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Abstract. We develop the global moduli theory of symplectic varieties in the sense

of Beauville. We prove a number of analogs of classical results from the smooth

case, including a global Torelli theorem. In particular, this yields a new proof of

Verbitsky’s global Torelli theorem in the smooth case (assuming b2 ≥ 5) which does

not use the existence of a hyperkähler metric or twistor deformations.
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1. Introduction

A symplectic variety X (in the sense of Beauville [Bea00]) is a normal variety admit-

ting a nondegenerate closed holomorphic two-form σ ∈ H0(Xreg,Ω2
Xreg) on its regular

part which extends holomorphically on some resolution of singularities π : Y −→ X.

If X is compact, H1(X,OX) = 0, and σ is unique up to scaling, we say X is a prim-

itive symplectic variety. We consider these varieties a singular analog of (compact)

irreducible symplectic manifolds which is as general as possible such that a reasonable

global moduli theory can still be established.

Irreducible symplectic manifolds are one of the three main building blocks of compact

Kähler manifolds with vanishing first Chern class by a theorem of Beauville–Bogomolov

[Bea83, Théorème 1], and their geometry is very rich. In particular, Verbitsky’s global
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Torelli theorem [Ver13, Theorem 1.17] gives a precise description of the global de-

formations of a symplectic manifold in terms of the Hodge structure on its second

cohomology.

Recent work of Druel–Greb–Guenancia–Höring–Kebekus–Peternell [GKKP11, DG18,

Dru18, Gue16, GGK19, HP19] has shown a version of the above Beauville–Bogomolov

decomposition theorem for singular projective varieties with trivial canonical class, see

[HP19, Theorem 1.5], and the “holomorphic-symplectic” factors1 that show up are a

special case of the primitive symplectic varieties we consider. It is therefore desir-

able to have a good understanding of the geometry of primitive symplectic varieties.

As in the smooth case, deformation theory—especially deformations to non-projective

varieties—is an essential part of the picture.

Our main result is a global Torelli theorem for primitive symplectic varieties in

general with surjectivity of the period map in the Q-factorial2 terminal case. Be-

fore stating the theorem, let us fix some notation. The torsion-free part H2(X,Z)tf :=

H2(X,Z)/torsion of the second cohomology of a primitive symplectic variety X carries

a pure weight two Hodge structure (see Lemma 2.1) which is further endowed with an

integral locally trivial deformation-invariant quadratic form qX called the Beauville–

Bogomolov–Fujiki (BBF) form (see Section 5.1). Fixing a lattice Λ and denoting its

quadratic form by q, a Λ-marking of X is an isomorphism µ : (H2(X,Z)tf , qX)
∼=−→

(Λ, q). The set of isomorphism classes of Λ-marked primitive symplectic varieties

(X,µ) is given the structure of an analytic space MΛ by gluing the bases of locally triv-

ial Kuranishi families (see Definition 6.13). In fact, MΛ is a not-necessarily-Hausdorff

complex manifold by the unobstructedness of locally trivial deformations (see Theo-

rem 4.7).

We obtain a period map P : MΛ −→ ΩΛ to the period domain ΩΛ ⊂ P(ΛC) by sending

(X,µ) to µ(H2,0(X)) and it is a local isomorphism (see Proposition 5.5). There is a

Hausdorff reduction H : MΛ −→MΛ where MΛ is a Hausdorff complex manifold and

H identifies inseparable points (see Section 8), and we moreover have a factorization

MΛ

P

!!
MΛ

H
==

P
// ΩΛ.

We now state our main result:

Theorem 1.1. Assume rk(Λ) ≥ 5. Then for each connected component M of the

Λ-marked moduli space MΛ we have:

1They were called irreducible symplectic by Greb–Kebekus–Peternell [GKP16, Definition 8.16],

where irreducible refers to the decomposition theorem.
2There is a subtlety with the definition of Q-factoriality in the analytic category: requiring every

divisor to be Q-Cartier is potentially different from requiring every rank one torsion-free sheaf to have

an invertible reflexive power (see Section 2.12).
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(1) The monodromy group Mon(M) ⊂ O(Λ) is of finite index;

(2) P : M −→ ΩΛ is bijective over Mumford–Tate general points and in general the

fibers consist of pairwise bimeromorphic varieties;

(3) P : M −→ ΩΛ is an isomorphism onto the complement of countably many

maximal Picard rank periods;

(4) If moreover one point of M corresponds to a primitive symplectic variety with

Q-factorial terminal singularities, then the same is true of every point and

P : M −→ ΩΛ is an isomorphism.

Theorem 1.1 of course applies to the smooth case, and yields a new proof of Verbit-

sky’s global Torelli theorem.

In [BL, Theorem 1.3] the authors prove Theorem 1.1 (with surjectivity in part (3))

in the case where M parametrizes primitive symplectic varieties admitting a crepant

resolution. The proof crucially uses that simultaneous crepant resolutions exist in

locally trivial families of such varieties, as then Verbitsky’s global Torelli theorem can

be applied to the crepant resolution. Note that by definition, M consists of varieties

of a fixed locally trivial deformation type which allows one to prove that either all

varieties it parametrizes admit a crepant resolution or none.

The main difficulty in the general setting is that while one could try to reduce to

the Q-factorial terminal case by passing to a simultaneous Q-factorial terminalization,

even in this case a new strategy is needed as Verbitsky’s proof (as well as Huybrechts’

proof of the surjectivity of the period map [Huy99, Theorem 8.1]) fundamentally uses

the existence of hyperkähler metrics and twistor deformations. We instead prove The-

orem 1.1 directly using global results on the geometry of the period domain via Ratner

theory (as first investigated by Verbitsky [Ver15, Ver17]) together with finiteness results

coming from algebraic geometry. The surjectivity in Theorem 1.1 then follows from

a generalization to the Q-factorial terminal case of work of Kollár–Laza–Saccà–Voisin

[KLSV18] on projective degenerations using MMP techniques.

In fact, there is another problem with the naive generalization of the argument of

[BL]: Q-factorial terminalizations are not guaranteed to exist in the analytic setting.

In the projective case the existence of a Q-factorial terminalization is a consequence

of deep results of Birkar–Cascini–Hacon–McKernan [BCHM10] on the termination of

an appropriate version of the MMP, but it is not even clear a priori that a symplectic

variety can be deformed to a projective one (although Namikawa [Nam02] has results

in this direction). For this reason, we need a projectivity criterion for symplectic

varieties, analogous to Huybrechts’ criterion [Huy99, Theorem 3.11] for hyperkähler

manifolds:

Theorem 1.2. Let X be a primitive symplectic variety, and assume α ∈ H2(X,Q) is

a (1, 1)-class with qX(α) > 0. Then X is projective.

Corollary 1.3. Every primitive symplectic variety is locally trivially deformation

equivalent to a projective primitive symplectic variety.
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The proof uses a (weak) singular analog of the Demailly–Păun theorem on the

numerical characterization of the Kähler cone.

As an application of Theorem 1.1, we can in fact conclude that terminalizations of

symplectic varieties exist in the non-projective case, up to a bimeromorphism:

Theorem 1.4. Let X be a primitive symplectic variety with b2(X) ≥ 5. Then there is a

primitive sympletic variety X ′ that is bimeromorphic and locally trivially deformation-

equivalent to X that admits a Q-factorial terminalization: that is, there exists a (com-

pact) Q-factorial terminal Kähler variety Y and a crepant map π : Y −→ X ′.

We view Theorem 1.4 as an indication that the deformation theoretic tools we

develop might be used to generalize the MMP for projective symplectic varieties

[Dru11, LP16] to the Kähler setting, and this will be pursued in a subsequent pa-

per.

In addition to the global arguments, the proofs of Theorems 1.1, 1.2, and 1.4 require a

careful analysis of the infinitesimal locally trivial deformation theory of not-necessarily-

projective symplectic varieties. There are a number of new complications all critically

stemming from the fact that one can no longer bootstrap classical results on the ge-

ometry of hyperkähler manifolds via passing to a crepant resolution. In particular, we

must provide:

(i) An analysis of the Hodge theory of rational and symplectic singularities in

the non-projective setting, using recent results of Kebekus–Schnell [KS18] on

extending holomorphic forms.

(ii) An adaptation of the results of Kollár–Laza–Saccà–Voisin [KLSV18] on limits

of projective families in the singular setting. This requires a singular analog of

a theorem of Verbitsky saying that for a primitive symplectic variety X, the

cup product map SymkH2(X,Q) −→ H2k(X,Q) is injective for 2k ≤ dimX.

(iii) A description of the deformation theory of terminalizations. In particular, this

requires a careful treatment of Q-factoriality in the analytic category, as there

are several nonequivalent generalizations of the corresponding notion in the

algebraic category.

Previous work. In [BL] the authors extended many of the classical results about

compact irreducible symplectic manifolds to primitive symplectic varieties admitting

a crepant resolution through the study of their locally trivial deformations. Menet

[Men20] has proven a version of the global Torelli theorem for certain primitive sym-

plectic varieties with orbifold singularities using twistor deformations. There are many

interesting ideas in his work that have influenced parts of the present paper, especially

concerning the projectivity criterion. The local deformation theory (and in particular

the local Torelli theorem) of primitive symplectic varieties has been treated by many

authors, notably by Namikawa [Nam01a, Nam01b, Nam06] and Kirschner [Kir15].
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Outline. In Section 2 we review basic notions and results about the Hodge theory

of rational singularities, Kähler spaces, big and nef classes, and Q-factoriality in the

analytic category. Section 3 is devoted to primitive symplectic varieties and their

Hodge theory. In Section 4 we show locally trivial deformations of symplectic varieties

are unobstructed. In Section 5 we recall the BBF form and deduce the local Torelli

theorem. We also analyze the deformation theory of Q-factorial terminalizations and

prove some topological results, including the existence of Fujiki relations and the ana-

log of a theorem of Verbitsky discussed in (ii) above. In Section 6 we prove a (weak)

singular analog of the Demailly–Păun theorem and apply it to deduce the projectivity

criterion, Theorem 1.2 (see Theorem 6.9). We also prove analogs of results of Huy-

brechts [Huy99] and [BL] on the inseparability of bimeromorphic symplectic varieties

in moduli, including part (2) of Theorem 1.1 (see Theorem 6.14 and Corollary 6.17).

In Section 7 we indicate the necessary changes to [KLSV18] to show the existence of

limits of projective families for which the period does not degenerate in the Q-factorial

terminal setting. In Section 8 we prove parts (1), (3), and (4) of Theorem 1.1 (see

Theorem 8.2). In Section 9 we apply the deformation theory of terminalizations and

the global Torelli theorem to prove Theorem 1.4 (see Theorem 9.1).

For those interested in the proof of the global Torelli theorem in the smooth case,

Section 8 can be read independently, as the results used from previous sections are

standard in the smooth case3.
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Notation and Conventions. A resolution of singularities of a variety X is a proper

surjective bimeromorphic morphism π : Y −→ X from a nonsingular variety Y . The

term variety will denote an integral separated scheme of finite type over C in the

algebraic setting or an irreducible and reduced separated complex space in the complex

analytic setting.

2. Preliminaries

A complex variety X is said to have rational singularities if it is normal and for

any resolution of singularities π : Y −→ X and any i > 0 one has Riπ∗OY = 0.

Recall that the Fujiki class C consists of all those compact complex varieties which

3Except for the required results from [KLSV18], which can be quoted without modification.
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are meromorphically dominated by a compact Kähler manifold, see [Fuj78, §1]. This

is equivalent to saying that there is a resolution of singularities by a compact Kähler

manifold by Lemma 1.1 of op. cit.

The following lemma is well-known; we refer to [BL, Lemma 2.1] for a proof.

Lemma 2.1. Let π : Y −→ X be a proper bimeromorphic morphism where X is a

complex variety with rational singularities. Then, π∗ : H1(X,Z) −→ H1(Y,Z) is an

isomorphism and the sequence

(2.1) 0 −→ H2(X,Z)
π∗−−−→ H2(Y,Z) −→ H0(X,R2π∗Z)

is exact. In particular, if X is compact and Y is a compact manifold of Fujiki class

C , then H i(X,Z) carries a pure Hodge structure for i = 1, 2. Moreover, π∗H1,1(X,Z)

is the subspace of H1,1(Y,Z) of all classes that vanish on the classes of π-exceptional

curves.

For a complex space X, recall that Ω
[p]
X denotes the sheaf of reflexive p-forms:

Definition 2.2. Let X be a complex space. The module of reflexive p-forms on X is

defined as

Ω
[p]
X :=

(
Ωp
X

)∨∨
where F∨ = HomOX

(F,OX) is the dual of a sheaf of OX -modules.

If X is a reduced normal complex space and j : U ↪→X denotes the inclusion of

the regular locus, then Ω
[p]
X = j∗Ω

p
U . For a resolution of singularities π : Y −→ X

we moreover have π∗Ω
p
Y = Ω

[p]
X by [KS18, Corollary 1.8] if in addition X has rational

singularities. If finally X is also of Fujiki class C , then for p+ q ≤ 2 the graded pieces

of the Hodge filtration can be identified with Hq(X,Ω
[p]
X ), see e.g. [BL, Corollary 2.3].

2.3. Kähler spaces. The notion of a Kähler complex space, which we now recall, is

due to Grauert [Gra62, §3, 3., p. 346]. Recall that a smooth function on a complex

space Z is by definition just a function f : Z −→ R such that under a local holomorphic

embedding of Z into an open set U ⊂ Cn, there is a smooth (i.e., C∞) function on U

(in the usual sense) that restricts to f on Z.

Definition 2.4. Let Z be a complex space. A Kähler form for Z is given by an open

covering Z =
⋃
i∈I Ui and smooth strictly plurisubharmonic functions ϕi : Ui −→ R

such that on Uij := Ui ∩ Uj the function ϕi|Uij − ϕj |Uij is pluriharmonic, i.e., locally

the real part of a holomorphic function.

There are two important sheaves related to Kähler forms. We denote by PHZ the

sheaf of pluriharmonic functions on Z and by C∞Z the sheaf of smooth real-valued

functions on Z. Then we have the sequences

(2.2) 0 −→ PHZ −→ C∞Z −→ C∞Z /PHZ −→ 0

and
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(2.3) 0 −→ RZ
i−→ OZ

R−−→ PHZ −→ 0,

where i stands for multiplication by
√
−1 andR is given by taking the real part. Thus, a

Kähler form on Z gives rise to an element ω ∈ H0(Z,C∞Z /PHZ). Successively applying

the connecting homomorphisms of (2.2) and (2.3) we obtain classes [ω] ∈ H1(Z,PHZ)

and [ω] ∈ H2(Z,R). The latter is called the Kähler class of ω.

Definition 2.5. Let Z be a reduced complex space. A Kähler class on Z is a class

κ ∈ H2(Z,R) which is the Kähler class of some Kähler form on Z. The Kähler cone is

the set

KZ := {α ∈ H2(Z,R) | α = [ω] for some Kähler form ω}

Remark 2.6. There are several things we wish to observe.

(1) It follows from the definition that for a compact complex space Z the Kähler

cone KZ is open in the image of H1(Z,PHZ) −→ H2(Z,R). Indeed, being

strictly plurisubharmonic is stable under small perturbations andH0(Z,C∞Z /PHZ) −→
H1(Z,PHZ) is surjective as C∞Z is a fine sheaf.

(2) We can describe the Kähler forms alternatively as follows: these are Kähler

forms ω on Zreg in the usual sense such that for every p ∈ Z there is an open

neighborhood p ∈ U ⊂ Z and a closed embedding U ↪→V into a smooth Kähler

manifold where the restriction of the Kähler form of V to U reg equals ω|Ureg .

(3) Let us observe that by applying the (real) operator i∂∂̄ a Kähler form also gives

rise to a global section of A1,1
Z where Ap,qZ denotes the sheaf of smooth (p, q)-

forms with C-coefficients on Z—which is defined in the same manner as the

sheaf of C∞-functions. This is because ∂∂̄ϕi = ∂∂̄ϕj on Uij as ∂∂̄ annihilates

pluriharmonic functions. The cohomology class of ω in H2(Z,A•Z) is the image

of the Kähler class under the natural map induced by the morphism RZ −→ A•Z .

Let us recall the following properties of Kähler spaces. We will use throughout the

text, sometimes without explicit mention.

Proposition 2.7.

(1) Every subspace of a Kähler space is Kähler.

(2) A smooth complex space is Kähler if and only if it is a Kähler manifold in the

usual sense.

(3) Every reduced Kähler space has a resolution of singularities by a Kähler man-

ifold.

Proof. This is a consequence of [Var89, II, 1.3.1 Proposition]. �

The proposition in particular implies that compact Kähler spaces are of Fujiki class

C so that their singular cohomology groups carry a mixed Hodge structure. ForX ∈ C ,

we may thus define:

(2.4) Hk,k(X,R) := Hom(R(−k), H2k(X,R)) = F kH2k(X,C) ∩H2k(X,R).



8 BENJAMIN BAKKER AND CHRISTIAN LEHN

Note that the weights that show up in the mixed Hodge structure on Hk(X,Z) are

≤ k—the argument for class C varieties is the same as in the algebraic case, cf. [PS08,

Theorem 5.39].

Proposition 2.8. Let X be a reduced compact Kähler space. Then KX ⊂ H1,1(X,R).

Proof. The claim is easily verified using a construction of Ancona and Gaveau [AG06]

some properties of which we briefly recall. In this proof, all references are to [AG06]

if not mentioned otherwise. For a reduced complex space X, in Chapter II.2 they

construct a complex Λ•X which is a fine resolution of the constant sheaf CX . In fact,

Λ•X is not unique but we may fix one such complex once and for all. A section of Λ•X
by II.2, Definition 2.1 is a collection of differential forms (of shifted degrees) on an

associated hypercovering {X` −→ X}`∈L where the X` are smooth. In Chapter II.3

they use this complex to construct Deligne’s mixed Hodge structure on Hk(X,Z) if

X is Kähler (or more generally of Fujiki class C ). As discussed in Section II.2.8, the

complex A•X of smooth differential forms on X (introduced in Remark 2.6 above) is a

subcomplex of Λ•X and this inclusion clearly sends the filtration F pAkX := ⊕r≥pAr,k−rX

to the Hodge filtration. For a Kähler form ω = {ϕi}i∈I ∈ H0(X,C∞X /PHX), the claim

now follows, because
√
−1∂∂{ϕi}i∈I ∈ F 1A1

X(X). �

Observe that if in addition X has rational singularities, the claim of the proposition

simply follows from Lemma 2.1 and strictness of the pullback for the Hodge filtration.

2.9. Big and nef cohomology classes. We briefly recall the definition of ∂∂̄-cohomology

for a complex manifold X. As before, we denote AkX respectively Ap,qX the sheaf of dif-

ferential k-forms respectively (p, q)-forms with values in C. Then ∂∂̄-cohomology is

defined as

(2.5) Hp,q

∂∂̄
(X) :=

ker
(
d : Ap,qX (X) −→ Ap+q+1

X (X)
)

im
(
i∂∂̄ : Ap−1,q−1

X (X) −→ Ap,qX (X)
) .

Similarly, we write Hp,p

∂∂̄
(X,R) if we take cohomology of R-valued differential forms

(which is different from zero only for p = q). Note that i∂∂̄ in the above formula

defines a real operator.

In algebraic geometry, bigness and nefness are important notions for line bundles.

In the complex analytic world, these notions can also be defined for real cohomology

classes as we now recall.

Definition 2.10. Let X be a compact complex manifold. A cohomology class α ∈
H1,1

∂∂̄
(X,R) is called nef if for some hermitian form ω on X and for every ε > 0 it can

be represented by a smooth (1, 1)-form ηε such that ηε ≥ −εω. A Kähler current is

a closed positive (1, 1)-current T such that T ≥ ω in the sense of currents. A class

α ∈ H1,1

∂∂̄
(X) is called big if it can be represented by a Kähler current.

We refer to [GH94, Chapter 3, 1.] or [Dem12, Chapter 1] for a general reference on

currents and notions of positivity.
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Remark 2.11. On compact manifolds of Fujiki class C (in particular on compact Kähler

manifolds) the natural map from ∂∂̄-cohomology to de Rham cohomology is injective

and gives an identification of Hp,q

∂∂̄
(X) with Hp,q(X). This follows directly from the

∂∂-Lemma, see e.g. [DGMS75, (5.21) and (5.22) Theorem] for manifolds of class C .

2.12. Q-factoriality. Let us spend a moment to discuss the notion of Q-factoriality.

A normal algebraic variety Z is called Q-factorial if for every Weil divisor D on Z

there is m ∈ N such that mD is Cartier. In the algebraic category, Q-factoriality is

local for the Zariski topology. Recall from [Har94, Proposition 2.7] that Weil divisor

classes are in bijective correspondence with isomorphism classes of reflexive sheaves of

rank one: to a Weil divisor D on Z one associates the sheaf OZ(D) defined by

U 7→ OZ(D)(U) := {f ∈ C(Z) | D|U + div (f |U ) ≥ 0},

which is easily seen to be reflexive. So Q-factoriality can be equivalently characterized

using reflexive sheaves.

Finally, assume that Z is compact, let π : Z ′ −→ Z be a resolution of singularities,

and let E1, . . . , Em be the prime divisors contained in the exceptional locus Exc(π).

By [KM92, (12.1.6) Proposition], the variety Z is Q-factorial if and only if

(2.6) im
(
H2(Z ′,Q) −→ H0

(
Z,R2π∗QZ′

))
= im

(
m⊕
i=1

Q[Ei] −→ H0(Z,R2π∗QZ′)

)
.

See also [Nam06, §2 (i)] for an argument for the only if -direction. We summarize:

Lemma 2.13. Let Z be a normal algebraic variety over C. Then the following are

equivalent.

(1) Z is Q-factorial.

(2) Every Zariski open subset U ⊂ Z is Q-factorial.

(3) For every reflexive sheaf L on Z of rank 1, there is n ∈ N such that (L⊗n)
∨∨

is invertible.

If in addition Z is compact and has rational singularities, the above statements are

equivalent to

(4) The equality (2.6) holds for some resolution π : Z ′ −→ Z.

Proof. For the equivalence of (1) and (3) one only needs that for a Weil divisor D on Z

we have OZ(nD) = (OZ(D)⊗ . . .⊗OZ(D)︸ ︷︷ ︸
n−times

)∨∨ which can be obtained by pushforward

and the fact that it holds on the regular part. �

In the analytic category, the situation is a little more subtle. We have several differ-

ent notions which turn out to be non-equivalent, see Proposition 2.15 and Example 9.3.

Definition 2.14. A normal complex analytic variety Z is called divisorially Q-factorial

if for every Weil divisor D on Z there is m ∈ N such that mD is Cartier and it is called

Q-factorial if for every reflexive sheaf L on Z of rank 1, there is n ∈ N such that
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(L⊗n)
∨∨

is invertible. We say that Z is locally analytically (divisorially) Q-factorial if

every open set U ⊂ X in the Euclidean topology is (divisorially) Q-factorial.

Clearly, local analytic (divisorial) Q-factoriality implies (divisorial) Q-factoriality.

The converse however is not true. The reason is that there are usually many more

local divisors than global divisors, e.g. one cannot obtain a global divisor by taking

the closure of a divisor on a small open subset. There might be no global divisors at

all, see e.g. Example 9.3, which is also the reason why divisorial Q-factoriality is not

the right property to ask for and one should rather work with Q-factoriality (defined

in terms of rank one reflexive sheaves).

Proposition 2.15. Let Z be a normal complex analytic variety and consider the fol-

lowing statements:

(1) Z is locally analytically Q-factorial.

(2) Z is locally analytically divisorially Q-factorial.

(3) Z is Q-factorial.

(4) Z is divisorially Q-factorial.

Then we have the following implications: (1) +3

��

(3)

��
(2) +3 (4)

Moreover, suppose Z is also compact of class C with rational singularities. Then Z

is Q-factorial if and only if for some resolution π : Z ′ −→ Z we have

(2.7) im
(
Pic(Z ′)Q −→ H0(Z,R2π∗QZ′)

)
= im

(
m⊕
i=1

Q[Ei] −→ H0(Z,R2π∗QZ′)

)
.

Proof. The implications (1) ⇒ (3) ⇒ (4) and (1) ⇒ (2) ⇒ (4) are immediate.

The last part is a slight adaption of Kollár-Mori [KM92, (12.1.6) Proposition], re-

placing (2.6) with (2.7) which is what is actually used there. Briefly, if Z is Q-factorial,

then for any line bundle M on Z ′, the sheaf L := (π∗M)∨∨ is reflexive and therefore

π∗((Lk)∨∨) ∼= Mk(E) for some divisor E whose support is contained in the exceptional

locus. Hence, Pic(Z ′)Q = π∗ Pic(Z)Q +
∑

iQ[Ei], which implies (2.7). Conversely, if

(2.7) is satisfied, then for any rank one reflexive sheaf L on Z we can find a divisor E

whose support is contained in the exceptional locus and for which M := (π∗L)∨∨(E)

is numerically trivial on fibers. But then by [KM92, (12.1.4) Proposition], π∗(M
k) is

a line bundle for some k, and therefore by normality (Lk)∨∨ is invertible. �

3. Symplectic varieties

For the remainder of this paper, we will use the term (primitive) symplectic variety

in the following sense.

Definition 3.1. Following Beauville [Bea00], a symplectic variety is a pair (X,σ)

consisting of a normal variety X and a closed holomorphic symplectic form σ ∈
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H0(Xreg,Ω2
X) on Xreg such that there is a resolution of singularities π : Y −→ X

for which π∗σ extends to a holomorphic form on Y . A primitive symplectic variety is a

normal compact Kähler variety X such that H1(X,OX) = 0 and H0(Xreg,Ω2
X) = Cσ

such that (X,σ) is a symplectic variety.

Greb–Kebekus–Peternell introduced a notion of irreducible holomorphic-symplectic

variety (more restrictive than ours) in [GKP16, Definition 8.16] which serves as one of

the three building blocks in a decomposition theorem (due to Druel–Greb–Guenancia–

Höring–Kebekus–Peternell, see introduction for references). Matsushita [Mat15, Def-

inition 1.6] introduced the related notion of cohomologically irreducible symplectic

varieties. The definition we use appeared before in Schwald [Sch20, Definition 1] for

projective varieties under the name irreducible symplectic. We chose to work with

the above definition because it seems to be the most general framework that allows

for a general moduli and deformation theory similar to the smooth case. We prefer

however the name primitive over irreducible symplectic for the lack of a decomposition

theorem. This fits together with Menet’s usage [Men20, Definition 3.1].

Example 3.2.

(1) If X is a primitive symplectic variety then so is:

• any contraction, that is, X ′ for any proper bimeromorphic f : X −→ X ′

onto a normal Kähler space;

• any quotient of X by a finite group of symplectic automoprhisms [Bea00,

Proposition 2.4];

• any small locally trivial deformation (see Corollary 4.11 below).

(2) By Nikulin [Nik76] any symplectic involution ι of a K3 surface S has 8 fixed

points. The quotient X of the Hilbert scheme S[n] of n ≥ 3 points by ι has Q-

factorial terminal singularities by [KM98, Proposition 5.15] and Theorem 3.4(3)

below.

For n = 2, X has
(

8
2

)
= 28 isolated singularties and a K3 surface of transverse

A1 singularties, corresponding to the 28 fixed reduced subschemes and the

closure of the locus of reduced orbits, respectively (see for example [Cam12,

§6]). It is therefore not terminal. The Q-factorial terminalization Y is obtained

by blowing up the K3 surface. The second Betti number of X is 15, and so

the locally trivial deformation space of X is 13-dimensional while Y deforms

in one dimension higher (see Theorem 4.7 below).

(3) There is a cubic fourfold Z ⊂ P5 with an order 11 automorphism (see for

example [Mon13]). Its Fano variety of lines F has a symplectic automorphism

σ with isolated fixed points, and the quotient X = F/σ is a Q-factorial terminal

primitive symplectic variety with b2 = 3. It follows from [Men20, Theorem 3.17

and Theorem 5.4] that the only deformation of X is the twistor deformation.

(4) Let S be a projective K3 surface, and v ∈ H∗(S,Z) an algebraic Mukai vector

with v2 > 0. Then for k ≥ 1, the moduli space X = M(kv) of stable sheaves



12 BENJAMIN BAKKER AND CHRISTIAN LEHN

of Mukai vector kv with respect to a generic polarization is a primitive sym-

plectic variety. Moreover, X is always locally factorial and terminal [KLS06,

Theorem A] unless k = 2 and v2 = 2 (in which case X admits a resolution

by an irreducible symplectic manifold—the O’Grady 10-fold [O’G99]). The

singularities of M(kv) can be non-quotient singularities, as the completions of

the local rings are often not Q-factorial—see [KLS06, Remark 6.3].

(5) For a possibly singular cubic fourfold Y ⊂ P5 not containing a plane, it has

been shown in [Leh18, Theorem 3.3] that the variety M1(Y ) of lines on Y is a

symplectic variety birational to the second punctual Hilbert scheme of an asso-

ciated K3 surface. Hence, M1(Y ) admits a crepant resolution by an irreducible

symplectic manifold, see [Leh18, Corollary 5.6]. A similar statement is deduced

for the target space Z(Y ) of the MRC-fibration of the Hilbert scheme compact-

ification of the space of twisted cubics on Y , see Theorem 1.1, Corollary 5.5,

and Corollary 6.2 of [Leh18].

Note that even for smooth X the notion of a primitive symplectic variety is a priori

more general than that of an irreducible symplectic manifold. However, we do not know

if there are smooth primitive symplectic varieties which are not irreducible symplectic

manifolds. By Lemma 3.3 below such a variety must have dimension ≥ 6.

Lemma 3.3. Let X be a smooth primitive symplectic variety of dimension ≤ 4. Then

X is an irreducible symplectic manifold (in the classical sense).

Proof. For dimX = 2 this is well known, so let us assume dimX = 4.

If X is a smooth primitive symplectic variety in our sense, the Beauville-Bogomolov

decomposition theorem yields that a finite topological cover X̃ −→ X of X splits as a

product X̃ ∼= H ×C × T where H is a product of irreducible symplectic manifolds, C

a product of strict Calabi-Yau varieties, and T a complex torus. From the existence of

a symplectic form on X̃ (by pullback from X) we deduce that the factor C is trivial.

By assumption, H1(OX) = 0 and thus H3(OX) = 0 by Serre duality. Moreover,

by the unicity of the symplectic form we in fact have χ(OX) = 3. If there is a torus

factor, then χ(O
X̃

) = 0 contradicting χ(O
X̃

) = dχ(OX) where d is the degree of the

cover, so the factor T is trivial. If X̃ is a product of K3 surfaces, then χ(O
X̃

) = 4,

which is impossible. Thus, X̃ is irreducible symplectic, so that d = 1, and thus X is

irreducible symplectic as well. �

It is unclear whether the statement of Lemma 3.3 holds in higher dimensions. It is

worthwhile noting that there is a singular example of a primitive symplectic variety due

to Matsushita [Mat01], see also [Saw14, Lemma 15] and [Sch20, Example 29], which

has the right cohomological invariants but is a torus quotient. Schwald’s account nicely

illustrates how the geometry of primitive symplectic varieties may deviate from the one

of irreducible symplectic manifolds.

We collect the following basic results about symplectic varieties which are due to

work of Beauville, Kaledin, and Namikawa; we give precise references in the proof.
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Theorem 3.4 (Beauville, Kaledin, and Namikawa).

(1) A normal variety is symplectic if and only if it has only rational Gorenstein

singularities and its smooth part admits a holomorphic symplectic form. In

particular, a symplectic variety has rational singularities.

(2) Let X be a symplectic variety and consider the stratification X = X0 ⊃ X1 ⊃
. . . ⊃ where Xi+1 is the singular part of Xi endowed with the reduced structure.

Then the normalization of every irreducible component of Xi is a symplectic

variety. In particular, the singular locus of a symplectic variety has even codi-

mension.

(3) A symplectic variety X has terminal singularities if and only if codimX X
sing ≥ 4.

Proof. At least for algebraic varieties, this result is well-known. We give a sketch of

the argument and comment on why the arguments hold in the analytic context as well.

(1) The only if direction is proven in [Bea00, Proposition 1.3] and is valid in the

analytic context as well. The converse follows from [KS18, Corollary 1.8].

(2) The existence of the stratification is [Kal06, Theorem 2.3]. It is not claimed

there that Xi+1 = (Xsing
i )red, however, that is how the stratification is con-

structed, see [Kal06, Proposition 3.1]. The decomposition a priori only holds

on the formal level by Kaledin’s result, however by [Art68, Corollary (1.6)] a

formal isomorphism implies the existence of an isomorphism of analytic germs.

We refer to Remark 3.6 for why Kaledin’s results also apply in the analytic

situation.

(3) For algebraic varieties, this statement is [Nam01c, Corollary 1]. The proof is

a bit involved so we take the opportunity to use Kebekus-Schnell’s functorial

pullback of reflexive differential forms and Kaledin’s decomposition theorem to

write down a simple proof that also works in the analytic setting. We do not

claim originality, the argument expands on an observation by Namikawa (see

the footnote on page 1 and §1 of [Nam01c]).

By [Kal06, Theorem 2.3], the codimension of the singular locus is even,

and if x ∈ Xsing is a general point of an irreducible component of Xsing of

codimension 2, the germ (X,x) is isomorphic to the product of a smooth germ

and the germ of rational double point. Such a product however does not have

terminal singularities. If codimXsing ≥ 4, we take a resolution π : Y −→ X

and assume that E ⊂ Y is a divisor with vanishing discrepancy. Then Y is

symplectic at the generic point of E and π(E) ⊂ Xsing. Let us consider a

diagram

E′

π′

��

//

ψ

66E �
� // Y

π
��

Σ
ϕ

// X
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where Σ is a resolution of π(E) and E′ −→ E is a resolution. Then by

[KS18, Theorem 14.1] one can pullback the symplectic form along ϕ such that

π′∗ϕ∗σ = ψ∗π∗σ. The pullback ψ∗π∗σ has 1-dimensional radical at the general

point of E′ and ϕ∗σ is generically symplectic by Kaledin’s result. This is a

contradiction to dim Σ ≤ dimX − 4.

�

As a direct consequence of Theorem 3.4 and Lemma 2.1 we infer

Corollary 3.5. Let X be a compact symplectic variety. The Hodge structure on

H2(X,Z)tf is pure. �

Remark 3.6. Kaledin’s article [Kal06] is formulated for complex algebraic varieties,

but his results are used in Theorem 3.4 for arbitrary symplectic varieties. Let us

comment on why they carry over to the analytic setting. The crucial ingredient from

algebraic geometry in Kaledin’s proofs is the use of functorial mixed Hodge structures

on cohomology groups of complex projective algebraic varieties and there is no such

structure on the cohomology of arbitrary complex varieties. However, Kaledin only

uses it for fibers of resolutions of singularities which, also in the analytic category, can

be chosen projective. Actually, these fibers are always compact complex varieties of

Fujiki class C , which is sufficient.

With this in mind, Kaledin’s proofs work almost literally for analytic varieties. More

precisely, one first shows using mixed Hodge structures that Kaledin’s proofs yield

analogs of [Kal06, Lemma 2.7] and [Kal06, Lemma 2.9] in the analytic setting. These

are the key technical ingredients to prove the stratification and formal product de-

composition [Kal06, Theorem 2.3] as well as [Kal06, Theorem 2.5] which relates the

symplectic and Poisson structure. Other than mixed Hodge theory, Kaledin mainly

uses Poisson structures, commutative algebra, or direct geometric arguments which all

make sense also in our setting. Finally, also semi-smallness [Kal06, Lemma 2.11] is a

consequence of geometric properties of the symplectic form and Lemma 2.9 of op. cit.

4. Deformation theory

Definition 4.1. A deformation of a compact complex space Z is a flat and proper

morphism Z −→ S of complex spaces together with a distinguished point 0 ∈ S and an

isomorphism of the fiber of Z −→ S over 0 with Z. A deformation π : Z −→ S is called

locally trivial at 0 ∈ S if for every p ∈ Z = π−1(0) there exist open neighborhoods

U ⊂ Z of p and S0 ⊂ S of 0 such that U ∼= U × S0 over S0 where U = U ∩ Z. The

deformation is called locally trivial if it is locally trivial at each point of S. We speak

of a locally trivial family or locally trivial morphism π : Z −→ S if we do not specify

0 ∈ S and the fiber over it.

For most properties and statements we should rather speak about the morphism

of space germs (Z , Z) −→ (S, 0). All deformation theoretic statements have to be
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interpreted as statements about germs. Considering deformations and locally trivial

deformations gives rise to two deformation functors; in fact, the functor Dlt
Z of locally

trivial deformations of Z is a subfunctor in the functor DZ of all deformations of Z.

They have tangent spaces TDlt
Z

= H1(Z, TZ) and if Z is reduced TDZ
= Ext1(ΩZ ,OZ),

respectively. Note that H1(Z, TZ) ⊂ Ext1(ΩZ ,OZ) by the local-to-global spectral

sequence for Ext. We refer to [Ser06, Proposition 1.2.9] (which actually works for ar-

bitrary schemes) respectively [Ser06, Theorem 2.4.1(iv)]. Even though Sernesi’s book

treats deformations of algebraic schemes, the arguments apply literally for deforma-

tions of complex spaces, mainly because zero-dimensional complex spaces are nothing

else but zero-dimensional C-schemes of finite type.

4.2. Versality and Universality. Recall that a deformation (Z , Z) −→ (S, 0) is

called versal if for every deformation (Z ′, Z) −→ (S′, 0) of Z there is a map ϕ :

(S′, 0) −→ (S, 0) of (germs of) complex spaces such that Z ×S S′ ∼= Z ′. It is called

miniversal if moreover the differential Tϕ,0 : TS′,0 −→ TS,0 is uniquely determined. The

deformation is called universal if furthermore the map ϕ is unique. Clearly, every

universal deformation is miniversal and every miniversal deformation is versal. The

different notions of versality are defined analogously for other deformation problems

such as locally trivial deformations.

4.3. Existence of a miniversal deformation. Miniversal4 deformations exist by

[Gra74, Hauptsatz, p 140], see also [Dou74, Théorème principal, p 598]. More precisely,

it is shown in loc. cit. that there exist miniversal deformations Z −→ S of a given

compact complex space Z which are versal in every point of S. We will frequently write

S = Def(Z). The family Z −→ Def(Z) is called the Kuranishi family and Def(Z) is

called Kuranishi space.

If Z is a complex space satisfying H0(Z, TZ) = 0, then every miniversal deformation

is universal.

4.4. Locally trivial miniversal deformations. Recall from [FK87, (0.3) Corollary]

that for a miniversal deformation Z −→ Def(Z) of a compact complex space Z there

exists a closed complex subspace Def lt(Z) ⊂ Def(Z) of the Kuranishi space parametriz-

ing locally trivial deformations of Z. More precisely, the restriction of the miniversal

family to this subspace, which by abuse of notation we denote also by Z −→ Def lt(Z),

is a locally trivial deformation of Z and is miniversal for locally trivial deformations

of Z. When speaking about locally trivial deformations we will usually use the terms

versal, miniversal, universal with respect to the functor of locally trivial deformations.

Lemma 4.5. Let S be a complex space and let f : X −→ S be a locally trivial

family whose fiber X above a point 0 ∈ S is a primitive symplectic variety. Denote by

4Note that Grauert uses the term complete (resp. versal) for what we call versal (resp. miniversal).

Nowadays, our terminology seems to be more common; some authors use semi-universal instead of

miniversal.
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j : U −→ X the inclusion of the regular locus. Then in a neighborhood of 0 ∈ S we

have:

(1) L := (f ◦ j)∗Ω2
U /S is an invertible sheaf and compatible with arbitrary base

change.

(2) the natural map

(4.1) TX /S ⊗ f∗L −→ j∗ΩU /S

is an isomorphism.

Proof. By local triviality, the sheaves j∗Ω
p
U /S , j∗TU /S ,ΩX /S , TX /S are all flat over S

and compatible with arbitrary base change. As push forward is compatible with flat

base change, invertibility of L can be tested on the completion. By the theorem on

formal functions we may reduce (1) to the case where S is the spectrum of an artinian

local C-algebra of finite type. Then by the primitivity assumption on X and [BL,

Lemma 2.4], the sheaf L is invertible and compatible with arbitrary base change in a

neighborhood of 0. As every section of L determines a morphism TU /S −→ ΩU /S , we

obtain a canonical morphism j∗TU /S⊗f∗L −→ j∗ΩU /S and (4.1) is just the composition

with TX /S −→ j∗TU /S tensored with the pullback of L. It then follows that (4.1) is an

isomorphism in a neighborhood of 0 because it is over the special fiber. �

Lemma 4.6. Let X be a primitive symplectic variety. Then H0(X,TX) = 0 and every

miniversal deformation of X is universal.

Proof. Let π : Y −→ X be a resolution of singularities by a Kähler manifold and denote

by j : U ↪→X the inclusion of the regular part. Then TX ∼= π∗ΩY by Lemma 4.5 and

[KS18, Corollary 1.8]. Consequently,

H0(X,TX) = H0(Y,ΩY ) ∼= H1,0(Y )

by the Dolbeault isomorphism and the complex conjugate of the latter is H0,1(Y ) ∼=
H1(Y,OY ) = H1(X,OX) again by Dolbeault and by rationality of singularities. We

conclude the proof with the observation that H1(X,OX) = 0 by definition of a primi-

tive symplectic variety. �

The proof of the following result is similar to the proof of [BL, Theorem 4.1]. For

lack of a crepant resolution, some minor changes are necessary which is why we include

a proof.

Theorem 4.7. Let X be a primitive symplectic variety. Then the space Def lt(X) of

locally trivial deformations of X is smooth of dimension h1,1(X).

Proof. Smoothness is deduced using Kawamata–Ran’s T 1-lifting principle [Ran92, Kaw92,

Kaw97], see also [GHJ03, §14], [Leh16], [Leh11, VI.3.6] for more details. We have

to show the following. Let X −→ S be a locally trivial deformation of X where

S = SpecR for some Artinian local C-algebra R with residue field C, let S′ ⊂ S be a
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closed subscheme, and let X ′ := X ×S S′ −→ S′ be the induced deformation. Then

we need to prove that the canonical morphism H1(TX /S) −→ H1(TX ′/S′) is surjective.

Let j : U ↪→X the inclusion of the regular part. By Lemma 4.5, it suffices to show

that H1(j∗ΩU /S) −→ H1(j′∗ΩU ′/S′) is surjective where j : U ′ = U ×S S′ −→ X ′

is the regular part of X ′ −→ S′. However, by [BL, Lemma 2.4] the R-module

H1(j∗ΩU /S) is locally free and compatible with arbitrary base change. In other words,

H1(j∗ΩU ′/S′) = H1(j∗ΩU /S)⊗R R′ where S′ = SpecR′ and the map is clearly surjec-

tive. Thus, it follows from the T 1-lifting criterion that the space Def lt(X) is smooth.

Recall that the tangent space to Def lt(X) at the origin is H1(TX) ∼= H1(j∗ΩU ),

which by [BL, Corollary 2.3] has dimension h1,1(X). By the smoothness assertion we

proved before the dimension of the tangent space is the dimension of Def lt(X). �

As an application, we deduce the existence of a simultaneous resolution.

Definition 4.8. Let X −→ S be a flat morphism between complex spaces with reduced

and connected fibers. A simultaneous resolution of X −→ S is a proper bimeromorphic

S-morphism π : Y −→ X such that Y −→ S is smooth. A simultaneous resolution

is called strong if moreover π is an isomorphism over the complement of the singular

locus of X −→ S.

It follows from the definition that for every s ∈ S the fiber Ys −→Xs is a resolution

of singularities. It is well known that simultaneous resolutions do not always exist. For

example, let f : X −→ S be a family of elliptic curves where X is smooth and S is a

smooth curve. Suppose that there is a point 0 ∈ S such that f is smooth over S \{0}
and X0 = f−1(0) is a reduced nodal rational curve. If there were a simultaneous

resolution π : Y −→ X , the exceptional set of π would be a divisor E ⊂ Y . Then

π(E) ⊂X would be a finite set which contradicts smoothness of Y −→ S because this

map would have some reducible fibers.

Lemma 4.9. Let X −→ S be a locally trivial deformation of a reduced compact complex

space X over a reduced complex space S and let U −→ S be the regular part of X −→ S.

Then there exists a simultaneous resolution π : Y −→ X of X which is obtained by

successive blowing ups along centers which are smooth over S. Moreover, π can be

chosen to be an isomorphism over U .

Proof. By [BM97], resolution of singularities works algorithmically, see also [Vil89].

Given a global embedding X ⊂ M into a smooth space M , Bierstone and Milman

define an invariant ι := inveX : M −→ Γ with values in an ordered set in [BM97,

Theorem 1.14 and Remark 1.16] such that the locus where ι is maximal is smooth and

Zariski closed. As explained in [BM97, proof of Theorem 1.6, p. 285], successively

blowing up the maximal locus of ι gives an algorithmic resolution. The invariant ι a

priori depends on the embedding X ⊂ M . However, it is explained in [BM97, 13.]

that it is in fact independent of the local embedding. It only depends on the local ring



18 BENJAMIN BAKKER AND CHRISTIAN LEHN

at the point and on the history of the blow up (which is how they obtain resolution

results without the hypothesis of X being embedded).

Therefore, we may apply the same argument in the relative setting for locally trivial

deformations. Given a point p ∈X mapping to s ∈ S, we choose neighborhoods V of

p in X and S0 of s in S and a trivialization ϕ : V
∼=−−−→ V × S0 where V = V ∩Xs.

The maximal locus of the Bierstone-Milman invariant ι defines a smooth closed subset

C ⊂ V sing of the singular locus V sing ⊂ V . By local triviality, the singular locus Vsing

of V −→ S0 is identified under ϕ with V sing × S0. Thanks to the above mentioned

independence of ι, the closed subsets C × S0 glue to give a center C ⊂ X for a blow

up and C is smooth over S. Moreover, the blow up of X in C is by construction

again locally trivial over S, hence we can repeat the process and obtain the sought-for

resolution π : Y −→X . �

Remark 4.10. As the morphism π : Y −→ X from the preceding lemma is obtained

by successive blow ups in centers which are smooth over S, every such blow up family

is locally trivial over S and moreover, also the morphism π is itself locally trivial.

More precisely, for every open sets V ⊂ X and S0 ⊂ S admitting a trivialization

ϕ : V
∼=−−−→ V × S0 where V is the intersection of V with some fiber over a point of

S0, there is a trivialization φ : π−1 (V) −→ π−1 (V )× S0 such that the diagram

π−1 (V)

��

// π−1 (V )× S0

��
V // V × S0

commutes (and similarly for any intermediate step of the resolution procedure).

Corollary 4.11. Every small locally trivial deformation of a primitive symplectic va-

riety X is a primitive symplectic variety. In particular, the locally trivial Kuranishi

family of a primitive symplectic variety is universal (for locally trivial deformations)

for all of its fibers.

Proof. Let f : X −→ S be a small locally trivial deformation of X = f−1(0), 0 ∈ S.

First note that X has canonical, hence rational singularities by Theorem 3.4, so by

[Nam01b, Proposition 5], nearby fibers remain Kähler. We choose a simultaneous res-

olution π : Y −→X over S, denote by j : U −→X the inclusion of the regular locus,

and consider the canonical morphism f∗π∗Ω
2
Y /S −→ (f ◦ j)∗Ω2

U /S . Both sheaves are

locally free and compatible with arbitrary base change, the former by the argument

of [Del68, Théorème 5.5]—see e.g. [BL, Lemma 2.4] for the necessary changes in the

analytic category—the latter by Lemma 4.5. As X is a primitive symplectic variety,

both sheaves are invertible and the above morphism is an isomorphism at the point

corresponding to X, hence in a small neighborhood. We thus find a relative holomor-

phic 2-form ω on U whose pullback extends to a holomorphic 2-form on Y . As the

restriction ω0 to the fiber X = X0 is nondegenerate, the same is true for the restriction
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ωs to Xs for s ∈ S close to 0. Hence, the nearby fibers Xs are symplectic varieties

whose symplectic form is unique up to scalars. By semi-continuity, H1(Xs,OXs) = 0

for all s in a neighborhood of 0 ∈ S, and so the first claim follows. The last claim

follows directly from Lemma 4.6 and openness of versality, see [Gra74, Hauptsatz,

p 140]. �

4.12. Deformations of line bundles. Let X be a primitive symplectic variety and

L a line bundle on it. We will frequently consider deformations of the pair (X,L). For

this purpose one considers the morphism d log : O×X −→ ΩX , f 7→ df

f
and the induced

first Chern class morphism c1 : H1(X,O×X) −→ H1(X,ΩX) −→ H1(X,Ω
[1]
X ) which takes

values in the cohomology of reflexive differentials. Recall that H1(X,Ω
[1]
X ) ∼= H1,1(X)

by [BL, Corollary 2.3].

Lemma 4.13. Let L be a nontrivial line bundle on X. The canonical projection

Def lt(X,L) −→ Def lt(X) is a closed immersion and identifies Def lt(X,L) with a smooth

hypersurface whose tangent space is equal to

ker

(
H1(X,TX)

∪ c1(L)−−−−−−→ H2(X,OX)

)
where the map is given by contraction and cup product.

Proof. We have a canonical map

H1(X,Ω
[1]
X ) = Ext1

X(OX ,Ω[1]
X ) −→ Ext1

X(TX ,OX)

given by sending an extension to its dual (observe that Ext1X(OX ,OX) = 0). Therefore,

c1(L) ∈ H1(X,Ω
[1]
X ) gives rise to an extension

(4.2) 0 −→ OX −→ EL −→ TX −→ 0

and the sheaf EL is shown to control the deformation theory of the pair (X,L) in

the sense that H1(X,EL) is the tangent space to the functor D(X,L) of deformations

of the pair (X,L) and H2(X,EL) is an obstruction space, see e.g. [Ser06, Theorem

3.3.11]. The proof there is written for nonsingular projective varieties only, however,

the argument is the same for locally trivial deformations of compact complex spaces.

The rest of the proof is exactly as in [Huy99, 1.14]. �

5. The Beauville–Bogomolov–Fujiki form and local Torelli

In this section, we develop the theory of the Beauville–Bogomolov–Fujiki (BBF)

form for primitive symplectic varieties. Thanks to previous works by several authors

(see Section 5.1) such a form exists and was known to share many properties with

its counterpart in the smooth case. After a brief summary of these results with no

claim for originality, the first fundamentally new result is the local Torelli theorem for

locally trivial deformations, see Proposition 5.5, which was established for Q-factorial

terminal varieties by Namikawa [Nam01b, Theorem 8]. With this at hand, we prove

many advanced features of the BBF form that are known in the smooth case: the
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higher degree Fujiki relations in Proposition 5.15, a Riemann-Roch type formula in

Corollary 5.16, and the non-existence of subvarieties of odd dimension on a general

deformation in Corollary 5.18.

The material developed in this section is essential in the proof of the projectivity

criterion in Section 6.

5.1. The Beauville–Bogomolov–Fujiki form. Let X be a primitive symplectic va-

riety. Due to the work of Namikawa [Nam01b], Kirschner [Kir15], Matsushita [Mat15],

and Schwald [Sch20] there is a nondegenerate quadratic form qX : H2(X,R) −→ R
whose associated bilinear form has signature (3, b2(X) − 3). As for irreducible sym-

plectic manifolds, we will refer to qX as the Beauville–Bogomolov–Fujiki (BBF) form,

see Definition 5.4. We will use it to establish a local Torelli theorem in Proposition

5.5 and we will see in Proposition 5.15 that it satisfies analogous Fujiki relations as it

does for irreducible symplectic manifolds.

We will first recall the following definition, see [Kir15, Definition 3.2.7] and also

[Sch20, Definition 20].

Definition 5.2. Let X be a compact complex variety of Fujiki class C and dimension

2n with rational singularities let σ ∈ H2,0(X) be the cohomology class of a holomorphic

2-form on Xreg (recall from Lemma 2.1 that the Hodge structure on H2(X,Z) is pure).

We denote by
∫
X : H4n(X,Z) −→ Z the cap product with the fundamental class. Then

one defines a quadratic form qX,σ : H2(X,C) −→ C via

(5.1) qX,σ(α) :=
n

2

∫
X

(σσ̄)n−1 α2 + (1− n)

∫
X
σnσ̄n−1α

∫
X
σn−1σ̄nα.

If X is a primitive symplectic variety, one can also define a form qY,σ on a resolution

of singularities π : Y −→ X by the analog of formula (5.1) where σ is replaced by

the extension of the symplectic form to Y and qX,σ is the restriction to H2(X,Q) ⊂
H2(Y,Q). This is Namikawa’s approach, see [Nam01b], and both are equivalent by

[Sch20, Corollary 22]. Note that Schwald assumes X to be projective but this is in

fact not used in the argument.

The following result is already contained in the work of Namikawa [Nam01b], Mat-

sushita [Mat01], Kirschner [Kir15], Schwald [Sch20]. Let us emphasize that the pro-

jectivity hypothesis which is sometimes made is in fact not necessary. Denote by

bi(X) := dimQH
i(X,Q), i ∈ N0 the i-th Betti number.

Lemma 5.3. Let X be as in Definition 5.2. Then the quadratic form qX,σ : H2(X,R)⊗
H2(X,R) −→ R(−2) is a morphism of R-Hodge structures. If X is a primitive sym-

plectic variety, qX,σ is nondegenerate and has signature (3, b2(X) − 3). Furthermore,

if σ is chosen such that
∫
X (σσ̄)n = 1, then qX,σ does not depend on σ.

Proof. It is immediate from (5.1) that qX,σ is defined over R so that the statements

of the lemma make sense. The first statement is easily verified. The statement about

the signature (and hence also nondegeneracy) is [Sch20, Theorem 2]. The statement

about independence of qX,σ for normalized σ is [Sch20, Lemma 24]. �
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Definition 5.4. Let X be a primitive symplectic variety of dimension 2n and let

σ ∈ H2,0(X) be the cohomology class of a holomorphic symplectic 2-form on Xreg

satisfying
∫
X (σσ̄)n = 1. Then the Beauville–Bogomolov–Fujiki (BBF) form is the

quadratic form qX := qX,σ, up to scaling.

It is not hard now to deduce a local Torelli theorem for locally trivial deformations.

Preliminary versions have been established by Namikawa [Nam01a], Kirschner [Kir15,

Theorem 3.4.12], Matsushita [Mat15], and the authors [BL].

Proposition 5.5 (Local Torelli Theorem). Let X be a primitive symplectic variety,

let qX be its BBF form, and let

(5.2) Ω(X) := {[σ] ∈ P(H2(X,C)) | qX(σ) = 0, qX(σ, σ̄) > 0}

be the period domain for X inside P(H2(X,C)). If f : X −→ Def lt(X) denotes the

universal locally trivial deformation of X and Xt := f−1(t), then the local period map

(5.3) ℘ : Def lt(X) −→ Ω(X), t 7→ H2,0(Xt)

is a local isomorphism.

Proof. Let us denote by j : U −→X the inclusion of the regular locus. By Lemma 4.5,

the sheaf L := (f ◦ j)∗Ω2
U /S is invertible and compatible with arbitrary base change.

From this and [BL, Corollary 2.3] we deduce that the subbundle L ⊂ H2(X,C) ⊗
ODeflt(X) defines the period map Def lt(X) −→ P(H2(X,C)) which therefore is holo-

morphic. We will argue as in [Bea83, Théorème 5] to prove that it takes values in

Ω(X). The statement is local, so it suffices to show that qX(σt) = 0 where σt is a

section of f∗Ω
2
X /S evaluated at t ∈ S for t sufficiently close to the origin. This is

done in the same way as in the first paragraph of the proof of [Bea83, Théorème 5

(b)]. Let j : U ↪→X denote the inclusion of the regular part. It is well-known that the

differential of ℘ at zero can be described as the map

H1(X,TX) −→ Hom(H0(X, j∗Ω
2
U ), H1(X, j∗Ω

1
U ))

given by cup product and contraction. This is clearly an isomorphism as H0(X, j∗Ω
2
U )

is spanned by the symplectic form. Therefore, (5.3) is an isomorphism in a neighbor-

hood of zero. �

Remark 5.6. Namikawa assumes Q-factorial terminal singularities for his local Torelli

theorem [Nam01b, Theorem 8], and in this case all deformations are locally trivial.

Proposition 5.5 shows that in fact local triviality (and not the kind of singularities) is

the essential ingredient.

The local Torelli theorem can be exploited just as for irreducible symplectic mani-

folds. We start with the integrality of the quadratic form.

Lemma 5.7. The BBF form qX is up to a multiple a nondegenerate quadratic form

H2(X,Z) −→ Z. Moreover, it is invariant under locally trivial deformations.
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Proof. The second statement is a consequence of the first, so we are left to prove

integrality. This is done as in [Bea83, Théorème 5 (a)]: we deduce from the local Torelli

theorem 5.5 the following formula. For every λ ∈ H2(X,C) we denote v(λ) :=
∫
X λ

2n

where 2n = dimX. Note that for a locally trivial deformation f : X −→ S of X,

if λ is a section of R2f∗C then v(λ) is locally constant as it can be computed on a

simultaneous resolution. For every α ∈ H2(X,C) we have

(5.4) v(λ)2qX(α) = qX(λ)

(
(2n− 1)v(λ)

∫
X
λ2n−2α2 − (2n− 2)

(∫
X
λ2n−1α

)2
)

This formula immediately shows that some real multiple of qX is defined over Z. �

Remark 5.8. As a consequence of Lemma 5.7, we will always normalize the BBF form

qX so it is a (usually primitive) integral form.

For the sake of completeness, let us summarize a statement that is well known in

the smooth case.

Corollary 5.9. Let X be a primitive symplectic variety and let L be a line bundle on

it. Under the local isomorphism Def lt(X) −→ Ω(X) by the period map, the subspace

Def lt(X,L) of deformations of the pair (X,L) is identified with P(c1(L)⊥)∩Ω(X). �

We will frequently simply write α⊥ instead of P(α⊥)∩Ω(X) for a class α ∈ H2(X,C).

5.10. A theorem of Verbitsky. LetX be a primitive symplectic variety of dimension

2n = dimX. In Section 7 we will need the following analog of a theorem of Verbitsky

[Ver96, Theorem 1.5] (see also [Bog96] and [GHJ03, Proposition 24.1]):

Proposition 5.11. Let S∗H2(X,C) be the image of the cup product map Sym∗H2(X,C) −→
H∗(X,C). Then

S∗H2(X,C) ∼= Sym∗H2(X,C)/〈xn+1 | qX(x) = 0〉.

Proof. The proof in [Bog96] carries through with very mild modifications, and we

summarize the main points. We have the following purely algebraic fact:

Lemma 5.12. Let (H, q) be a complex vector space with a nondegenerate quadratic

form q, and let A∗ be a graded quotient of Sym∗H by a graded ideal I∗ such that:

(1) A2n 6= 0;

(2) I∗ ⊃ 〈xn+1 | q(x) = 0〉.
Then I∗ = 〈xn+1 | q(x) = 0〉.

Take (H, q) = (H2(X,C), qX) and A∗ = S∗H2(X,C). Observe that the first condi-

tion in the lemma is met. Indeed, let w be a generator of the H2,0 part of H2(X,C).

Since for any resolution π : Y −→ X we have an injection π∗ : H2(X,C) −→ H2(Y,C), it

follows that π∗w is the class of an extension of a symplectic form. As (π∗w)n(π∗w)n 6=
0, we then have that wnwn 6= 0.

Thus, it remains to verify the second condition. We have the following:
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Lemma 5.13. wn+1 = 0.

Proof. For a resolution π : Y −→ X, we have that π∗ : grWmH
m(X,C) −→ Hm(Y,C) is

injective. Thus, the (m, 0) part of the mixed Hodge structure on Hm(X,C) is 0 for

m > 2n. �

To finish, just as in [Bog96], since the period map is an étale map of Def lt(X) onto

the irreducible quadric (qX = 0) by Proposition 5.5, applying Lemma 5.13 to nearby

deformations yields (qX(x) = 0) ⊂ (xn+1 = 0). �

5.14. Fujiki relations. Fujiki [Fuj87, Theorem 4.7] first established interesting re-

lations between the self intersection of a given cohomology class and powers of the

BBF form on symplectic manifolds. It seems that Matsushita [Mat01, Theorem 1.2],

[Mat15, Proposition 4.1] was the first to prove the (k = dimX) Fujiki relation in the

singular setting. He required the varieties to be projective and to have Q-factorial,

terminal singularities only and Schwald extended his statement to projective primitive

symplectic varieties in [Sch20]. We need a more general statement for the projectiv-

ity criterion in the next paragraph. Generalizing to the Kähler setup is not difficult,

basically the existing proofs in the projective case work literally.

A small argument instead is needed when comparing powers of the BBF form to

integration over certain very general homology classes. The first results in this direction

in the singular case can be found in [Mat01, Lemma 2.4].

Proposition 5.15 (Fujiki relations). Let X be a primitive symplectic variety and

φ ∈ SymkH2(X,Q)∨ which is of type (−k,−k) for all small deformations of X. Then

if k is odd we have φ = 0, while if k is even there is a constant c = c(φ) ∈ Q such

that φ = cq
k/2
X , where q

k/2
X ∈ Symk/2H2(X,R)∨ is the symmetrization of q

⊗k/2
X . In

particular, for all α ∈ H2(X,C) we have

(5.5) φ(αk) = c · qX(α)k/2.

Proof. Using Proposition 5.5, the Mumford–Tate group of H2(X ′,Z) for a very gen-

eral locally trivial deformation X ′ of X is SO(H2(X ′,Q), qX′). The representation of

SO(H2(X,Q), qX) on on SymkH2(X,Q)∨ has no invariants for odd k, while for even

k the only invariant is q
k/2
X up to scaling. �

Corollary 5.16. Let X be a primitive symplectic variety. There is a (unique) poly-

nomial fX(t) ∈ Q[t] such that for any line bundle L on X, χ(L) = fX(qX(c1(L))) and

fX′ = fX for any locally trivial deformation X ′ of X. Moreover,

Proof. As X has rational singularities, for a resolution π : Y −→ X we have χ(L) =

χ(π∗L) =
∫
Y π
∗ch(L)td(Y ). Since π∗ : H2(X,Q) −→ H2(Y,Q) is an injection of Hodge

structures, it follows that

χ(L) =
∑
k

φk(c1(L)k)
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for Hodge classes φk ∈ SymkH2(X,Q)∨. Moreover, from the existence of a simultane-

ous resolution Y −→X of the universal locally trivial deformation X of X, it follows

that the φk are locally constant and of type (−k,−k) everywhere. Now apply the

proposition. �

For a compact complex space W of dimension k, we denote by [W ] ∈ H2k(W,Z) the

cycle class, that is, the sum over the fundamental classes of the irreducible components

of dimension k weighted by their multiplicities. We write
∫
W : H2k(W,Z) −→ Z for

the cap product with the cycle class. Hodge classes as in Proposition 5.15 can be

constructed via the following lemma.

Lemma 5.17. Let X be a primitive symplectic variety and f : X −→ S a locally trivial

deformation. Let W ⊂ X be a closed subvariety that is flat over S with fiberwise

dimension k. Then
∫
Ws

defines a section of SymkR2f∗Q∨ which is of type (−k,−k).

Proof. It suffices to show that for any sufficiently small Euclidean open set U ⊂ S, the

cycle class [Wu] is constant in Borel–Moore homology HBM
2k (f−1(U),Q). This is done

as in [Ful98, Lemma 19.1.3]. �

For the following corollary, the term very general is to be interpreted in terms of

locally trivial deformations, i.e., outside a countable union of proper subvarieties in

the base of the locally trivial Kuranishi family.

Corollary 5.18. Let X be a very general primitive symplectic variety. Then X does

not contain odd dimensional closed subvarieties.

Proof. By the lemma, for a k-dimensional subvariety W we have a Hodge class φ =
∫
W

in SymkH2(X,Q)∨. By taking a Kähler class ω ∈ H2(X,R), we see that
∫
W ωk > 0

and thus φ is nonzero, a contradiction. �

5.19. Q-factoriality and Q-factorial terminalizations. We first deduce the in-

variance of Q-factoriality under locally trivial deformations for primitive symplectic

varieties.

Lemma 5.20. Let X be a primitive symplectic variety. Then every small locally trivial

deformation of X is Q-factorial if and only if X is Q-factorial.

Proof. Let π : Y −→ X be a resolution and consider H2(X,Q) ⊂ H2(Y,Q) via pullback.

Using Lemma 4.9, we choose a simultaneous resolution Y −→X of the universal locally

trivial deformation X −→ Def lt(X). Recall that by Proposition 5.5, we can think of

Def lt(X) as an open subset of the local period domain Ω(X).

For λ ∈ H2(X,Q) with qX(λ) > 0, let Tλ ⊂ Ω(X) be the locus for which λ ∈
H2,0(X)⊕H0,2(X). Note that Tλ is a totally real half-dimensional closed subvariety of

Ω(X) (see Section 8.3). We first claim that we may choose λ so that Tλ meets the image

of Def lt(X). Indeed, note that qX(σ) = 0 is equivalent to qX(Re(σ)) = qX(Im(σ))

and qX(Re(σ), Im(σ)) = 0. Thus, taking λ to be a rational class sufficiently close to
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Re(σ), then taking R = λ and I to be the projection of Im(σ) to R⊥ scaled so that

qX(R) = qX(I), we can make σ′ = R+ iI ∈ Tλ arbitrarily close to σ.

Now, choosing such a λ, in the notation of Lemma 5.7 we have that v(λ) 6= 0 by

Proposition 5.15. Observe that the Fujiki constant is nonzero since qX(σ + σ̄) 6= 0 6=
v(σ + σ̄). Define a quadratic form Qλ on H2(Y,Q) by the right-hand side of (5.4)

divided by qY,σ(λ) = qX,σ(λ). Note that:

(1) Qλ is rational;

(2) Qλ restricts to (a nonzero multiple of) qX on H2(X,Q);

(3) If λ ∈ H2,0(X)⊕H0,2(X) then

v(λ)2qY,σ(α) = qX,σ(λ)Qλ(α)

for all α ∈ H2(Y,C), as in [Bea83, Théorème 5 (c)].

We now claim that Qλ is a morphism of Hodge structures. For this, we consider Qλ

as a quadratic from on the local system of weight two Hodge structures associated to

Y −→ Def lt(X) ⊂ Ω(X). In view of (1), it suffices to show that Qλ is a morphism

of R-Hodge structures. By (3) and Lemma 5.3, this is the case for all periods in

Tλ ∩Def lt(X) and this set is nonempty and open in Tλ by the above. But the Hodge

locus of Qλ is certainly an analytic subset of Def lt(X) and therefore must be all of

Def lt(X) as Tλ is totally real and dimR Tλ = dimC Def lt(X).

Now, qX is nondegenerate by Lemma 5.3, so by (2) theQλ-orthogonal spaceH2(X,Q)⊥ ⊂
H2(Y,Q) is a rational complement to H2(X,Q) and is Hodge–Tate. Thus, condition

(2.7) is equivalent to (2.6). Using Lemma 4.9 again, we see that condition (2.6) is

clearly invariant under locally trivial deformations. We therefore conclude by Propo-

sition 2.15. �

The rest of this section will be devoted to relating the locally trivial deformation

theory of a projective primitive symplectic variety X to that of a Q-factorial terminal-

ization, which will play a role in the proof of surjectivity of the period map. We start

with the following slight generalization of [BL, Lemma 3.4]. The proof is literally the

same as in loc. cit. so we omit it here.

Lemma 5.21. Let π : Y −→ X be a proper bimeromorphic morphism between primitive

symplectic varieties. Then π∗ : H2(X,C) −→ H2(Y,C) is injective and the restriction

of qY to H2(X,C) is equal to qX . We have an orthogonal decomposition

(5.6) H2(Y,Q) = π∗H2(X,Q)⊕NQ

where N := q̃−1
Y (N1(Y/X)), which is negative definite. �

Let X, Y be normal compact complex varieties with rational singularities and let

π : Y −→ X be a proper bimeromorphic morphism. It follows that π∗OY = OX and
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R1π∗OY = 0 so that by [KM92, Proposition 11.4], there is a commutative diagram

(5.7) Y

��

P // X

��
Def(Y )

p
// Def(X)

for the miniversal families of deformations of X and Y . Let us consider the case that

π : Y −→ X is a Q-factorial terminalization of a projective primitive symplectic variety.

We will show below (Proposition 5.22) that the locally trivial deformations of X are

identified via p with the locus of deformations of Y where the classes of contracted

curves remain Hodge.

Proposition 5.22. Let X,Y be projective primitive symplectic varieties and let π :

Y −→ X be a proper bimeromorphic morphism. Assume Y is Q-factorial and terminal.

Let N ⊂ H2(Y,C) be the qY -orthogonal complement to H2(X,C) ⊂ H2(Y,C) and con-

sider the diagram (5.7). Denote by Def(Y,N) ⊂ Def(Y ) the subspace of deformations

such that classes in N remain of type (1, 1). Then the following holds:

(1) p−1(Def lt(X)) = Def(Y,N) ⊂ Def(Y ).

(2) The restriction p : Def(Y,N) −→ Def lt(X) is an isomorphism.

Proof. By Theorem 4.7 respectively [Nam06, Main Theorem], the spaces Def lt(X)

and Def(Y ) are smooth of dimension h1,1(X) and h1,1(Y ), respectively. Moreover, by

[Nam06, Theorem 1], Def(X) is smooth while p : Def(Y ) −→ Def(X) is finite and, as

both are of the same dimension, surjective.

Now, Def(Y,N) ⊂ Def(Y ) is a smooth subvariety of codimension m := dimN whose

tangent space is identified with H1,1(X) under the period map, see Lemma 4.13. By

Corollary 4.11, the fibers of the universal deformations Y −→ Def(Y ) and X −→
Def lt(X) are primitive symplectic varieties. Therefore, [BL, Lemma 2.2] entails that

the second cohomology of locally trivial deformations of X form a vector bundle on

Def lt(X), in particular, h1,1(Xp(t)) = h1,1(X). Thus, by the decomposition H2(Y,C) =

N ⊕ H2(X,C) from Lemma 5.21 we see that the space N1(Yt/Xp(t)) of curves con-

tracted by Pt : Yt −→ Xt has dimension m for all t ∈ p−1(Def lt(X)). As N is the

orthogonal complement of H2(X,C), it also varies in a local system. Using the period

map this shows that p−1(Def lt(X)) = Def(Y,N).

One shows as in [LP16, Proposition 2.3 (ii)] that p is an isomorphism, see also [BL,

Proposition 4.5]. �

We will need the following corollary in Section 8. For π : Y −→ X the Q-factorial

terminalization of a projective primitive symplectic variety, let g : Y −→ Def(Y ) and

f : X −→ Def(X) be the universal deformations, f ′ : X ′ −→ Def(Y ) the pullback of

X to Def(Y ) along p as in (5.7). Then P ′ : Y −→ X ′ is a simultaneous Q-factorial

terminalization by [Nam06, Main Theorem] and Lemma 5.20. Consider the constant
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second Betti number locus

BX := {t ∈ Def(Y ) | rk(R2f ′∗QX ′)t = b2(X)}

which is a (reduced) closed analytic subspace of Def(Y ).

Corollary 5.23. In the above setup, BX = Def(Y,N).

Proof. Certainly BX ⊃ Def(Y,N) by the proposition and [BL, Lemma 2.4]. By Lemma

5.21 and proper base change we have an injection

0 −→ (R2f ′∗QX ′)t −→ (R2g∗QY )t

for all t ∈ Def(Y ). The restrictions (R2g∗QX ′)|BX
and (R2f ′∗QY )|BX

are local systems

as therefore is the orthogonal (R2f ′∗QX ′)|⊥BX
in (R2f ′∗QY )|BX

. We must then have

(R2f ′∗QX ′)
⊥
t = N for all t ∈ BX , but since (R2f ′∗QX ′)

⊥
t is Hodge–Tate we obtain the

reverse inclusion BX ⊂ Def(Y,N). �

6. The projectivity criterion

In this section we formulate and prove an analog of Huybrechts’ projectivity criterion

[Huy99, Theorem 3.11] (see also [Huy03a]) in the singular setup. Note that for orbifold

singularities, the question has been examined by Menet [Men20]. We use several of his

as well as of Huybrechts’ arguments.

6.1. A singular version of the Demailly–Păun Theorem. We do not know

whether the analog of Demailly–Păun’s celebrated theorem [DP04, Main Theorem 0.1]

on the numerical characterization of the Kähler cone of a compact Kähler manifold

holds for singular varieties. One may however easily deduce from it that a similar state-

ment holds which is good enough for our purposes. For this purpose, we introduce a

notion for cohomology classes that behave as if they were Kähler classes.

Recall from (2.4) that we defined H1,1(X,R) = F 1H2(X,C)∩H2(X,R) for a reduced

compact complex space of class C .

Definition 6.2. Let X be a reduced compact complex space of class C and let κ ∈
H1,1(X,R). We say that κ is Demailly–Păun if for every compact complex manifold

V and for every generically finite morphism f : V −→ X the class f∗κ is big and nef.

We denote by DP(X) ⊂ H1,1(X,R) the convex cone consisting of all Demailly–Păun

classes. We refer to it as the Demailly–Păun cone.

This definition desserves a couple of comments.

Remark 6.3.

(1) Every Kähler class is Demailly–Păun, in particular, DP(X) 6= ∅ if X is Kähler.

Indeed, every Kähler class is a (1, 1)-class by Proposition 2.8. Then the claim

follows as the pullback of a Kähler class under a generically finite morphism

from a smooth variety is big and nef.
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(2) We do not know of an example of a class that is Demailly–Păun but not Kähler.

It seems likely that Demailly–Păun classes are the same as Kähler classes.

Apart from the Demailly–Păun theorem [DP04, Main Theorem 0.1], evidence

for this presumption is given in (3).

(3) Every rational Demailly–Păun class is Kähler. Indeed, a multiple of such a class

is the first Chern class of a big line bundle L. Therefore, X is Moishezon and

L is ample by the Nakai–Moishezon criterion. Note that the Nakai–Moishezon

criterion holds for big line bundles on Moishezon varieties, see e.g. [Kol90,

3.11 Theorem].

(4) A closed subvariety of a class C variety is again dominated by a compact Kähler

manifold, see Proposition 2.7, and so it is itself class C . Then it is immediate

that the restriction of a Demailly–Păun class to a subvariety is again Demailly–

Păun.

(5) The assumption that X be of class C is somewhat redundant but simplifies

the exposition. If for some κ ∈ H1,1

∂∂̄
(X,R) the pullback π∗κ along a resolution

π : Y −→ X is big, then Y (and hence also X) are of class C by [DP04,

Theorem 0.7].

Lemma 6.4. Let X be a compact variety of class C and let κ ∈ H1,1(X,R). Then κ

is Demailly–Păun if and only if for every compact complex manifold W and for every

holomorphic map π : W −→ X which is bimeromorphic onto its image the class π∗κ is

big and nef. Moreover, the pullback of a Demailly–Păun class to an arbitrary compact

complex manifold is nef.

Proof. To prove the non-trivial direction of the first claim, let π : V −→ X be a

holomorphic map from a compact complex manifold which is generically finite onto its

image. We denote V̄ := π(V ) and factor π as V
π1−−→ V̄

π2−−→ X. We then chose a

diagram

W2
φ
//

f

��

V

π

��
π1
��

W1
ψ
// V̄

π2 // X

where W1,W2 are compact Kähler manifolds and W1 −→ V̄ , W2 −→ V are bimeromor-

phic. By assumption, α := ψ∗π∗2κ is big and nef. By a result of Păun [Pau98, Théorème

1], nefness of α is equivalent to f∗α being nef. Bigness is preserved under generically

finite pullbacks so that f∗α is big and nef. Since W2 −→ V is bimeromorphic between

compact complex manifolds, π∗κ is big and nef as φ∗π∗κ = f∗α is.

For the second statement, let π : V −→ X be a morphism from a compact complex

manifold. We change the above diagram accordingly and deduce the claim by invoking

Păun’s result once more. �

The main result of this section is deduced from the smooth Demailly–Păun theorem

and Păun’s results in [Pau98] via an inductive argument. Note that while our result is
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not essentially new compared to the Demailly–Păun theorem, it should be mentioned

that Collins–Tosatti proved a true generalization of the Demailly–Păun theorem [CT16,

Theorem 1.1] for possibly singular compact subvarieties of Kähler manifolds.

Theorem 6.5. Let X be a reduced compact complex space of class C and let P ⊂
H1,1(X,R) be the cone of all classes α on X such that for all closed analytic subsets

V ⊂ X we have ∫
V
αdimV > 0.

Then the Demailly–Păun cone DP(X) is empty or a connected component of P . If X

is Kähler, DP(X) is the connected component of P containing the Kähler cone.

Proof. Clearly, DP(X) ⊂ P and as the Demailly–Păun cone is convex, it is contained

in a connected component of P . Moreover, if X is Kähler, the Kähler cone is contained

in DP(X).

For the converse, we may assume that DP(X) is non-empty, otherwise there is

nothing to prove. Let α ∈ P be a class in the same connected component as DP(X).

We will prove that the restriction of α to any subvariety of X is Demailly–Păun by

induction on the dimension of the subvariety.

For d = 0 the statement is trivial. Let V ⊂ X be a subvariety of dimension d and

assume that α is Demailly–Păun on every subvariety of X of dimension strictly smaller

than d. We denote by π : W −→ X the composition of a resolution of singularities of

V with the inclusion V ⊂ X where W is a compact Kähler manifold of dimenion d.

Such a resolution exists thanks to Proposition 2.7. By Lemma 6.4 it suffices to prove

that π∗α is big and nef. Clearly, α|V fulfills the hypotheses of the theorem if α does.

We show first that π∗α is nef on W using the Demailly–Păun theorem on W . Let us

take a Kähler class κ on W . For 0 < ε� 1 the class αW := π∗α+ εκ satisfies αdW > 0.

If Z ⊂ W is a proper analytic subvariety of dimension e, then π(Z) ⊂ V is also a

proper subvariety and thus α|π(Z) is Demailly–Păun by the inductive hypothesis. We

will show that
∫
Z α

e
W > 0. But this can be computed on a resolution of singularities,

so we may without loss of generality assume that Z is nonsingular. Then π∗α|Z is nef

by Lemma 6.4 and therefore αW |Z has positive top self intersection.

As α is in the same connected component of P = P (V ) as the Demailly–Păun

classes on V , also αW is in the same connected component P (W ) as the Demailly–

Păun classes on W . But by [DP04, Main Theorem 0.1], we have DP(W ) = K(W )

where K(W ) denotes the Kähler cone. Hence, the Demailly–Păun theorem applies

and αW is Kähler. Moreover, π∗α is nef on W because ε was arbitrarily small. But

certainly
∫
W (π∗α)d > 0 and therefore π∗α is also big on W by [DP04, 0.4 Theorem].

This concludes the proof. �

6.6. Projectivity criterion. In this section, the term very general is to be inter-

preted in terms of locally trivial deformations, i.e., outside a countable union of proper

subvarieties in the base of the locally trivial Kuranishi family.
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Definition 6.7. Let X be a primitive symplectic variety and qX its BBF form. We

define the positive cone

(6.1) CX :=
{
α ∈ H1,1(X,R)

∣∣ qX(α) > 0
}κ

where κ denotes the connected component containing the Kähler cone.

Theorem 6.8. For a very general primitive symplectic variety X, the positive cone

equals the Demailly–Păun cone:

(6.2) DP(X) = CX .

Proof. The Demailly–Păun cone is always contained in the positive cone by Theo-

rem 6.5. Let us prove the other inclusion. By Corollary 5.18, X does not contain any

odd dimensional subvarieties. Let Z ⊂ X be a subvariety and denote by 2d its dimen-

sion. Choose a Kähler class κ on X. Then by the Fujiki relations, Proposition 5.15,

there is a constant cZ ∈ R such that for every α ∈ H2(X,C) the equality

cZ ·
∫
Z

(αS + κT )2d = qX(αS + κT )d

=
(
qX(α)S2 + 2qX(α, κ)ST + qX(κ)T 2

)d
of polynomials in the indeterminates S and T holds. Choosing α = κ we see that cZ

has to be strictly positive. From now on let α ∈ CX . As also κ ∈ CX , Lemma 5.3

implies that qX(α, κ) > 0. The coefficients of the polynomial on the right-hand side

are manifestly all positive. We conclude from looking at the left-hand side that for

every 0 ≤ λ ≤ 1 we have that λα + (1− λ)κ lies in the cone P from Theorem 6.5. In

particular, α is in the connected component of P containing the Kähler cone K(X).

We conclude from Theorem 6.5 that α ∈ DP(X). �

The following is the singular version of [Huy03b, Theorem 3.11] and the proof relies

on important ideas of his and of Menet [Men20], see section 4 of Menet’s article. The

presentation follows [GHJ03, Proposition 26.13].

Theorem 6.9. Let X be a primitive symplectic variety and α ∈ H2(X,Z) a (1, 1)-

class. If q(α) > 0, then X is projective.

Note that the existence of such a class can be read off only from the period.

Proof. By the Lefschetz (1, 1)-theorem, there is a line bundle L on X with first Chern

class c1(L) = α. We will show that L is big. It suffices to do this on a resolution, say

π : Y −→ X, as bigness of a line bundle is a birationally invariant notion. Bigness of

the line bundle π∗L is implied by bigness of π∗α, see [JS93, Theorem 4.6]. The strategy

is to infer bigness of α by approximating α on a resolution with Kähler currents on

nearby varieties.

Let us consider the locally trivial Kuranishi family X −→ S := Def lt(X) and take

a simultaneous resolution Y −→ X which is possible by Lemma 4.9. From now on

we choose π : Y −→ X to be the special fiber of Y −→ X . For a very general t ∈ S
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the corresponding primitive symplectic varieties Xt satisfy DP(Xt) = CXt thanks

to Theorem 6.8. Therefore, α can be approximated by Demailly–Păun classes αti
on Xti where ti −→ 0 ∈ S for i −→ ∞, where X is the fiber of X −→ S over 0.

Consequently, π∗α can be approximated by big classes on nearby fibers Yti and as in

[Dem92, Proposition 6.1], see also the proof of [GHJ03, Proposition 26.13], we deduce

that π∗α is big. The key point here is to see that in the above approximation procedure,

the limit of a sequence of closed positive currents are again closed and positive. This is

explained in detail in the appendix by Diverio to [ADH19]. As explained before, bigness

of π∗α implies that π∗L and hence L is big. Thus, X is Moishezon. Being Kähler and

having rational singularities, it must be projective by [Nam02, Theorem 1.6]. �

The following result is the singular analog of [Fuj83, Theorem 4.8 2)], see also [Huy99,

Theorem 3.5] and [GHJ03, Proposition 26.6]. We have to change the proof slightly in

the singular setting.

Corollary 6.10. Let X be a primitive symplectic variety, f : X −→ Def lt(X) be the

universal locally trivial deformation of X = f−1(0), and S ⊂ Def lt(X) a positive-

dimensional subvariety through 0 ∈ Def lt(X). Then in every open neighborhood U ⊂ S
of 0 there is a point s ∈ U such that the fiber Xs is projective.

Proof. The proof is almost the same as in [Fuj83, Theorem 4.8 2)] respectively [Huy99,

Theorem 3.5]. We refer to these references for details and content ourselves with a

sketch of proof. One restricts to a one-dimensional disk S ⊂ Def lt(X) and chooses a

Kähler form ω on X such that the locus S[ω] ⊂ Def lt(X) where the class [ω] remains

of type (1, 1) intersects S transversally. Next one chooses classes αi ∈ H2(X,Q)

converging to [ω] such that the αi are not of type (1, 1) on X. Then the (1, 1)-locus

Sαi ⊂ Def lt(X) intersects S in points ti 6= 0 converging to 0. Now the idea is that the

(1, 1)-class αi is Kähler on Xti for ti sufficiently close to 0. In [Huy99, Theorem 3.5] this

is seen via harmonic representatives. As X is singular, we cannot argue literally the

same. However, due to Lemma 4.9 we may take a simultaneous resolution π : Y −→X

obtained by successive blow ups. In particular, there is an R-linear combination E of

exceptional divisors such that for e := c1 (O(E)) we have that αi − e is Kähler on

Y := π−1(X). Now we apply the argument involving harmonic representatives to

αi− e and deduce that for ti sufficiently close to 0 the variety Yti is projective. Hence,

also the corresponding Xti is projective by [Nam02, Theorem 1.6]. �

We immediately deduce

Corollary 6.11. Let X be a primitive symplectic variety and let f : X −→ Def lt(X)

be the universal locally trivial deformation of X = f−1(0). Then for every positive-

dimensional subvariety S ⊂ Def lt(X) the set of points Σ ⊂ S with projective fiber is

dense. �
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6.12. Inseparability and moduli. Given a primitive symplectic variety X, we de-

note by H2(X,Z)tf := H2(X,Z)/torsion the torsion-free part of its second cohomol-

ogy. Given a lattice Λ with quadratic form q, a Λ-marking of X is an isomorphism

µ : (H2(X,Z)tf , qX)
∼=−→ (Λ, q). A Λ-marked primitive symplectic variety is a pair

(X,µ) where X is a primitive symplectic variety and µ is a Λ-marking of X. Two

Λ-marked primitive symplectic varieties (X,µ) and (X ′, µ′) are isomorphic if there is

an isomorphism ϕ : X −→ X ′ such that µ′ = µ ◦ ϕ∗.

Definition 6.13. Given a lattice Λ as above, we denote by MΛ the analytic coarse

moduli space of Λ-marked primitive symplectic varieties. As a set, MΛ consists of

isomorphism classes of Λ-marked primitive symplectic varieties (X,µ), and it is given

the structure of a not-necessarily-Hausdorff complex manifold using Theorem 4.7 by

identifying points in the bases of locally trivial Kuranishi families over which the fibers

are isomorphic as Λ-marked varieties.

Note that this definition coincides with the usual one [Huy99, 1.18] for irreducible

symplectic manifolds due to the fact that all deformations of smooth varieties are

locally trivial. The following statement of Huybrechts’ carries over together with its

proof.

Theorem 6.14. Let X, X ′ be primitive symplectic varieties such that for some choice

of marking µ : H2(X,Z)tf −→ Λ, µ′ : H2(X ′,Z)tf −→ Λ the pairs (X,µ), (X ′, µ′) define

non-separated points in the Λ-marked moduli space. Then there is a bimeromorphic

map φ : X 99K X ′.

Proof. Identical to [Huy99, Theorem 4.3] using a simultaneous resolution. �

Corollary 6.15. If (X,µ) and (X ′, µ′) are inseparable in moduli with Mumford–Tate

general periods, then (X,µ) = (X ′, µ′).

Proof. By the theorem, there is a bimeromorphic φ : X 99K X ′. Mumford-Tate gen-

erality implies that neither X nor X ′ contain compact curves. Indeed, such a curve

would define a non-zero Hodge class e.g. in H2(X,Q), so by the BBF form we also had

a non-zero Hodge class in H2(X,Q). By a standard argument, bimeromorphic maps

between normal varieties without curves are necessarily isomorphisms.5 We therefore

obtain an isomorphism of Hodge structures H2(X,Z)tf −→ H2(X ′,Z)tf which maps a

Kähler class to a Kähler class. The claim follows since the automorphism group of a

Mumford–Tate general period AutHdg(H2(X,Z)tf) = {±1}, since

End(H2(X,Q), qX)SO(H2(X,Q),qX) = Qid.

�

5This can be seen exactly as for projective algebraic varieties of Picard rank one by applying e.g.

[Deb01, Lemma 1.15 (b)] to a resolution of indeterminacies and its inverse.
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We denote by ∆ = {z ∈ C | |z| ≤ 1} the complex unit disk and by ∆∗ := ∆ \{0}
the complement of the origin. Recall that if two not necessarily Q-factorial complex

varieties are bimeromorphic, it is not in general true that we can push forward (or pull

back) line bundles along the bimeromorphic map.

Theorem 6.16. Let X and X ′ be projective primitive symplectic varieties, and let

φ : X 99K X ′ be a birational map which is an isomorphism in codimension one such

that φ∗ : Pic(X)Q −→ Pic(X ′)Q is well-defined and an isomorphism. Then there are

one parameter locally trivial deformations f : X −→ ∆, f ′ : X ′ −→ ∆ such that X

and X ′ are birational over ∆ and such that X ∗ = f−1(∆∗) ∼= (f ′)−1(∆∗) = (X ′)∗.

Proof. The basic strategy of [Huy99, Theorem 4.6] remains unchanged, we will there-

fore only explain where we need to deviate from it. By Corollary 5.16, there are

polynomials fX(t) and fX′(t) with rational coefficients of degree n =
dimX

2
such

that for any line bundle L on X a Hirzebruch–Riemann–Roch statement of the form

χ(X,L) = fX(qX(c1(L))) holds and similarly for X ′. We may assume that fX ≥ fX′

with respect to the lexicographic order and choose an ample line bundle L′ on X ′ and

denote by L the corresponding Q-line bundle on X. Replacing L′ by a multiple, we

may assume that L is integral. Let π : (X ,L ) −→ S be a locally trivial deformation of

(X,L) over a smooth one-dimensional base such that the Picard number of the general

fiber of X −→ S is one. As in [Huy99, Theorem 4.6], using the projectivity criterion

from Theorem 6.9 one shows that h0(L ⊗m
t ) for m � 0 does not depend on t ∈ S

that the associated linear system gives a meromorphic S-morphism X 99K PS(π∗L ∨)

which is bimeromorphic onto its image. We obtain X ′ −→ S as the closure of this

image and one verifies as in [Huy97, Proposition 4.2] that X ′ −→ S has the desired

properties, in particular, that its central fiber is X ′. �

This result can be reformulated as follows.

Corollary 6.17. Let X and X ′ be projective primitive symplectic varieties, and let

φ : X 99K X ′ be a birational map which is an isomorphism in codimension one such

that φ∗ : Pic(X)Q −→ Pic(X ′)Q is well-defined and an isomorphism. Then for every

choice of a marking µ : H2(X,Z)tf −→ Λ there exists a marking µ′ : H2(X ′,Z)tf −→ Λ

such that the points (X,µ) and (X ′, µ′) are inseparable points in the moduli space MΛ.

7. Projective degenerations

The main goal of this section is to prove the following result, which will be needed

for the surjectivity of the period map in Section 8:

Theorem 7.1. Let f : X ∗ −→ ∆∗ be a projective locally trivial family of primitive

symplectic varieties with Q-factorial terminal singularities such that the monodromy of

R2f∗QX ∗ is finite. Then there is a proper locally trivial family g : Y −→ ∆ of primitive

symplectic varieties whose restriction Y |∆∗ −→ ∆∗ is isomorphic to the restriction of

the base-change of X ∗ −→ ∆∗ along a finite étale cover ∆∗ −→ ∆∗.
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Theorem 7.1 is proven for smooth X ∗ −→ ∆∗ in [KLSV18, Theorem 1.7], and the

proof in our slightly more general setting involves very mild modifications of the same

arguments given Proposition 5.11, albeit rearranged slightly and with some simplifica-

tions.

A crucial step is the following version of [KLSV18, Theorem 2.1] which uses the

MMP to produce nice models for degenerations of K-trivial varieties.

Theorem 7.2. (Theorem 2.1 and Remarks 2.3 and 2.4 of [KLSV18]) Let f : X −→ ∆

be a projective family whose generic fiber is a K-trivial variety with Q-factorial terminal

singularities and such that at least one component of the special fiber is not uniruled.

Then there is a projective family g : Y −→ ∆ for which:

(1) the restriction Y |∆∗ −→ ∆∗ is isomorphic to the restriction of the base-change

of X −→ ∆ along a finite cover ∆ −→ ∆;

(2) the special fiber is a K-trivial variety with canonical singularities;

(3) the total space Y has terminal singularities.

Note that the third statement follows from the proof in [KLSV18]. Theorem 7.2

reduces the proof of Theorem 7.1 to showing that the assumption on the local mon-

odromy implies that some component of a degeneration must be non-uniruled, and

this is accomplished by the following:

Proposition 7.3. Let f : X −→ ∆ be a flat projective family such that:

(1) the restriction X ∗ := X |∆∗ −→ ∆∗ is a locally trivial family of primitive

symplectic varieties;

(2) the local monodromy of R2f∗QX is trivial;

(3) the special fiber X has no multiple components;

(4) the total space X has log terminal singularities.

Then a resolution of some component of the special fiber X has a generically nonde-

generate holomorphic 2-form.

Proof. Let 2n be the fiber dimension of f and take π : (Y , Y ) −→ (X , X) to be a

log resolution and g := f ◦ π : Y −→ ∆. After possible shrinking ∆, Y −→ X is a

fiberwise resolution over ∆∗. Recall that there is a specialization map sp : H∗(Y,Q) −→
H∗(Y∞,Q) which is topologically constructed as follows. After possibly shrinking ∆

we let Y∞ = e∗Y∆∗ , where e : H −→ ∆∗ is the universal cover. Then sp is the pullback

along the natural map Y∞ −→ Y composed with the isomorphism induced by the inclu-

sion Y −→ Y which is a homotopy equivalence. Note that sp is a ring homomorphism,

and that the inclusion Yt −→ Y∞ of a fiber above t ∈ ∆∗ is also a homotopy equiva-

lence, as locally trivial families are topologically (even real analytically) trivial [AV19,

Proposition 6.1]. We can also view H∗(Y∞,Q) as the nearby cycles ψRf∗QY (up to a

shift) and the specialization map as the natural map i∗Rf∗QY −→ ψRf∗QY by proper

base-change, where i : {0} −→ ∆ is the inclusion. By Saito’s theory [Sai88, Sai90],
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this is a morphism of mixed Hodge structures, the mixed Hodge structure on ψRf∗QY

being the limit mixed Hodge structure.

Now for t ∈ ∆∗, the pullback π∗t : H∗(Xt,Q) −→ H∗(Yt,Q) induces an injec-

tion grWk H
k(Xt,Q) −→ Hk(Yt,Q) for all k. By Theorem 5.11, for k ≤ n we have

an induced injection SymkH2(Xt,Q) −→ H2k(Yt,Q) and therefore also an injection

SymkH2(X∞,Q) −→ H2k(Y∞,Q).

Claim. The image of the specialization sp : H2k(Y,Q) −→ H2k(Y∞,Q) contains the

image of SymkH2(X∞,Q) for k ≤ n.

Proof. By the semisimplicity of the category of variations of polarized integral Hodge

structures, SymkR2f∗QX ∗ is a summand of R2kg∗QY ∗ for k ≤ n. By the decomposi-

tion theorem [Sai88, §5.3], the intermediate extension j!∗(SymkR2f∗QX ∗ [1])[−2k − 1]

is a summand of Rg∗QY , where j : ∆∗ −→ ∆ is the inclusion. As the monodromy of

SymkR2f∗QX ∗ is trivial, the specialization map

i∗j!∗(SymkR2f∗QX ∗ [1]) −→ ψj!∗(SymkR2f∗QX ∗ [1])

is an isomorphism, hence the claim. �

Now, H2(Y∞,Q) has the same Hodge numbers as the general fiber (since the mon-

odromy is trivial), and it follows that there is an element w ∈ I2,0H2(Y,Q) mapping

to a generator of I2,0H2(Y∞,Q). Here, I2,0 denotes the (2, 0)-part of the Deligne split-

ting, see e.g. [PS08, Lemma-Definition 3.4]. Moreover, wn 6= 0 by the claim. The

same is true on the normalization Ỹ −→ Y , so some component of Y has a generi-

cally nondegenerate holomorphic 2-form. Finally, since X is log terminal, by [HM07,

Corollary 1.5] the exceptional divisors of π : Y −→X are uniruled, so the same must

be true of X. �

Proof of Theorem 7.1. Obviously we may assume the monodromy of R2f∗QX ∗ is triv-

ial. Let f : X −→ ∆ be a flat projective family restricting to the base change of X ∗

over ∆∗; we may assume the special fiber has no multiple component. By running the

MMP as in the first part of [KLSV18, Theorem 2.1], we may assume X has terminal

singularities, and so by Proposition 7.3 and Theorem 7.2 we may assume the special

fiber X is a K-trivial variety with canonical singularities. By the proposition again

and Theorem 3.4, X is symplectic. Take a Q-factorial terminalization π : Y −→ X

and consider the diagram (5.7) for π. With the notations used there, the deformation

Y −→ Def(Y ) is locally trivial by [Nam06, Main Theorem]. By [Nam06, Theorem 1]

the induced map p : Def(Y ) −→ Def(X) is finite and surjective. Thus, the classifying

map ∆ −→ Def(X) of the family X −→ ∆ can be lifted to Def(Y ) over a finite cover

∆′ −→ ∆. The pullback Y∆′ is then the claimed family; it only remains to show that it

is isomorphic to the pullback X∆′ outside the central fiber. This is because for t′ ∈ ∆′∗

mapping to t ∈ ∆∗ we have that Yt′ −→ Xt is a proper birational morphism between

Q-factorial terminal K-trivial varieties and thus is an isomorphism. �
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Remark 7.4. The techniques of [KLSV18] are used to fill in varieties over projective

period points in the interior of the period domain. We would like to point out that

in the smooth case this technique of “filling holes” has been used independently by

Odaka–Oshima for a different purpose, see the second paragraph in the first proof of

Claim 8.10 of [OO18].

8. Monodromy and Torelli theorems

Fix a lattice Λ and denote its quadratic form by q.

Definition 8.1. We say a Hodge structure on Λ is semi-polarized (by q) if q : Λ⊗Λ −→
Z(−2) is a morphism of Hodge structures. We furthermore say a semi-polarized Hodge

structure is hyperkähler if it is pure of weight two with h2,0 = h0,2 = 1, the signature

of q is (3, b2 − 3), and q is positive-definite on the real space underlying H2,0 ⊕H0,2.

Hyperkähler Hodge structures on Λ are parametrized by the period domain

ΩΛ := {[σ] ∈ P(ΛC) | q(σ) = 0, q(σ, σ̄) > 0}.

Let X+ be a primitive symplectic variety with (H2(X+,Z)tf , qX+) ∼= (Λ, q), and let

M+ be the moduli space of Λ-marked locally trivial deformations of X+. Note that

M+ is a union of connected components of the full moduli space MΛ of Λ-marked

primitive symplectic varieties from Section 6.12.

Set Ω := ΩΛ. We have a period map P : M+ −→ Ω which is a local isomorphism

by the local Torelli theorem (Proposition 5.5). Furthermore, inseparable points of M+

lie above proper Mumford–Tate subdomains of Ω by Corollary 6.15, so as in6 [Huy12,

Corollary 4.10] we have a factorization

M
+

P

  
M+

H

<<

P
// Ω

where H is the Hausdorff reduction of M+ and P is a local homeomorphism. For each

x ∈ M
+

, a local basis is provided by images H(B) of open balls x ∈ B ⊂ M+ over

which there is a universal family for x.

Note that O(Λ) acts on each of M+, M
+

, and Ω by changing the marking, and the

three maps H,P, P respect these actions. For any connected component M of M+, we

define Mon(M) ⊂ O(Λ) to be the image of the monodromy representation on second

cohomology, which is defined up to conjugation.

The goal of this section is to show:

Theorem 8.2. Assume rk(Λ) ≥ 5 and let M be a connected component of M+.

(1) The monodromy group Mon(M) ⊂ O(Λ) is of finite index;

6Huybrechts uses that the inseparability only occurs above Noether–Lefschetz loci, but the same

argument works for any countable union of proper complex analytic subvarieties.
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(2) P is an isomorphism of M onto the complement in Ω of countably many max-

imal Picard rank periods;

(3) If X+ is Q-factorial and terminal, then the same is true of every point (X,µ) ∈
M and P is an isomorphism of M onto Ω.

Theorem 8.2 immediately yields parts (1), (3), and (4) of Theorem 1.1. Before the

proof, we briefly recall the classification of orbit closures in Ω under an arithmetic

lattice, which is crucial to the argument.

8.3. Reminder on orbit closures.

Definition 8.4. The rational rank of a hyperkähler period p ∈ Ω is defined as

rrk(p) := dimQ
((
H2,0 ⊕H0,2

)
∩ ΛQ

)
∈ {0, 1, 2}.

We define the rational rank of a primitive symplectic variety to be the rational rank

of its Hodge structure on second cohomology.

Recall that the period domain Ω can be thought of as the oriented positive Grassman-

nian Gr++(2,ΛR). For a rational positive-definite sublattice ` ⊂ ΛQ with rk(`) ≤ 2, we

define T` to be the locus of periods for which ` ⊂ (H2,0 ⊕H0,2)R. Obviously T` ⊃ T`′

if ` ⊂ `′. Note that if rk(`) = 2, then T` is a pair of conjugate maximal Picard rank

points (and all such pairs arise this way). For rk(`) = 1, the set T` is isomorphic to

the space S+(`⊥R ) positive unit-norm vectors in `⊥R , which is a totally real submanifold

of Ω of real dimension rk(Λ)− 2.

The important point is that orbit closures for the action of a finite index subgroup

Γ ⊂ O(Λ) on the period domain Ω are classified according to rational rank.

Proposition 8.5 (Theorem 4.8 of [Ver15] and Theorem 2.5 of [Ver17]). Assume

rk(Λ) ≥ 5. We have for p ∈ Ω:

(1) If rrk(p) = 0, Γ · p = Ω;

(2) If rrk(p) = 1, Γ · p is a (countable) union of T` with rk(`) = 1;

(3) If rrk(p) = 2, Γ · p is a (countable) union of T` with rk(`) = 2.

8.6. Proof of Theorem 8.2. We divide the proof into five steps. Parts (1), (2), and

(3) are proven in steps 4, 5(a), and 5(b), respectively.

Step 1. Let p ∈ Ω be a very general period with Picard group generated by a positive

vector. Then P−1(p) is finite.

Proof. In fact, its equivalent to show P−1(p) is finite by the assumption on the Picard

rank. For the following lemma, we say an ample line bundle L on a primitive symplectic

variety X has BBF square d if qX(c1(L)) = d.

Proposition 8.7. Pairs (X,L) consisting of a primitive symplectic variety X of a

fixed locally trivial deformation type and an ample line bundle L with fixed BBF square

form a bounded family.



38 BENJAMIN BAKKER AND CHRISTIAN LEHN

Proof. Using that the Fujiki constants are locally trivially deformation-invariant and

[Mat86, Theorem 2.4], for any such pair (X,L), the variety X can be embedded with

bounded degree in PN for some fixed N via the sections of some fixed power Lk. Let

H be the corresponding Hilbert scheme of subschemes of PN of bounded degree, and

let f : X −→ H be the universal family. Let H ′ ⊂ H denote the subset over which the

fibers of f are primitive symplectic. By semi-continuity and openness of symplecticity,

H ′ ⊂ H is open.

Lemma 8.8. There is a stratification of H ′ by locally closed reduced subschemes over

which X is locally trivial.

Proof. There is a stratification Hi of H ′ by locally closed reduced subschemes along

which the second Betti numbers (R2f∗QX )t are constant, for instance by using étale

cohomology. By Corollary 5.23, X is locally trivial in an analytic neighborhood of

every point t in each Hi, and so X is locally trivial on each Hi. �

It follows from the lemma that the set of pairs (X,L) as in the statement of the

proposition together with a choice of an embedding into PN as above is a locally closed

subscheme U of H. The C-points of the quotient stack [PGLN+1\U ] then parametrize

isomorphism classes of the pairs (X,L). The PGLN+1 action has finite stabilizers on

U by Lemma 4.6, so by general theory [PGLN+1\U ] is a Deligne–Mumford stack and

there is a finite-type étale atlas S → [PGLN+1\U ].

To summarize, there is (depending on the fixed locally trivial deformation type and

the fixed BBF square) a finite-type scheme S and a locally trivial family X −→ S of

primitive symplectic varieties and a relatively ample L on X which has the property

that every (X,L) as in the statement of the lemma appears finitely many times (and

at least once) as a fiber. �

Each component S0 of the scheme S constructed in the proof of the lemma has

a period map of the form Pv : S0 → O(v⊥)\Ωv⊥ for some v ∈ Λ with fixed square

q(v) = d, where we think of Ωv⊥ = P(v⊥) ∩ Ω. Moreover, Pv is a local isomorphism

and therefore quasifinite, as by e.g. [Bor72, Theorem 3.10] the fibers are algebraic.

Now, for p ∈ Ω as in the original claim, suppose q(v) = d for a generator v of

the Picard group. It follows that there are finitely many isomorphism classes of pairs

(X,L) where X is a primitive symplectic variety that is locally trivially deformation-

equivalent to X+, and L is an ample bundle of BBF square d, and the primitive

parts of H2(X,Z)tf and p are abstractly isomorphic as polarized Hodge structures. By

the assumption on the Picard rank, there are then finitely many isomorphism classes

of projective X locally-trivially deformation equivalent to X+ and with H2(X,Z)tf

abstractly isomorphic to p as semi-polarized Hodge structures. Moreover, Aut(p) =

±1, so for each such X there are finitely many such isomorphisms.

To finish, by Theorem 6.9 every point in P−1(p) is projective and uniquely polarized

by a class of BBF square d, and the claim follows. �
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For the next step, let Ωrrk=0 ⊂ Ω be the rational-rank-zero locus, let M
+
rrk=0 ⊂M

+

be the preimage of Ωrrk=0 under P , and let P rrk=0 be the restriction of P to M
+
rrk=0.

Note that since we are assuming rk(Λ) ≥ 5, every p ∈ Ωrrk=0 has dense O(Λ)-orbit, by

Proposition 8.5.

Step 2. P rrk=0 is a covering map onto Ωrrk=0.

Proof. The claim follows from the following two lemmas.

Lemma 8.9. P rrk=0 has finite fibers of constant size. In particular, it is surjective

onto Ωrrk=0.

Proof. By the previous step there is a point p0 ∈ Ωrrk=0 over which P−1(p0) is finite of

size N , and therefore P−1(p) is finite of size ≤ N for every point p ∈ Ωrrk=0. Indeed,

if some p ∈ Ωrrk=0 had at least N + 1 preimages then by Hausdorffness we can find

pairwise non-intersecting open neighborhoods around any N + 1 points in the fiber

P−1(p) that map isomorphically to the same open neighborhood V of p, but p0 has

dense orbit. Interchanging p0 and p, we see that in fact the fibers are finite of constant

size. �

Lemma 8.10. Suppose f : X −→ Y is a local homeomorphism between two Hausdorff7

topological spaces. If f has finite fibers of constant size, then it is a covering map onto

its image.

Proof. For any y ∈ Y , because f−1(y) is finite we may find nonintersecting open sets

Ux around each point x ∈ f−1(y) on which f is a homeomorphism, and by shrinking we

may further assume all the Ux have the same image U . It follows from the assumption

on fiber size that f−1(U) =
⋃
x∈f−1(y) Ux. �

�

Step 3. P rrk=0 is an isomorphism of Mrrk=0 onto Ωrrk=0.

Proof. The rational-rank-zero locus is Ωrrk=0 := Ω r
⋃
`6=0 T` in the notation of Sec-

tion 8.3, and each T` is a closed submanifold of real codimension rk(Λ) − 2. Assum-

ing rk(Λ) ≥ 5, we have that Ωrrk=0 is locally path-connected and path-connected by

[Ver13, Lemma 4.10] and moreover locally simply connected and simply connected by

the following lemma, as the same is true of Ω.

Lemma 8.11. If M is a simply connected smooth manifold and S is a countable union

of closed submanifolds of (real) codimension ≥ 3, then M r S is simply connected.

Proof. This argument is taken from a MathOverflow answer of Martin M. W. [W.15].

The result is well-known when S is a single closed submanifold of codimension ≥ 3.

The space of nulhomotopies S1 × [0, 1] −→ M of a given path with the compact open

7In fact, only Hausdorffness on the source is used.
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topology is a Baire space and the set of homotopies avoiding a single closed submanifold

of codimension ≥ 3 is a dense open subset. Therefore, the set of homotopies avoiding

S is nonempty (and in fact dense) by definition of a Baire space. �

Thus, the claim follows from the previous step. �

Step 4. Mon(M) is finite index in O(Λ).

Proof. P : M
+
rrk=0 −→ Ωrrk=0 has finite degree and Ωrrk=0 is path-connected. Therefore,

M+ has finitely many connected components. The group Mon(M) is the stabilizer of

the component M, and is therefore finite index. �

Step 5(a). P is an isomorphism of M onto the complement in Ω of countably many

maximal Picard rank periods.

Proof. By step 3, it is enough to show that the image of M under P contains the locus

Ωrrk≤1 of non-maximal Picard rank periods. The image is open and Mon(M)-invariant,

whereas by Proposition 8.5 and the previous step a Mon(M) orbit closure in Ω must

be a union of T` or all of Ω. It is therefore enough to show that for any rank one

sublattice ` ⊂ Λ, a very general point of T` is contained in P (M).

Considering a projective (X,µ) ∈ M with a polarization v that is orthogonal to `,

we obtain a period map Pv : S0 → O(v⊥)\Ωv⊥ as in step 1 corresponding to a family

of locally trivial deformations of X over S0. The complement of Pv(S0) is a locally

closed subvariety of O(v⊥)\Ωv⊥ and its preimage V in Ωv⊥ is therefore also a locally

closed analytic subvariety.

It suffices to show that T` ∩ Ωv⊥ is not contained in V . But T` is totally real and

has half the (real) dimension of Ω, so the tangent space to T` ∩ Ωv⊥ at a point p is

not contained in any proper complex subspace of TpΩv⊥ . It follows that if T` were

contained in V , it must be contained in the singular locus of V , and so by induction

we get a contradiction.

�

Step 5(b). When X+ is Q-factorial and terminal, then the same is true of every point

(X,µ) ∈M and P is an isomorphism of M onto Ω.

Proof. The first claim follows from Lemma 5.20. For the second claim, by the previous

step, it remains to show P (M) contains all maximal Picard rank points, which are in

particular projective by Theorem 6.9.

Now for any maximal Picard rank period p, let v ∈ Λ be a positive vector which

is Hodge with respect to p. A very general deformation of p for which v remains

algebraic is in the image of P , and the period map Pv : S0 → O(v⊥)\Ωv⊥ from step 1
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is dominant, so we can find a curve B ⊂ O(v⊥)\Ωv⊥ through p such that an open set

U ⊂ B lifts to S0, possibly after a base change. Now apply8 Proposition 7.1. �

This concludes the proof.

Remark 8.12. The argument given in Step 1 of the proof of the theorem together

with Huybrechts’ surjectivity of the period map [Huy99, Theorem 8.1] implies that

the monodromy group is of finite index for irreducible symplectic manifolds even when

b2 = 4 (for b2 = 3 it is automatic). For an argument not using Huybrechts’ theorem,

see [Ver19, Theorem 2.6].

Remark 8.13. Some ideas similar to those appearing in the proof of Theorem 8.2 have

also been used recently by Huybrechts [Huy18] to prove some finiteness results for

hyperkähler manifolds, and these arguments can likely be adapted to the singular

setting.

9. Q-factorial terminalizations

If X is an algebraic variety, then by [BCHM10, Corollary 1.4.3] there exists Q-

factorial terminalization π : Y −→ X. This is often crucial in the theory of singular

symplectic varieties. On the other hand, even if you are mainly interested in projective

symplectic varieties, it is often necessary to consider also compact Kähler varieties

and certainly the methods of op. cit. are not yet established in the Kähler case.

The main result of this section, Theorem 9.1, partially remedies this in the case of

primitive symplectic varieties. If we start with a primitive symplectic variety with

second Betti number ≥ 5, it establishes the existence of Q-factorial terminalizations

on a bimeromorphic model which is locally trivially deformation equivalent to the

initial variety.

In fact, by Theorem 6.14 the following is slightly stronger, though we expect it to be

equivalent. For a normal variety X we denote by ωX the push forward of the canonical

bundle along the inclusion of the regular locus.

Theorem 9.1. Let X be a primitive symplectic variety satisfying b2(X) ≥ 5. Then

there exists a primitive symplectic variety X ′ which is inseparable from X in (locally

trivial) moduli and a Q-factorial terminalization of X ′, that is, a proper bimeromorphic

morphism π : Y −→ X ′ such that Y has only Q-factorial terminal singularities and

π∗ωX′ = ωY = OY . In particular, Y is a primitive symplectic variety.

As a consequence of the fact that bimeromorphic varieties without compact curves

are isomorphic, see e.g. the proof of Corollary 6.15, we obtain:

Corollary 9.2. Let X be as in Theorem 9.1, and additionally assume it has Picard

rank zero. Then X has a Q-factorial terminalization. �

8Or [KLSV18, Theorem 1.7] in the smooth case.
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The proof of Theorem 9.1 is obtained by combining Proposition 5.22 with Corol-

lary 6.11, Theorems 6.14 and 8.2, and the existence of Q-factorial terminalizations of

projective varieties.

Proof of Theorem 9.1. Let us consider the universal locally trivial deformation X −→
Def lt(X) and choose t ∈ Def lt(X) nearby such that X0 := Xt is projective. Take

a Q-factorial terminalization Y0 −→ X0, denote N the qY0-orthogonal complement of

H2(X0,Q) in H2(Y0,Q), and consider the universal deformation of the pair

Y0
//

��

X0

��

Def(Y0, N)
p
// Def lt(X0)

given by Proposition 5.22. By Lemma 5.20, we may assume that every fiber of Y0 −→
Def(Y0, N) is Q-factorial and by local triviality and Theorem 3.4, every fiber has

terminal singularities. In other words, for all s ∈ Def(Y0, N) the morphism (Y0)s −→
(X0)p(s) is a Q-factorial terminalization.

If rrk(X) = 0, then by Proposition 8.5 and Theorem 8.2 there is a point t′ ∈
Def lt(X0) such that the fiber X ′ := (X0)t′ and X are inseparable in moduli. By con-

struction, X ′ has a Q-factorial terminalization, and by Theorem 6.14, X ′ is bimero-

morphic to X. If rrk(X) = 1, projective periods are still dense in the orbit closure of

the period of X by Theorem 6.9, so the same argument can be applied by choosing

the period of X0 to be in the orbit closure of the period of X. Finally, varieties X

with rrk(X) = 2 are projective so there the result is known anyway by [BCHM10,

Corollary 1.4.3]. �

As an application, we can give examples of divisorially Q-factorial but not Q-factorial

varieties.

Example 9.3. Consider a projective irreducible symplectic manifold Y of dimenison 2n

admitting a small contraction π : Y −→ X where X is a projective primitive symplectic

variety and the exceptional locus of π is isomorphic to Pn. As π has connected fibers,

Pn must be contracted to a point and thus X has an isolated singularity. Such examples

can be realized on the Hilbert scheme Y = S[n] of n points on a K3 surface S containing

a smooth rational curve. As the contraction is small, the variety X is not Q-factorial.

By [BL, Theorem 4.1, Proposition 4.5, and Proposition 5.7], this contraction deforms

over a smooth hypersurface in Def(Y ).

We denote by ` ⊂ Pn ⊂ Y a line and by L the unique line bundle on Y with

qY (c1(L), ·) = (`, ·) where the right–hand side denotes the pairingN1(Y )Q⊗N1(Y )Q −→
Q. It follows that c1(L) is q-orthogonal to the pull back of any ample divisor on X,

hence qY (c1(L)) = qY (`) < 0. Replacing X by a small locally trivial deformation, we

may assume:

(1) The contraction π : Y −→ X deforms and has Pn as its exceptional set.
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(2) The varieties X and Y are Kähler and non-algebraic such that the Picard group

of X is trivial and Pic(Y ) has rank one.

(3) There are no divisors on Y , in particular, X is not Q-factorial but divisorially

Q-factorial in the sense of Definition 2.14.

For (3), if Ln were represented by an effective divisor D, then since qX(D) < 0 it is ex-

ceptional [Bou04, Theorem 4.5] and hence uniruled [Bou04, Proposition 4.7]. However,

the only curves on Y are the ones contracted by π.
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