)
since coherent sheaves have no higher cohomology. Likewise for the analytic de Rham cohomology.
Thus, in this case the comparison

(Rkf∗Ω
•
X/S)an → Rk(fan)∗Ω

•
Xan/San → OSan ⊗CXan R

k(fan)∗CXan

is directly seen to be fiberwise integration, and K(V ) is generated by integrals of fiberwise closed
k-forms on X along k-cycles.

Example 4.4. In fact, in the previous example, if we just assume S is affine and f is quasiprojective,
by Jouanolou’s trick [Jou73] there is a vector bundle E over X and an E-torsor Y whose total space
is affine. In particular the map p : Y → X is a homotopy equivalence upon analytification. Thus,
we have Rkf∗Ω•X/S ∼= Rkg∗Ω

•
Y/S where g = f ◦ p, and so at the cost of changing the family the field

K(V ) is still generated by integrals of closed algebraic k-forms along k-cycles.

Example 4.5. In this example we explicitly describe the integration map on Čech cocycles computing
algebraic de Rham cohomology in degree 1. Let X be a smooth algebraic variety. The group
H1(X,Ω•X) can be described as follows:

Let Xi be an affine cover of X. Then H1(X,Ω•X) is the quotient of the vector space generated
by pairs (fij , αi) where fij is a Čech 2-cocycle for OX and αi is a Čech 1-cochain for Ω1

X such that
dfij = αi − αj , modulo the vector subspace generated by pairs of the form (fi − fj , 0) for fi a Čech
1-cochain for OX . We claim that the integration of (fij , αi) along a 1-cycle γ is obtained as follows:

We write γ as a union of 1-simplices (paths)
⋃
i∈I γi where each γi is contained in a single Xb(i).

Pick an isomorphism R : I → I such that γi(0) = γR(i)(1). We then define the integral to be∑
i∈I

(∫
γi

αb(i) + fiR(i)(γi(0))

)
.
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It is easy to check that this is a well-defined map on cohomology, and that it is functorial. Since
it is the correct map on 1-forms (classes with all fij = 0) it follows that it is the correct map.

This can be generalized to higher dimensions, where one has to simplicially subdivide the in-
tegrating cycle and take the sum over all simplices of the integrals of the differential forms with
certain rational coefficients.

Example 4.6. Let C be a smooth proper curve of genus g, and let U ⊂ C be an affine open
subset, the complement of finitely many points. Example 4.3 shows that every class in H1(Uan,C)
is the smooth de Rham cohomology class of an algebraic 1-form on U , and that the comparison∫
C : H1(U,Ω•U/S)→ H1(Uan,C) is given by integration in the usual sense.

It is a classical fact that every class is represented by an algebraic 1-form on U with at worst
logarithmic poles at C \C. We can also describe the Hodge filtration: F pH1(Uan,C) is 0 for p > 1,
all of H1(Uan,C) if p < 1, and F 1H1(Uan,C) is the subspace of de Rham cohomology classes of
algebraic 1-forms that extend regularly to C.

The descriptions also hold in families.

The final example can be generalized to higher dimensions. Let X be a smooth projective variety,
D an ample divisor, and c = [D] ∈ H2(Xan,C). Recall that we have a Lefschetz decomposition:

Hk(Xan,Q) =
⊕

0≤j≤bk/2c

cj ∪Hk−2j(Xan,Q)prim

where Hn−k(Xan,Q)prim := ker(ck+1 ∪ · ).

For a smooth projective family f : X → S with a relatively ample class c, we likewise have a direct
sum decomposition of Rk(fan)∗QXan , and the following proposition says that the Riemann–Hilbert
field of the primitive part is generated by integrals of rational forms.

Proposition 4.7. Let f : X → S be a smooth projective family and let D be a smooth relatively
ample divisor of X which is smooth over S. Let U = X \D and c = [D] ∈ H0(San, R2(fan)∗CXan).
Then for each k ≤ dimX−dimS, the Riemann–Hilbert field of V = (Rk(fan)∗CXan)prim is generated
by fiberwise integrals of algebraic k-forms on U with at worst logarithmic poles along D whose residue
is exact.

Proposition 4.7 is fairly standard (see for example [Voi02]), but we include the proof for com-
pleteness.

Proof. Let i : D → X and j : U → X the inclusions, g = f ◦ j, and h = f ◦ i. We have a short exact
sequence of complexes

0→ Ω•X/S → Ω•X/S(logD)
Res−−→ i∗Ω

•
D/S [−1]→ 0

whose analytification is canonically quasi-isomorphic to the exact triangle f−1OSan → Rj∗g
−1OSan →

i∗i
!h−1OSan [1]→ f−1OSan [1]. The associated long exact sequence contains

Rk−2h∗Ω
•
D/S → Rkf∗Ω

•
X/S → Rkg∗Ω

•
X/S(logD)

Res−−→ Rk−1h∗Ω
•
D/S .

and the connecting homomorphism is identified with the pushforward map i∗ : Hk−2(Dan,C) →
Hk(Xan,C). By the Lefschetz hyperplane theorem, Rkf∗CXan → Rkf∗i∗CDan is an isomorphism
for k < dimX − dimS. Since the composition

Rk−2f∗CXan
i∗−→ Rk−2f∗i∗CDan

i∗−→ Rkf∗CXan

16



is cupping with c by the projection formula, it follows that the image of i∗ is the imprimitive part
of Rkf∗CXan , and therefore that the image of Rkf∗Ω•X/S in Rkg∗Ω•U/S analytifies to OSan ⊗CSan V .
On the other hand, Rkg∗Ω•U/S = g∗Z

k
X/S/g∗B

k
X/S since g is affine, and OSan ⊗CSan V is therefore

identified with the analytification of the subsheaf of g∗ZkU/S/g∗B
k
U/S given by classes of regular forms

on U whose residues along D are 0 in Rk−1h∗Ω
•
D/S . �
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