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Abstract

Virtual curve counts have been defined for threefolds by integration against vir-

tual classes on moduli spaces of stable maps (Gromov-Witten theory), ideal sheaves

(Donaldson-Thomas theory), and stable pairs (Pandharipande-Thomas theory). The

first two theories are proven to be equivalent for toric threefolds, and all three are

conjecturally equivalent for arbitrary threefolds. One may ask whether there is such a

correspondence for surfaces. In particular, the Gromov-Witten theory of K3 surfaces

has recently been computed by Maulik, Pandharipande, and Thomas; it is governed

by quasimodular forms and is closely related to invariants obtained from the moduli

spaces of rank r = 0 stable pairs with n = 1 sections. We compute the Hodge poly-

nomials of the moduli spaces of stable pairs for higher rank r ≥ 0 and level n ≥ 1,

and explore the modularity properties and relationship to Gromov-Witten theory.
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Chapter 1

Introduction

1.1 Gromov-Witten Theory

Gromov-Witten theory was originally developed to make mathematically rigorous

counts of embedded curves but has since revealed a rich structure of its own. For

simplicity take X to be a smooth algebraic variety over C and β ∈ H2(X,Z) a

curve class. Kontsevich and Manin [KM94] constructed a Deligne-Mumford stack

M g,n(X, β) of stable maps C → X from genus g, n-pointed curves C whose image

has homology class β. Following [BF97], M g,n(X, β) carries a perfect obstruction

theory and therefore has a virtual fundamental class [Mg,n(X, β)]vir ∈ A∗(Mg,n(X, β))

of dimension

dim[M g,n(X, β)]vir =

∫
β

c1(X) + (3− dimX)(g − 1) + n (1.1)

Let π : C → M g,n(X, β) be the universal curve and µ : C → X the universal stable

map. There are n sections σi : M g,n(X, β)→ C corresponding to the n marked points;

the ith evaluation map is the composition

evi = µσi : M g,n(X, β)→ X
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which on the level of C-points maps a stable map f : C → X with ith marked point

pi ∈ C to f(pi). C is a flat curve over M = M g,n(X, β) with only nodal singularities,

so the relative dualizing sheaf ω = ωC/M is a line bundle. The ψi classes are defined

as

ψi = c1(σ∗i ω) ∈ A1(M g,n(X, β))

and the Gromov-Witten invariants are all integrals of the form

〈τk1(γ1) · · · τkn(γn)〉Xg,β =

∫
[Mg,n(X,β)]vir

n∏
i=1

ψki
i ∪ ev∗i (γi) (1.2)

where ki ∈ N and γi ∈ A∗(X). The Gromov-Witten invariant (1.2) attaches a numeri-

cal invariant to the collection of n-pointed curves in X meeting prescribed subvarieties

of homology classes dual to the γi at the ith marked point with ki-fold tangency. Of

particular importance are threefolds X for which c1(X) = 0—so called Calabi-Yau

threefolds—since the moduli spaces of 0-pointed stable maps all have virtual dimen-

sion 0 by (1.1). The Gromov-Witten numbers1

Ng,β =

∫
[Mg(X,β)]vir

1

are virtual curve counts. The reduced Gromov-Witten potential is

F ′GW (X;u, v) =
∑

β 6=0,g≥0

Ng,βu
2g−2vβ

and the reduced Gromov-Witten partition function

Z ′GW (X;u, v) = expF ′GW (X;u, v)

generates Gromov-Witten invariants with possibly disconnected domain curves.

1Mg(X,β) = Mg,0(X,β) is the moduli space of unmarked stable curves.
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1.2 Donaldson-Thomas Theory on Threefolds

A second method for virtually counting curves on threefolds was introduced in [Tho00]

using the Hilbert scheme of 1-dimensional subschemes. Let X be a smooth 3-

dimensional algebraic variety over C, β ∈ H2(X,Z) a curve class, and In(X, β) the

Hilbert scheme of 1-dimensional subschemes Z with [Z] = β and χ(OZ) = n. The

ideal sheaf IZ of such a Z is reflexive, rank 1, and has trivial determinant. Conversely

any such sheaf I injects into its double dual

I ↪→ I∨∨ ∼= O

and is therefore an ideal sheaf. In(X, β) may thus be thought of as the moduli space

of reflexive rank 1 sheaves with trivial determinant. In(X, β) has a perfect obstruction

theory which for X Calabi-Yau has virtual dimension 0, and the resulting invariants

N ′n,β =

∫
[In(X,β)]vir

1

are the Donaldson-Thomas invariants2. We likewise form the total Donaldson-Thomas

partition function

ZDT (X; q, v) =
∑

β∈H2(X,Z)

∑
n∈Z

N ′n,βq
nvβ

The subschemes parametrized by In(X, β) for β 6= 0 must have a 1-dimensional

component in the curve class β, but they may also include 0-dimensional components

not supported on the curve. To correct for this, we define the reduced Donaldson-

Thomas partition function

Z ′DT (X; q, v) =
ZDT (X; q, v)

ZDT (X; q)0

2For X not Calabi-Yau, invariants with insertions analagous to (1.2) may be defined using the
Chern classes of the universal ideal sheaf in place of the ψi classes.
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where

ZDT (X; q)0 =
∑
n∈Z

N ′n,0q
n

is the degree 0 partition function. It has been computed; let

M(q) =
∏
n≥0

1

(1− qn)n

be the McMahon function, the generating function of 3-dimensional partitions. Then

Theorem 1.2.1. [Li06, BF08, LP] For X a threefold

ZDT (X; q)0 = M(−q)χ(X)

where χ(X) is the topological Euler characteristic.

The main result of [MNOP06a, MNOP06b] is that the reduced Gromow-Witten

and Donaldson-Thomas partition functions are related by the change of variable q =

−eiu.

Theorem 1.2.2. [MNOP06a, MNOP06b] For X a toric Calabi-Yau threefold3

Z ′GW (X;u, v) = Z ′DT (X;−eiu, v)

(1.2.2) has been proven for the generating functions of primary invariants for all

toric threefolds as well [MOOP]; primary invariants are of the form (1.2) with all

ki = 0. Thus there is a strong relationship between virtual curve counts via stable

maps and curve counts via moduli of sheaves.

3There are no proper toric Calabi-Yau threefolds, but GW and DT invariants can still be defined
by equivariant localization for local Calabi-Yau threefolds.
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1.3 Stable Pairs

A third alternative to virtually counting curves on a threefold X was developed in

[PT09b, PT09a, PT10] using Le Potier’s theory of stable pairs[LP93, LP95]. A stable

pair on X consists of a purely 1-dimensional sheaf F on X and a section O → F

with 0-dimensional cokernel. Given a smooth curve C ⊂ X and a divisor D on C, we

can associate a stable pair O → OC(D) whose cokernel is supported on the points

of D, and the moduli space Pn(X, β) of stable pairs O → F with χ(F ) = n and

[Supp(F )] = β may thus be thought of as a compactification of the moduli spaces of

embedded n-pointed smooth curves. Pandharipande and Thomas show that Pn(X, β)

has a virtual class which for X Calabi-Yau has dimension 0; the invariants

N ′′n,β =

∫
[Pn(X,β)]vir

1

are the Pandharipande-Thomas invariants, and they are also closely related to Gromov-

Witten and Donaldson-Thomas counts. In fact, if

Z ′PT =
∑
β 6=0

∑
n∈Z

N ′′n,βq
nvβ

is the reduced Pandharipande-Thomas partition function, then

Theorem 1.3.1. [PT09b]

Z ′DT (X; q, v) = Z ′PT (X; q, v)

Theorem (1.3.1) was treated in the toric case by [PT09a]; it was observed in

[PT09b] that the equality can be viewed as a wall-crossing formula for invariants of

stability conditions on Db(X). The general case of the theorem has been treated by

many authors, [Tod, ST, Bri].
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1.4 The Gromov-Witten Theory of K3 Surfaces

It is natural to ask whether there is an analogous relationship between the Gromov-

Witten theory of surfaces and sheaf-theoretic virtual curve counts of surfaces. In the

threefold case, the relationship is most easily described in the Calabi-Yau case, so

it is natural to ask the question first for K3 surfaces. The Gromov-Witten theory

of K3 surfaces has been studied recently by Maulik, Pandharipande, and Thomas

[MPT], and the Gromov-Witten partition functions have proved to have surprising

modularity properties.

Let X be a K3 surface, β a curve class on X. The normal Gromov-Witten theory

of X vanishes because the obstruction bundle has a canonical trivial quotient. Indeed,

the obstruction space at a stable map f : C → X is H1(f ∗TX), but since ωX ∼= OX ,

the canonical map

H1(f ∗TX) ∼= H1(f ∗Ω1
X)→ H1(ωC) ∼= C

yields a trivial quotient Obs → O of the obstruction bundle Obs. This forces the

virtual class to be 0 since naively [M g,n(X, β)]vir is the Euler class of the obstruction

bundle.

After modifying the obstruction theory by taking instead the kernel of Obs→ O

to be the obstruction bundle, we obtain a reduced virtual class [M g,n(X, β)]red with

virtual dimension one greater than expected:

dim[M g,n(X, β)]red = 1 +

∫
β

c1(TX) + (3− dimX)(g − 1) + n = g + n

The reduced Gromov-Witten invariants are

〈τk1(γ1) · · · τkn(γn)〉X,redg,β =

∫
[Mg,n(X,β)]vir

n∏
i=1

ψki
i ∪ ev∗i (γi) (1.3)
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The main result is

Theorem 1.4.1. [MPT] Let X be an elliptic K3 with section, s the section class and

f the fiber class. Each Gromov-Witten potential

FX
g (τk1(γ1) · · · τkn(γn)) =

∑
h≥0

〈τk1(γ1) · · · τkn(γn)〉X,redg,s+hf q
h−1

is the Fourier expansion of a quasimodular form.

In addition to the ψi classes, one can also define the Hodge classes λi = ci(π∗ω),

where ω is the relative dualizing sheaf of the universal curve C π−→M g,n(X, β). Let

Rg,β =

∫
[Mg(X,β)]red

(−1)gλg

and define the partition function

ZGW
β (u) =

∑
g≥0

Rg,βu
2g−2 (1.4)

ZGW
β (u) only depends on the genus h of β by deformation invariance, and we will

also denote (1.4) by ZGW
h (u).

1.5 Sheaf-Counting on K3 Surfaces

Let X be a K3 surface and D a divisor class such that every divisor in D is reduced

and irreducible of genus g. Let P = |D| be the complete linear system of D and

X×P ⊃ Cg → P the universal divisor. The relative Hilbert scheme C[d]
g = Hilbd(Cg/P)

parametrizing divisors C in the class D and subschemes Z of C of length n is the

surface analog of the moduli space Pn(X, β) of stable pairs O → F with c1(F ) = D

and χ(F ) = d+ 1− g = n. As first noted by Kawai and Yoshioka, C[d]
g is smooth, so

a reasonable replacement for the Pandharipande-Thomas invariant is the topological

7



Euler characteristic χ(C[d]
g ). Let

ZPT
g (y) =

∑
d≥0

(−1)d+gχ(C[d]
g )yn+g−1

We then have a stable map-stable pair correspondence analogous to (1.3.1)

Theorem 1.5.1. [MPT] ZGW
h (u) = ZPT

h (−eiu)

1.6 Outline

The main aim of this thesis is to further explore the stable map-stable pair corre-

spondence for K3 surfaces. We compute the Hodge polynomials of moduli spaces of

higher rank stable pairs On → F for all n ≥ 0 and r = rk(F ) ≥ 0, rederiving the

n = 1, r = 0 calculation of [KY00]. We investigate the modularity of the resulting

stable-pair potential functions.

The presentation is organized as follows. Chapters 2 and 3 review the theory of

(semi)stable sheaves and stable pairs, respectively. In Chapter 4 we prove results

about stable sheaves on K3 surfaces that will eventually dictate the geometry of the

moduli spaces that allows for the computation of the Hodge polynomials. Chapter

5 treats some elementary aspects of “u-calculus” to allow for a more streamlined

description of the computation in Chapter 6. We conclude in Chapter 7 with a

discussion of further directions.

8



Chapter 2

Recollections on (Semi)stable

Sheaves

Throughout the following k will be an algebraically closed characteristic 0 field, and

by a sheaf on a scheme we will mean a coherent sheaf. Let X be a scheme over

k of dimension n. In general the collection of all coherent sheaves on X cannot

be represented by a scheme; a subcollection which can be reasonably algebraically

parametrized by a scheme is picked out by introducing the notion of (semi)stability

on the category Coh(X) of coherent sheaves on X. Stability structures can be defined

on any abelian category [Rud97], and can even be extended to the derived category

Db(X) = Db Coh(X) [Bri07], but for our purposes classical stability is sufficient.

The question of whether the computation carries through for more general notions of

stability will be addressed in Chapter 7. The following review of the basic properties

of stable sheaves is adapted from [HL].

2.1 The Torsion Filtration

Let Coh(X) be the abelian category of coherent sheaves on X and Cohd(X) the full

subcategory of sheaves supported in dimension ≤ d; by fiat Coh−1(X) is the full

9



subcategory with only the object 0 ∈ Coh(X). The inclusion functor id : Cohd(X)→

Coh(X) has an obvious right adjoint td which to each E ∈ Ob(Coh(X)) associates

the subsheaf Td(E) of sections supported in dimension ≤ d. Note that the adjunction

map

idtd(E) ↪→ E

is injective. There is a torsion filtration for any E ∈ Coh(X)

0 = T−1(E) ↪→ T0(E) ↪→ T1(E) ↪→ · · · ↪→ Tn−1(E) ↪→ Tn(E) = E (2.1)

It is the unique filtration by objects in Cohd(X) for d ≤ n. For d′ ≤ d the id factor

through fully faithful embeddings

id′,d = tdid′ : Cohd′(X)→ Cohd(X)

Definition 2.1.1. The category Cohpure
d (X) of pure d-dimensional sheaves is the

right-orthogonal complement of Cohd−1(X) in Cohd(X), i.e. the full subcategory of

Cohd(X) with objects

{E ∈ Ob(Cohd(X))|Hom(F , E) = 0 ∀F ∈ Ob(Cohd−1(X))}

In other words, a pure d-dimensional sheaf is a sheaf supported in dimension d

none of whose sections has lower dimensional support. The ith quotient Ti(E)/Ti−1(E)

in (2.1) is pure of dimension i and (2.1) is the unique such filtration. The purity of a

sheaf E is equivalent to the torsion filtration only having one nonzero quotient.

For d′ ≤ d ≤ n, Cohd′(X) forms a Serre subcategory of Cohd(X); define Cohd′,d(X)

to be the quotient abelian category of Cohd(X) by Cohd′(X), cf. [GM94]. Clearly

Coh−1,d(X) = Cohd(X). Recall that the objects of Cohd′,d(X) are objects of Cohd(X)

and a morphism E → F between objects E ,F ∈ Cohd(X) is an equivalence class of

10



diagrams

G
s

���������
f

��????????

E F

where G is an object of Cohd(X), f ∈ HomCohd(X)(G,F), and s ∈ HomCohd(X)(G, E)

has kernel and cokernel in Cohd′(X). Such a diagram is called a roof. Two roofs

G
s

���������
f

��???????? G ′
s′

��������� f ′

��@@@@@@@

E F E F

are equivalent if there is a commutative diagram

G ′′
s′′

���������� f ′′

  @@@@@@@@

G
s

���������

f
**UUUUUUUUUUUUUUUUUUUUUUU G ′

f ′

��@@@@@@@

s′

ttiiiiiiiiiiiiiiiiiiiiii

E F

where the top two morphisms are a roof.

For d′′ ≤ d′ ≤ d, the inclusions id : Cohd′′(X) → Cohd′(X) yield fully faithful

embeddings

id′′,d′,d : Cohd′′,d(X)→ Cohd′,d(X)

Definition 2.1.2. The category of pure (d′, d)-dimensional sheaves is the right or-

thogonal complement of Cohd−1,d(X) in Cohd′,d(X).

There is a unique filtration of any E ∈ Cohd′,d(X)

0 = Td′(X) ↪→ Td′+1(X) ↪→ · · · ↪→ Td−1(E) ↪→ Td(E) = E (2.2)

by objects of Cohd′,i(X) for d′ ≤ i ≤ d whose ith quotient sheaf is purely (d′, i)-

11



dimensional. The purity of E ∈ Ob(Cohd′,d(X)) is equivalent to the condition that

the torsion filtration (2.1) of E as an element of Coh(X) satisfies

Td′(E) = · · · = Td−1(E)

2.2 (Semi)stability

Let X be a projective scheme of dimension n with ample class H. For any sheaf E

on X, the H-degree is

deg E = c1(E).Hn−1

The H-Hilbert polynomial PE is defined so that

PE(m) = χ(E ⊗Hm)

It is an elementary fact [Har77] that PE is in fact a polynomial. deg E , PE depend on

the choice of ample class H, but we will suppress the dependence from the notation.

Define αi(E) by

PE(m) =
∑
i≥0

αi(E)
mi

i!

Clearly α0(E) = χ(E) is the Euler characteristic. The first two coefficients in PE are

also easily determined:

Proposition 2.2.1. Let E be a sheaf on X of dimension d

1. PE has degree d, and αd(E) > 0. If d = n, define

rk(E) =
αn(E)

αn(O)

2. If d = n, then αn−1(E) = deg E − degKX

2
where KX is the canonical class.

12



For E locally free one can show rk(E) agrees with the normal notion of rank and

deg E = deg det E with the normal notion of degree.

Remark 2.2.2. If F is purely (d′, d)-dimensional, any sheaf E which injects into F

in Cohd′,d(X) must also be purely (d′, d)-dimensional. In particular, αd(E) > 0.

The Hilbert polynomial is additive on short exact sequences, and therefore defines

an additive homomorphism P : K(Coh(X)) → Q[m]n from the Grothendieck group

K(Coh(x)) of Coh(X) into the additive group Q[m]n of rational polynomials of degree

≤ n. Similary, P restricts to a homomorphism P : K(Cohd(X))→ Q[m]d, and if we

let Q[m]d′,d = Q[m]d/Q[m]d′ , the Hilbert polynomial gives a homomorphism

P : K(Cohd′,d(X))→ Q[m]d′,d

Note in particular that for d = n and d′ = n− 2,

P : K(Cohn−2,n(X)) // Q[m]n−2,n

E � // αn(E)m
n

n!
+
(
deg E − degKX

2

)
mn−1

(n−1)!

The normalized H-Hilbert polynomial of a sheaf E of dimension d is the monic poly-

nomial

pE =
d!

αd(E)
PE

and similarly we get a map

p : Ob(Cohd′,d(X))→ Q[m]monic
d′,d

where Q[m]monic
d′,d ⊂ Q[m]d′,d is the residues of monic polynomials. An ordering <

is defined between elements f, g of Q[m]monic
d′,d as follows: f < g if f(n) < g(n) for

n >> 0. Equivalently, < is the lexicographic ordering on the coefficients. The

13



H-slope µ(E) ∈ Q ∪ {∞} is defined for any sheaf E as µ(E) = deg(E)
rk(E)

—again, the

H dependence is suppressed from the notation. In particular, as an ordered set,

Q[m]monic
n−2,n is isomorphic to Q with the standard ordering via

Q[m]monic
n−2,n → Q : mn + namn−1 7→ a+

degKX

2

So for E ,F ∈ Cohn−2,n(X), pE ≤ pF if and only if µ(E) ≤ µ(F). We are now ready

to define (semi)stability:

Definition 2.2.3. A sheaf E on X is (d′, d)-semistable (respectively (d′, d)-stable) if

it is purely (d′, d)-dimensional and for any nontrivial injection G ↪→ E in Cohd′,d(X),

pG < pE (pG ≤ pE). We will refer to (−1, d)-(semi)stability as Gieseker (semi)stability

and (n− 2, n) (semi)stability as µ-(semi)stability.

Remark 2.2.4. An injection E ↪→ F in Cohd′,d(X) is saturated if the quotient is

purely (d′, d)-dimensional. For any injection E ↪→ F in Cohd′,d(X) the saturation

is the minimal saturated subsheaf E ′ ↪→ F containing E; it automatically satisfies

PE ≤ PE ′ [HL]. It is easily seen that it is enough to test the condition for saturated

subsheaves in the definition of (semi)stability .

Remark 2.2.5. For d′′ ≤ d′ ≤ d ≤ n, we can make sense of the (d′, d)-stability of a

pure element E ∈ Ob(Cohd′′,d(X)) by simply passing to Cohd′,d(X) via the projection

Cohd′′,d(X)→ Cohd′′,d(X). In that case, we clearly have

(d′, d)− stable ⇒ (d′′, d)− stable ⇒ (d′′, d)− semistable ⇒ (d′, d)− semistable

For example, a pure sheaf E ∈ Ob(Cohn(X)) is µ-semistable (µ-stable) if for any

injection G ↪→ E in Cohn−2,n(X), µ(G) ≤ µ(E) (µ(G) < µ(E)). Since E is torsion free,

every injection into E in Coh0,n(X) is representable by an injection in Coh(X), and

the projection of any injection in Coh(X) into Cohn−2,n(X) is injective. Further, by
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(2.2.4),

Proposition 2.2.6. Let E be a pure n-dimensional sheaf on X. E is µ-semistable

(µ-stable) in the above sense if and only if for any subsheaf G ↪→ E (in Coh(X)) with

rk(G) < rk(E), µ(G) ≤ µ(E) (µ(G) < µ(E)).

2.3 Properties of (Semi)stable Sheaves

Here we quickly recount the usual progression of observations about (semi)stable

sheaves. See [HL] for a more thorough treatment.

Remark 2.3.1. Let A be an arbitrary abelian category. A morphism in A is said to

be trivial if it is either 0 or an isomorphism.

i. The Hilbert polynomial P is additive on short exact sequences in Cohd′,d(X),

so for any such sequence of objects E ,F ,G ∈ Ob(Cohd′,d(X))

0→ E → F → G → 0 (2.3)

we have

αd(E) (pE − pF) = αd(G) (pF − pG) (2.4)

ii. From this and (2.2.2) it follows that F ∈ Ob(Cohd′,d(X)) purely (d′, d)-dimensional

is (d′, d)-(semi)stable if and only if for any nontrivial surjection F →→ G in

Cohd′,d(X) with αd(G) > 0, pF < pG (pF ≤ pG). Indeed, if F is (d′, d)-

(semi)stable, such a surjection gives a short exact sequence (2.3) and therefore

the equation (2.4). By (2.2.2) we then have pF < pG (pF ≤ pG). Conversely, if F

satisfies the above property, then for any nontrivial saturated injection E ↪→ F ,

we again get (2.4) with αd(G) > 0, and therefore pE < pF (pE) ≤ pF .
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iii. Given stable E ,F ∈ Ob(Cohd′,d(X)) with pE = pF , any morphism E → F in

Cohd′,d(X) is trivial. Indeed, if E ′ is the image, we have a diagram

E →→ E ′ ↪→ F (2.5)

If one of the morphisms were nontrivial, either

pE < pE ′ ≤ pF = pE

or

pE ≤ pE ′ < pF = pE

which is nonsense.

Definition 2.3.2. On any partially ordered set (S,≤), y ∈ S is an immediate

successor to x ∈ S if x < y and there is no y′ ∈ S such that

x < y′ < y

iv. Given stable E ,F ∈ Ob(Cohd′,d(X)) with pF an immediate successor to pE in

Q[m]d′,d, any morphism E → F in Cohd′,d(X) is either injective or surjective.

Such a morphism factors as in (2.5)

E →→ E ′ ↪→ F

one of which must be trivial since otherwise

pE < pE ′ < pF

v. For any semistable E ,F ∈ Ob(Cohd′,d(X)) with pE > pF , HomCohd′,d(X)(E ,F) =
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0. Indeed, a nonzero morphism would factor nontrivially as in (2.5)

E →→ E ′ ↪→ F

in which case

pE ≤ pE ′ ≤ pF

vi. For any E ∈ Ob(Cohd′,d(X)) purely (d′, d)-dimensional, there is a unique filtra-

tion

0 = HN−1(E) ↪→ HN0(E) ↪→ · · · ↪→ HN`−1(E) ↪→ HN`(E) = E (2.6)

whose quotients

QHN
i (E) = HNi(E)/HNi−1(E)

are (d′, d)-semistable with

pQHN
0 (E) > · · · > pQHN

` (E)

It is called the Harder-Narasimhan filtration.

vii. For any E ∈ Ob(Cohd′,d(X)) purely (d′, d)-dimensional, there is a unique injec-

tion

G ↪→ E

in Cohd′,d(X) such that pG ≥ pE , and G is maximal with respect to this property,

i.e. for any nontrivial injection F ↪→ E , pG ≥ pF , and if pF = pG then the

injection factors F ↪→ G. G is called the maximal destabilizing subsheaf ; it is

(d′, d)- semistable, and in fact equal to the first piece of the Harder-Narasimhan
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filtration,

G = HN0(E) ↪→ E

viii. Dually, for any E ∈ Ob(Cohd′,d(X)) purely (d′, d)-dimensional, there is a unique

surjection

E →→ G

in Cohd′,d(X) such that pE ≥ pG and G is maximal with respect to this property,

i.e. for any nontrivial surjection E →→ F , pF ≥ pG and if pF = pG then

the surjection factors G →→ F . In fact it is the last quotient of the Harder-

Narasimhan filtration (2.6).

E →→ QHN
` (E)

ix. For any (d′, d)-semistable sheaf E ∈ Ob(Cohd′,d(X)), there is a Jordan-Hölder

filtration

0 = JH−1(E) ⊂ JH0(E) ⊂ · · · ⊂ JHk−1(E) ⊂ JHk(E) = E (2.7)

in Cohd′,d(X) whose quotients QJH
i (E) = JHi(E)/JHi−1(E) are (d′, d)-stable

and all of whose normalized Hilbert polynomials are equal,

pE = pQJH
0 (E) = · · · = pQJH

k (E)

(2.7) is not unique, but any such filtration will have isomorphic associated

graded module

grJH(E) =
⊕
i

QJH
i (E)

Definition 2.3.3. Two (d′, d)-semistable sheaves E ,F are S-equivalent if

grJH(E) ∼= grJH(F)

18



2.4 Moduli of (Semi)stable Sheaves

We restrict our attention for the moment to Gieseker stability; throughout this sec-

tion, (semi)stability will mean Gieseker (semi)stability.

Let X be a smooth projective k-scheme, S an arbitrary k-scheme.

Definition 2.4.1. A family of (semi)stable sheaves on X × S/S is a sheaf E on

X × S flat over S such that for each k-point p of S the pullback Ep to the fiber Xp

is a (semi)stable sheaf on Xp. Two families E ,F on π : X × S → S are equivalent,

E ∼ F , if for some line bundle L on S there is an isomorphism E ∼= F ⊗ π∗L. The

moduli of semistable sheaves functor M : (Sch/k)op → Sets is

M(S) = {families E of semistable sheaves on X × S/S}/ ∼

and the value of M on a morphism T → S is pullback along the resulting map

X × T → X × S.

Recall that a fine moduli space for a functor F : (Sch/k)op → Sets is a scheme

M whose functor of points Hom( · ,M) : (Sch/k)op → Sets is isomorphic to F ; in

that case F is said to be representable. In particularly, representability requires the

existence of a family F onX×M—corresponding to the identity morphismM →M—

such that any family F ′ on X × S/S is equivalent to the pullback of F along the

classifying morphism S → M arising from the identification Hom( · ,M) ∼= F . F is

called a universal family.

It is well-known that M is not in general representable. Whenever there is a

properly semistable sheaf E , E has a Jordan-Hölder filtration by stable sheaves Ei

with the same Hilbert polynomial, and a family of sheaves on X can be constructed

over A1 which is E generically, but which collapses the filtration over 0 yielding
⊕

i Ei
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as a fiber. For example, take a nontrivial extension

0→ E0 → E → E1 → 0

with E0, E1 stable and pE = pE0 = pE1 ; let e ∈ Ext1(E0, E1) be the extension class.

There is a universal extension

0→ π∗E0 → G → π∗E1 → 0 (2.8)

onX×Ext1(E1, E0), where Ext1(E1, E0) = Spec k[Ext1(E1, E0)] and π : X×Ext1(E1, E0)→

X is the projection. G is flat over Ext1(E1, E0), and the restriction of (2.8) to any

fiber X× f is the extension corresponding to f . IfM can be represented by M , then

the line through 0 and e would yield a morphism A1 →M sending A1 \0 to the point

[F ] ∈M , but 0 to [
⊕

iFi], which is clearly impossible.

Thus, any scheme M representing families of semistable sheaves must identify

properly semistable sheaves with the same Jordan-Hölder constituents—that is, S-

equivalent semistable sheaves. This is the only obstruction to representing M in the

following weak sense:

Definition 2.4.2. A k-scheme M is a coarse moduli space for a functor F : (Sch/k)op →

Sets if there is a natural transformation F → Hom( · ,M) and M is universal with

respect to this property. Precisely, for any k-scheme M ′ and natural transformation

F → Hom( · ,M ′) there is a unique morphism M →M ′ such that

F //

%%JJJJJJJJJJJ Hom( · ,M)

��
Hom( · ,M ′)

commutes.
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Theorem 2.4.3. There is a coarse moduli space M for the functor M. k-points of

M are S-equivalence classes of semistable sheaves on X.

Recall that for any sheaf E on X, the Mukai vector v(E) ∈ H∗(X,Z) is

v(E) = ch(E)
√

Td(X)

(see Section 4.1). Fix a Mukai vector v ∈ H∗(X,Z). Letting M(v) ⊂M be the open

set with closed points corresponding to sheaves E with v(E) = v, we further have

Theorem 2.4.4. M(v) is projective.

If we restrict our attention to stable sheaves,M still has a chance at being repre-

sentable. The open subfunctor Ms of M is defined by

Ms(S) = {families E of stable sheaves on X × S/S}/ ∼

Also let M s ⊂M be the open set with closed points corresponding to stable sheaves.

M s will in general not have a universal family, but there is always a quasi-universal

family:

Theorem 2.4.5. There is a sheaf F on X×M s flat over M s such that for any family

of stable sheaves E on X×S, E ⊗π∗V ∼= f ∗F , where π : X×S → S is the projection,

V is a locally free sheaf on S, and f : X × S → X ×M s is the base-change of the

morphism guaranteed by the universal property of M s.

Remark 2.4.6. The important fact we will need is that étale locally on M s there

always exists a universal family.

21



Chapter 3

Recollections on Coherent Systems

Here we review the theory of coherent systems as developed by [He98]; see also [LP93,

LP95]. Naively, a coherent system is a sheaf together with a choice of n sections. We

first define coherent systems, briefly outline the basic properties and deformation

theory, and conclude by discussing the moduli of coherent systems.

3.1 Definitions

Let X,S be schemes over k.

Definition 3.1.1. A coherent system1 (E , U) of level n on X is a sheaf E on X,

a vector space U with dimU = n, and a morphism U ⊗ O → E. A morphism of

coherent systems (E , U)→ (F , V ) is a commutative diagram

U ⊗O //

��

E

��
V ⊗O // F

To develop the moduli of coherent systems, we need an appropriate notion of

1We will often refer to coherent systems simply as the pair of sheaves and suppress the structure
maps from the notation.

22



families of coherent systems. The first step is to understand the relative situation:

Definition 3.1.2. A relative coherent system Λ = (E ,U) on f : X → S is a sheaf E

on X, a sheaf U on S, and a morphism f ∗U → E. A morphism of relative coherent

systems (E ,U)→ (F ,V) is a commutative diagram

f ∗U //

��

E

��
f ∗V // F

We will often refer to relative coherent systems Λ on X/S simply as coherent

systems on X/S. Of course, a relative coherent system on X/k is just a coherent

system on X.

Relative coherent systems form an abelian category CohSys(X/S).

Lemma 3.1.3. CohSys(X/S) has enough injectives.

Proof. See [He98].

Given a coherent system Λ = (E ,U) on X/S and a diagram

X ′

f ′

��

g // X

f

��
S ′

h // S

define g∗Λ = (g∗E , h∗U) with the obvious structure map, f ′∗(h∗U) ∼= g∗(f ∗U)→ g∗E .

In particular, for any open U ⊂ S,

X ×S U // XU

f ′

��

g // X

f

��
U

h // S

Define the restriction Λ|U = g∗Λ. For any relative coherent systems Λ,Λ′ on X/S,
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the association U 7→ Hom(Λ|U ,Λ′|U) for open affine U defines a coherent OS-module

Hom(Λ,Λ′) whose global sections over S are Hom(Λ,Λ′).

Lemma 3.1.4. [He98] For any coherent system Λ on X/S,

Hom(Λ, · ) : CohSys(X/S)→ Coh(S)

is left exact. It’s derived functor is denoted by RHom(Λ, · ) : DCohSys(X/S) →

D(S); the cohomology sheaves are RHom(Λ, · ) of denoted by Exti(Λ, · ).

The Exti(Λ, · ) are related to the standard Ext groups by the following lemma

Lemma 3.1.5. [He98] For any coherent systems Λ = (E ,U),Λ′ = (E ′,U ′) on f :

X → S the obvious sequence of OS modules

0→ Hom(Λ,Λ′)→ Hom(U ,U ′)⊕ f∗Hom(E , E ′)→ Hom(U , f∗E ′)

is exact. Furthermore, if Λ′ is injective, the rightmost map is surjective.

Corollary 3.1.6. There is a triangle in the derived category DCohSys(X)

RHom(Λ,Λ′)→ RHom(U ,U ′)⊕Rf∗RHom(E , E ′)→ RHom(U , Rf∗E ′)→ RHom(Λ,Λ′)[1]

(3.1)

3.2 Deformation Theory of Coherent Systems

Let X be a smooth k-scheme and fix a coherent system Λ = (E , U) on X. By [He98],

the deformation space of Λ is naturally Ext1(Λ,Λ), and the obstruction lies in the

kernel of the composition

Ext1(Λ,Λ)→ Ext1(E , E)
tr−→ Hom(O,O)
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Over a point, (3.1) simply becomes a triangle

RHom(Λ,Λ)→ End(U)⊕RHom(E , E)→ RHom(U ⊗O, E)→ RHom(Λ,Λ)[1]

in Db(k), the bounded derived category of k-vector spaces. Here End(U) is supported

in degree 0, so RHom(Λ,Λ)[1] is a cone of the morphism RHom(E , E)→ RHom(U⊗

O, E) above degree 0. Formally, by the octahedral axiom there is a diagram

End(U) End(U)

RHom(U ⊗O, E)[−1] // RHom(Λ,Λ)

OO

// End(U)⊕RHom(E , E) //

OO

RHom(U ⊗O, E)

RHom(U ⊗O, E)[−1] // C //

OO

RHom(E , E) //

OO

RHom(U ⊗O, E)

End(U)[−1]

OO

End(U)[−1]

OO

(3.2)

Whose columns and rows are triangles. If we let x ∈ Db(X) be the two-term complex

x = [U ⊗O → E ]

with E placed in degree 1, there is also a triangle

x→ U ⊗O → E → x[1]

and applying RHom(·, E) there is another

RHom(x, E)[−1]→ RHom(E , E)→ RHom(U ⊗O, E)→ RHom(x, E)

Thus, C[1] in (3.2) andRHom(x, E) are both cones of the same morphismRHom(E , E)→

RHom(U ⊗ O, E) and are therefore isomorphic. By the long exact cohomology se-
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quence associated to the first vertical triangle in (3.2), the deformation space of Λ is

Ext1(Λ,Λ) ∼= Hom(x, E) and the obstruction lies in the kernel of the composition of

the canonical map

Ext1(x, E)→ Ext2(E , E)
tr−→ Ext2(O,O)

3.3 Stable Pairs and Their Moduli

Throughout this section, by (semi)stability we will again mean Gieseker (semi)stability.

Definition 3.3.1. A level n stable pair on X is a level n coherent system (E , U) on X

such that E is stable and the map U⊗O → E is injective on global sections. Similarly,

a family of stable pairs (E ,U) on f : X → S is a relative coherent system such that

E is a family of stable sheaves, U is locally free, and the map U → f∗E is injective.

Equivalently, a family of stable pairs is a relative coherent system (E ,U) such that is

E flat over S, U is locally free, and the restriction to every fiber is a stable pair.

The main result of [He98] is the existence of a projective moduli space Systn of level

n stable pairs (E , U). More precisely, define a moduli functor F n : (Sch/k)op → Sets

by

F n(S) = {families of level n stable pairs}/ ∼=

where ∼= is isomorphism as relative coherent systems. Then

Theorem 3.3.2. [He98] There is a coarse moduli space Systn for F . If M is the

moduli of stable sheaves, there is a canonical forgetful morphism p : Systn → M

sending a stable pair (E , U) to the sheaf E. For v ∈ H∗(X,Z), the open subscheme

Systn(v) ⊂ Systn with closed points corresponding to stable pairs (E , U) with v(E) = v

is projective.
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Chapter 4

Stable Sheaves on K3 Surfaces

4.1 Characteristic Classes

Let X be a smooth surface over k. Recall that the Chern roots of a sheaf E on X are

cohomology classes xi ∈ H2(X,Z) such that the total Chern class c(E) factors as

c(E) =
∏
i

(1 + xi)

The Todd class Td(E) ∈ H∗(X,Z) of E is then

Td(E) =
∏
i

xi
1− e−xi

(4.1)

The Todd class Td(TX) of the tangent sheaf of X is referred to simply as the Todd

class Td(X) of X. Explicitly

Td(E) = 1 +
c1(E)

2
+

c1(E)2 + c2(E)

12

and thus

Td(X) = 1− K

2
+

(
K2 + e(X)

12

)
ω
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where K = c1(Ω1
X) is the canonical class of X, ω ∈ H4(X,Z) is the Poincaré dual of

the point class generator of H0(X,Z), and χ(X) is the topological Euler characteristic

of X. Indeed, χ(X) =
∫

[X]
c2(TX), so c2(TX) = χ(X)ω.

For any sheaf E on X, the Mukai vector v(E) ∈ H∗(X,Z) of E is defined by

v(E) = ch E
√

Td(X)

Given an element v = v0 + v1 + v2 ∈ H∗(X,Z), where vi ∈ H2i(X,Z) define v∨ =

v0 − v1 + v2, so v(E∨) = v(E)∨, where E∨ ∈ Db(X) is the derived dual of E . We

will often write an element v ∈ H∗(X,Z) as v = (r,D, a), where r, a ∈ Z and D ∈

H2(X,Z) by identifying Z ∼= H0(X,Z) using the fundamental class [X] ∈ H4(X,Z),

and Z ∼= H4(X,Z) using the generator ω ∈ H4(X,Z) Poincaré dual to the canonical

generator of H0(X,Z).

The Mukai pairing on two elements v, w ∈ H∗(X,Z) is defined by

(v, w) = −
∫

[X]

v∨w =

∫
[X]

(v1w1 − v0w2 − v2w0)

In particular if v = (r,D, a),

(v, v) = D2 − 2ra = 2g − 2− 2ra

where g is the arithmetic genus of a curve in the divisor class D, D2 = 2g − 2. By

Grothendieck-Riemann-Roch,

χ(E) =

∫
[X]

ch(E) Td(X)

and since RHom(E ,F) ∼= E∨ ⊗L F in Db(X) for any two sheaves E ,F on X,

(v(E), v(F)) = −χ(RHom(E ,F))
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If X is K-trivial,

Td(X) = 1 +
e(X)

12
ω

so in particular for X a K3 √
Td(X) = 1 + ω

Further, given a sheaf E ,

ch(E) = rk(E) + c1(E) +
c1(E)2 − 2c2(E)

2

so

χ(E) =

∫
[X]

(
2 rk(E)ω +

c1(E)2

2
− c2(E)

)

v(E) = rk(E) + c1(E) +

(
rk(E)ω +

c1(E)2

2
− c2(E)

)
= (rk(E), c1(E), χ(E)− rk(E))

in the above notation.

4.2 Moduli of Sheaves on K3 Surfaces

The moduli spaces of Gieseker stable sheaves on K-trivial surfaces are particularly

well behaved. The first important observation is that the stable loci are smooth.

Proposition 4.2.1. Let X be a K-trivial surface, M the moduli space of Gieseker

semistable sheaves on X, and M s ⊂M the stable locus. Then M s is smooth.

Proof. By the deformation theory of sheaves [HL], the Zariski tangent space to M at

a point [E ] ∈ M s is Ext1(E , E) and the local obstruction lies in Ext2(E , E)0, i.e. the

kernel of the trace map tr : Ext2(E , E)→ Ext2(O,O). By Serre duality, tr is dual to
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the identity section

id : Hom(O,O)→ Hom(E , E) (4.2)

but since E is stable it is simple by (2.3.iii), and therefore (4.2) is an isomorphism.

Thus, M is smooth at [E ], and since M s is open in M , M s is smooth.

For a given Mukai vector v = (r,D, a) ∈ H∗(X,Z), let M(v) ⊂ M be the open

set of points corresponding to sheaves E with v(E) = v, and M s(v) = M(v) ∩M s.

Suppose D has genus g, i.e. D2 = 2g − 2. M s(v) is smooth, and the tangent space

to a point [E ] ∈M s(v) is canonically Ext1(E , E), so the dimension of M s(v) is

dimM s(r,D, a) = 2− χ(RHom(E , E)) = 2 + (v, v) = 2g − 2ra (4.3)

By the main existence theorem (2.4.3), the moduli spaces M s(v) are projective if

M(v) = M s(v)—that is, if there are no properly semistable sheaves. This will be the

case when D, the component of v lying in H2(X,Z), is of minimal degree:

Definition 4.2.2. A divisor class D ∈ Pic(X) has minimal degree if no positive line

bundle has smaller intersection product with H, that is

D.H = min{L.H|L ∈ Pic(X), L.H > 0}

Remark 4.2.3. Note that for any divisor class D of minimal degree, every divisor

in |D| is reduced and irreducible.

Examples 4.2.4. 1. If X has Picard rank one and H is the ample generator, then

D = H has minimal degree.

2. If X is an elliptic K3 surface with section, Pic(X) = Zσ ⊕ Zf , where f is the

fiber class and σ the section class. Choosing H = σ + 3f to be the ample class,
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we have

(aσ + bf).H = a+ b

So σ and f are clearly of minimal degree, since both have intersection product

1 with H.

Assume the divisor class D on X is of minimal degree, and let v = (r,D, a) ∈

H∗(X,Z). In this case there are no properly µ-semistable sheaves:

Lemma 4.2.5. Every 2-dimensional µ-semistable sheaf E with v(E) = v as above is

µ-stable.

Proof. Otherwise there is a nontrivial injection ϕ : F ↪→ E in Coh(X) with rk(F) <

rk(E) and µ(F) = µ(E), cf. (2.2.6). We must then have degF > deg E , contradicting

the minimal degree of D.

In particular, by (2.2.4) this implies that µ-stability is equivalent to Gieseker

stability for 2-dimensional sheaves E with c1(E) of minimal degree, and every Gieseker

semistable sheaf with c1(E) = D is Gieseker stable. We have a similar result for 1-

dimensional sheaves:

Lemma 4.2.6. Every pure 1-dimesional sheaf E with v(E) = v as above is stable.

Proof. Note that the Hilbert polynomial of a 1-dimensional sheaf E is PE = (deg E)m+

χ(E). By (4.2.3) the support Supp E of E is reduced and irreducible, and E is rank

one on Supp E . For any nontrivial subsheaf G ↪→ E , the quotient Q is 0-dimensional

and deg E = deg G, so

pG = m+
χ(G)

deg G
< pE = m+

χ(E)

deg E

since χ(E)− χ(G) = χ(Q) > 0.
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Lemma 4.2.7. Suppose for some Mukai vector v, M(v) = M s(v). Then M(v) is

irreducible.

Proof. See [HL].

Finally, by deforming X one can show that M(v) is in fact nonempty whenever

the dimension count from (4.3) is nonnegative. Thus,

Proposition 4.2.8. Let X be a K3 surface, D a divisor class of minimal degree.

For r ≥ 0, g ≥ ra, M(r,D, a) is a smooth projective irreducible scheme of dimension

2g − 2ra.

The tangent space to a point [E ] ∈ M(v) is canonically Ext1(E , E), and Serre

duality gives a nondegenerate pairing

Ext1(E , E)× Ext1(E , E)→ Ext2(O,O) ∼= k

The pairing can be shown to give M(v) the structure of an irreducible symplectic

manifold:

Definition 4.2.9. An irreducible symplectic variety X is a projective simply con-

nected variety such that H0(Ω2
X) is generated by a global nondegenerate 2-form.

The geometry of irreducible symplectic varieties is quite restrictive. For instance,

we have:

Theorem 4.2.10. [Huy97] For X a K3 surface and D a divisor class of minimal de-

gree, M(r,D, a) is deformation equivalent to X [g−ra], where X [n] is the Hilbert scheme

of n points.
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4.3 A Stratification of the Moduli Spaces

In the setup of (4.2.8) suppose further that M(v) is a fine moduli space, so there

exists a universal sheaf F on X ×M(v), flat over M(v), such that for every point

p = [E ] ∈ M(v), the restriction of F to X × p is E . Let π : X ×M(v) → M(v) be

the projection, and consider the subsets

M(v)i = {[E ] ∈M(v)| dimH0(E) = i} (4.4)

with the induced reduced subscheme structure. By the semicontinuity theorem, we

have immediately

Lemma 4.3.1. {M(v)i}i≥0 is a locally closed stratification of M(v).

In general M(v) need not have a universal family, but étale locally it does, cf.

(2.4.6). The cohomology of coherent sheaves can be computed étale locally, and

closed and open immersions are both étale local properties, so

Proposition 4.3.2. {M(v)i}i≥0 is a (finite) locally closed stratification of M(v).

The finiteness simply follows from the coherence of π∗F étale-locally. Since the

second cohomology vanishes for any sheaf E with Mukai vector v,

dimH0(E) ≥ χ(E) = (v(O), v) = r + a

The generic stratum is in fact M(v)r+a.

4.4 Properties of Stable Sheaves on K3 Surfaces

Let X be a K3 surface over k with ample class H. Fix a divisor class D of minimal

degree on X, and for E on X with c1(E) ∈ ZD, let d = d(E) be the integer such
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that c1(E) = dD. We will be concerned throughout with sheaves E with c1(E) = D,

so by (4.2.5) and (4.2.6), Gieseker stability for 2-dimensional sheaves is equivalent

to µ-stability, and for 1-dimensional sheaves to purity. By stability henceforth we

will mean Gieseker stability, but we will freely use the µ-stability criterion when it

applies. This section is adapted from the treatment in [Yos99].

The following simple observation will give us surprising mileage in describing µ-

stable sheaves whose first Chern class is D.

Lemma 4.4.1. Suppose given integers r, r1, r2, d, d1, d2, e with r, r1, r2 ≥ 0 and e > 0

such that

r1d− rd1 ≥ e r1d2 − r2d1 = e rd2 − r2d ≥ e (4.5)

Then r ≥ r1 + r2.

Proof.

re = rr1d2 − rr2d1 = r1(rd2 − r2d) + r2(r1d− rd1) ≥ (r1 + r2)e

and therefore r ≥ r1 + r2.

We’ll call two pairs of integers r1, d1 and r, d with r1, r ≥ 0 adjacent if dr1−d1r = 1.

Since

1 = dr1 − d1r = (dr1 − d1r)− (dr1 − d1r)

if r1, d1 and r, d are adjacent, so are r1, d1 and r2 = r − r2, d2 = d − d2. We’ll call

two sheaves E1 and E on X D-adjacent if c1(E1), c1(E) ∈ ZD and d(E1), rk(E1) and

d(E), rk(E) are adjacent. Thus, for any short exact sequence

0→ E1 → E → E2 → 0
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E1, E are D-adjacent if and only if E , E2 are. (4.4.1) has the following consequence

Corollary 4.4.2. Let D be a divisor class of minimal degree on X, and E , E1, E2

sheaves on X with E1, E2 D-adjacent. If

µ(E1) < µ(E) < µ(E2)

then rk(E) ≥ rk(E1) + rk(E2).

Proof. Since µ(E1) < µ(E), we must have rk(E) deg E1 < rk(E1) deg E ; D is of minimal

degree, so the difference must be at least D.H. Similarly, we have rk(E) deg E2 −

rk(E2) deg E ≥ D.H. Applying the lemma with di = deg Ei, ri = rk(Ei) for i ∈

{∅, 1, 2} and e = D.H, the result follows.

It is almost the case that morphisms between D-adjacent stable sheaves are either

surjective or injective; this is reminiscent of (2.3). Recall that a morphism of sheaves

ϕ : E → F is a surjection (injection, isomorphism) in codimension 1 if the cokernel

(kernel, cokernel and kernel) is supported in codimension 2—that is, if the image of ϕ

in Coh0,2(X) is a surjection (injection, isomorphism). Obviously if F ∈ Ob(Coh(X))

then such a ϕ is injective in codimension 1 if and only if it is injective.

Lemma 4.4.3. Assume E1, E are stable and D-adjacent with E1 is locally free; let

U ⊂ Hom(E1, E) be a subspace. Then the evaluation morphism ϕ : U ⊗ E1 → E is

either injective or surjective in codimension 1. Further, if ϕ is injective, cokerϕ is

stable.

Proof. [Yos99] Suppose first that dimU = 1, so ϕ : E1 → E is a nonzero morphism.

Also assume that rk(E) > 0. Let G be the image of ϕ, so ϕ factors as

E1 →→ G ↪→ E (4.6)
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By (4.4.2), one of the two morphisms in (4.6) is trivial in Coh0,2(X), so ϕ is either

surjective in codimension 1 or injective, by 2.3.iii. If rk(E) = 0, then E is pure and

rank one on it’s support, which by (4.2.3) is both reduced and irreducible. Thus, ϕ

must be surjective in codimension 1.

If ϕ is injective, let E2 be the cokernel of ϕ, so there is an exact sequence

0→ E1 → E → E2 → 0

If E2 is not stable and rk(E2) > 0, there is a maximal destabilizing quotient E2 →→ G

in Coh0,2(X) such that

µ(E) < µ(G) < µ(E2)

which is impossible by (4.4.2), since we must have rk(E) > 0. If rk(E2) = 0, we

need only show that E2 is pure, but this follows from the Serre criterion [HL] that

Ext2(E2,O) = 0, since Ext2(E ,O) = 0.

Now assume U general. Choose a splitting U ∼= V ⊕W with W 1-dimensional.

There is a diagram

0 // E1
//

ψ

��

U ⊗ E1
//

ϕ

��

V ⊗ E1
//

��

0

0 // E E // 0

By the snake lemma, there’s an exact sequence

0→ kerψ → kerϕ→ V ⊗ E1 → cokerψ → cokerϕ→ 0

Proceeding inductively, if ϕ is not surjective in codimension 1, then neither is ψ, and

therefore ψ is injective. cokerψ is then stable, and the boundary map V ⊗ E1 →

cokerψ is injective.
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Thus, when U⊗E1 → E is injective, the cokernel is stable. Dually, when U⊗E1 → E

is surjective in codimension 1, the kernel is stable, though we will not need this:

Lemma 4.4.4. Let E1, E be stable and D-adjacent with E1 locally free. Let U ⊂

Hom(E1, E). If evaluation map U ⊗ E1 → E is surjective in codimension 1, then the

kernel is stable.

Proof. [Yos99] Let n = dimU , and F = kerϕ; F is automatically either 0 or 2-

dimensional. Assuming F is not stable, there is a maximal destabilizing subsheaf G

in Coh0,2(X) with

µ(F) =
nd1 − d
nr1 − r

< µ(G)

U ⊗ E1 is semistable of slope µ(E1), and G is a subsheaf, so in fact

nd1 − d
nr1 − r

< µ(G) ≤ µ(E1)

and by (4.4.2) the right inequality is equality, since G must have strictly smaller rank

than F . For any one-dimensional quotient U → V , the composition G → V ⊗ E1
∼=

E1 is trivial in Coh0,2(X) by (2.3.iii), so G ∼= E1 in codimension 1, and therefore

Hom(E1,F) 6= 0, a contradiction since U ⊂ Hom(E1, E).

Finally, any extension of D-adjacent stable sheaves is stable:

Lemma 4.4.5. Let E1, E2 be D-adjacent stable sheaves with E1 locally free. For any

nontrivial extension nonzero subspace V ⊂ Ext1(E2, E1), the corresponding extension

0→ V ∗ ⊗ E1 → E → E2 → 0 (4.7)

defines a stable sheaf E.

Proof. [Yos99] Assume first that dimV = 1, so there is an extension

0→ E1 → E → E2 → 0
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As noted above, E1, E are also D-adjacent. Let ri = rk(Ei) for i ∈ {∅, 1, 2}, and

assume that r1 < r. If E is not stable, there is a maximal destabilizing sheaf G ↪→ E

in Coh(X) with µ(G) > µ(E). Thus,

µ(E1) < µ(E) < µ(G)

E1 is stable, so G ↪→ E cannot factor through E1 ↪→ E , and the map G → E → E2 is

nonzero. E2 is stable, so µ(G) ≤ µ(E2). We cannot have rk(G) ≥ r + r2, so by (4.4.2)

there is actually equality µ(G) = µ(E2). Thus, by (2.3.iii) G → E2 is injective and

surjective in codimension 1. E1 is locally free, so Hom(E2/G, E1) = 0.

Let e ∈ Ext1(E1, E2) be the extension class of (4.7). e is the image of the identity

element of Hom(E1, E1) under the left map in the exact sequence

Hom(E1, E1)→ Ext1(E2, E1)→ Ext1(E , E1)

There is also an exact sequence

Ext1(E2/G, E1)→ Ext1(E2, E1)→ Ext1(G, E1) (4.8)

The second map factors as Ext1(E2, E1) → Ext1(E , E1) → Ext1(G, E1), and therefore

maps e to 0. E1 is locally free, so Ext1(E2/G, E1) = 0. By the local-to-global spectral

sequence, Ext1(E2/G, E1) = 0, and therefore the right map in (4.8) is injective, and

e = 0 which is a contradiction. Thus E is stable.

Now suppose r1 = r, in which case r = r1 = 1 and d = d2 = 1. We need only

show E is torsion-free. If G 6= 0 is the torsion subsheaf of E , then G ↪→ E2, and since

E2 is pure of dimension 1, E2/G is 0-dimensional. Again we have Ext1(E2/G, E1) = 0,

and the extension is trivial by the same argument.

For general V , choose a quotient V → V ′ with dimV ′ = dimV − 1. There is a
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diagram

0 0

0 // V ′ ⊗ E1
//

OO

E ′ //

OO

E2
// 0

0 // V ⊗ E1

OO

// E //

OO

E2
// 0

E1

OO

E1

OO

0

OO

0

OO

With exact rows and columns. By induction, E ′ is stable and therefore E is.

4.5 Stable Pairs on K3 surfaces.

We will apply the results of the last section in the special case E1 = O. Given a sheaf

E , O and E are D-adjacent if c1(E) ∈ ZD and d(E) = 1—that is, c1(E) = D. The

results of the last section can be summarized:

Proposition 4.5.1. Let X be a K3 surface and D a divisor class on X of minimal

degree. Given a level n stable pair ϕ : U ⊗ O → E with c1(E) = D, ϕ is injective if

n ≤ rk(E). Further, for a vector space V over k and any extension

0→ V ⊗O → E → F → 0

E is stable with c1(E) = D if and only if F is stable with c1(F) = D.

These properties together strongly restrict the geometry of the moduli spaces of

stable pairs on K3 surfaces:

Theorem 4.5.2. [KY00] Let X be a K3 surface, v = (v0, v1, v2) ∈ H∗(X) a Mukai

vector. For v1 = D of minimal degree, Systn(v) is smooth.
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Proof. Given a stable pair Λ = (E , U) on X, let x ∈ Ob(Db(X)) be the class of the

complex

x = [U ⊗O → E ] (4.9)

with E placed in degree 1, as in Section 3.3. Again, there is a triangle

x→ U ⊗O → E → x[1] (4.10)

Taking RHom( · , E) gives a long exact sequence

0 // Ext−1(x, E)

// Hom(E , E) // Hom(U ⊗O, E) // Hom(x, E)

// Ext1(E , E) // Ext1(U ⊗O, E) // Ext1(x, E)

// Ext2(E , E) // Ext2(U ⊗O, E) = 0

where 0 = Ext2(U ⊗O, E) = U ⊗H2(E) since E is stable. By Section 3.3, the tangent

space to Systn(v) at Λ is Hom(x, E) and the obstruction lies in the kernel of the

composition

Ext1(x, E)→ Ext2(E , E)
tr−→ H2(O) (4.11)

whose Serre dual is

H0(O)
id−→ Hom(E , E) ↪→ Ext1(E , x) (4.12)

E is stable and therefore simple, so Hom(E , E) is one-dimensional. If we show

Ext1(E , x) is also one-dimensional, the obstruction space will vanish and the result

will follow. Following [KY00], let G be the universal extension

0→ Ext1(E ,O)∗ ⊗O → G → E → 0 (4.13)
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corresponding to the identity subspace of Ext1(E ,O). The composition in (4.12) is

injective so it suffices to show that

(a) The composition map Ext1(E , x)→ Ext1(G, x) is injective

(b) Ext1(G, x) is one-dimensional

For then Ext1(E , x) is one-dimensional, (4.12) is surjective, and the kernel of (4.11)

is trivial. Applying RHom( · , x) to (4.13), we have an exact sequence of the form

Ext1(E ,O)∗ ⊗ Hom(O, x)→ Ext1(E , x)→ Ext1(G, x) (4.14)

The long exact (global) cohomology sequence associated to (4.10) begins with

0→ H0(x)→ H0(U ⊗O)→ H0(E)

and by the stability of Λ the rightmost map is injective, so

0 = H0(x) = Hom(O, x)

and (4.14) yields (a).

The long exact sequence associated to (4.13) yields

0 = Ext1(E ,O)∗ ⊗H1(O)→ H1(G)→ H1(E)→ Ext1(E ,O)∗ ⊗H2(O)→ 0

Of course, by Serre duality Ext1(E ,O)∗ ∼= H1(E), so H1(G) = 0, and by Serre duality

again Ext1(G, U⊗O) = 0. By (4.5.1), G is stable, so H2(G) = 0, and thus using Serre

duality again Hom(G, U ⊗ O) = 0. Applying RHom(G, · ) to (4.10) gives an exact

sequence

0 = Hom(G, U ⊗O)→ Hom(G, E)→ Ext1(G, x)→ Ext1(G, U ⊗O) = 0
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and Hom(G, E) ∼= Ext1(G, x). But applying RHom(G, · ) to (4.13) gives one final an

exact sequence

0 = Hom(G,Od)→ Hom(G,G)→ Hom(G, E)→ Ext1(G,Od) = 0

and since G is simple, (b) follows.

Recall from Section 4.3 that

M(v)i = {E ∈M(v)|h0(E) = i}

form a locally closed stratification of M(v). Denote by Systn(v)i the preimage of

M(v)i under the forgetful morphism p : Systn(v)→ M(v); clearly {Systn(v)}i≥0 is a

locally closed stratification of Systn(v).

For v = (r,D, a), denote Systn(r,D, a) = Systn(v) and M(r,D, a) = M(v). For

r ≥ n there is a map (cf. [KY00]) q : Systn(r,D, a) → M(r − n,D, a − n) mapping

(E , U) to the cokernel F of the structure map

0→ U ⊗O → E → F → 0

By (4.5.1) F is stable, and obviously v(F) = v(E)− v(On) = (r − n,D, a− n) since

v(O) = (1, 0, 1). Further, since H1(U⊗O) = 0, the stratum Systn(r,D, a)i maps into

M(r − n,D, a− n)i−n.

Theorem 4.5.3 ([KY00]). 1. The restriction Systn(v)i → M(v)i of the forgetful

morphism p is an étale-locally trivial fibration with fiber Gr(n, i).

2. The restriction Systn(r,D, a)i →M(r−n,D, a−n)i−n of the quotient morphism

q is an étale-locally trivial fibration with fiber Gr(n, n+ i− r − a).

Proof. 1. Assume first that M(v) has a universal sheaf F on X ×M(v), and let
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π : X ×M(v) → M(v) be the projection. Systn(v)
p−→ M(v) can be explicitly

constructed as a relative Grassmannian of n-planes in π∗F . Rπ∗F is supported

in cohomological degrees 0 and 1, since H2(Xp,Fp) = 0 for each fiber Xp by

stability. By cohomology and base change, the restriction of R1π∗F to M(v)i

is locally free since the groups H1(Xp,Fp) for all p ∈ M(v) have constant

dimension i − χ(v) = i − r − a. By the flatness of F over M(v), π∗F is

locally free of rank i, and Systn(v)i is a Zariski-locally trivial fibration with fiber

Gr(n, i) over M(v)i. M(v) étale locally has a universal sheaf, and it follows that

Systn(v)i →M(v)i is an étale-locally trivial Gr(n, i) fibration.

2. The proof is exactly analogous to the proof of the first part, except now Systn(r,D, a)
q−→

M(r − n,D, a − n) is constructed as the relative Grassmannian of n-planes in

R1π∗F , since every extension yields a stable pair, by (4.5.1). R1π∗F is locally

free over M(r − n,D, a − n)i−n; the fiber over [E ] ∈ M(r − n,D, a − n)i−n is

H1(E) and therefore its rank is

i− n− χ(E) = i− n− (r + a− 2n) = n+ i− r − a

The main tool for the computation of the Hodge polynomials of Systn(r,D, a) will

be the existence of the diagrams

Systn(r,D, a)i
q

**TTTTTTTTTTTTTTT
p

vvmmmmmmmmmmmm

M(r,D, a)i M(r − n,D, a− n)i−n

where p is an étale-local Gr(n, i)-fibration and q is an étale local Gr(n, n+ i− r− a)-

fibration.

One final property of the stable pair moduli spaces that will be relevant later is
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the duality

Theorem 4.5.4. [KY00] In the setup of (4.5.2) there is an isomorphism

Systn(r,D, a) ∼= Systn(n− r,D, a− r)

for all r ≤ n.

Proof. We will at the very least define the map; see [KY00] for the proof of the

theorem. Let U ⊗O → E be a stable pair, and let x ∈ Db(X) be the cone as in (4.9).

Applying RHom( · ,O) to the triangle (4.10), we have

U∗ ⊗O ∼= Hom(U ⊗O,O)→ Hom(x, E)
∼=−→ Ext1(E ,O)

One can show that U∗ ⊗ O → Ext1(E ,O) is a stable pair and that this defines the

isomorphism.
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Chapter 5

u-Calculus

The computation of chapter 6 is best expressed in terms of “u”-calculus. If we were to

follow convention, this section would be called “q-calculus,” since usually the formal

variable used is “q.” q will have a different use for us later, and so we’ll use u instead.

5.1 u-Binomial Coefficients

The u-integer [n] is the polynomial in u given by

[n] =
un − 1

u− 1

The u-factorial and u-binomial coefficients are defined similarly:

[n]! =
n∏
s=1

[s]

[
n

k

]
=

[n]!

[k]![n− k]!

45



For k ≤ n and 0 for k > n; by fiat [0]! = 1. Given f an element of a reasonable ring

of power series in u, x (for example Laurent series), the u-derivative is

(
d

dx

)
u

f =
f(ux)− f(x)

ux− x

For example, we have

(
d

dx

)
u

(xn) =
unxn − xn

ux− x
= [n]xn−1

5.2 Properties of u-Binomial Coefficients

Most binomial identities have u-analogs, many of which recover the classical identities

in the u→ 1 limit:

Lemma 5.2.1. For any k ≤ n

1.

[n] = [n− k] + un−k[k]

2. [
n+ 1

k

]
=

[
n

k

]
+ un+1−k

[
n

k − 1

]
(5.1)

Proof. 1. Follows immediately from [n+ 1] =
∑n

s=0 u
s.
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2.

[
n+ 1

k

]
=

[n+ 1]!

[k]![n+ 1− k]!

=
[n]!

[k]![n− k]!

(
[n+ 1]

[n+ 1− k]

)
=

[n]!

[k]![n− k]!

(
1 + un+1−k [k]

[n+ 1− k]

)
=

[
n

k

]
+ un+1−k

[
n

k − 1

]

Note that
[
n
k

]
has degree k(n−k). The symmetric u-binomial coefficient is defined

for 0 ≤ k ≤ n by {
n

k

}
= u−

k(n−k)
2

[
n

k

]
Also, under the same conditions let

{
−n
k

}
= (−1)k

{
n+ k − 1

k

}

Let

Kn(t, u) =
n−1∏
s=0

(1 + tus−
n−1

2 )

for n ≥ 0.

Lemma 5.2.2.

Kn(t−1, u) = t−nKn(t, u)

Proof.

Kn(t−1, u) = t−n
n−1∏
s=0

(t+ us−
n−1

2 )

47



but terms in the product come in pairs (t+ us)(t+ u−s) = (1 + tus)(1 + tu−s).

Kn is invertible as a Laurent series in t, u
1
2 ; let

K−n(t, u) = Kn(t, u)−1

There is an analog of (5.2.1) for symmetric u-binomial coefficients:

Lemma 5.2.3. For any 0 ≤ k ≤ n

1. {
n+ 1

k

}
= u−

k
2

{
n

k

}
+ u

n+1−k
2

{
n

k − 1

}
(5.2)

2. Kn(t, u) is the generating function for the

{
n

k

}
, that is

Kn(t, u) =
∞∑
k=0

tk
{
n

k

}

3. {
n+ k

k

}
=

k∑
s=0

u
sn+s−k

2

{
n+ k − s− 1

k − s

}

4. K−n(t, u) is the generating function for the

{
−n
k

}
, that is

K−n(t, u) =
∞∑
k=0

tk
{
−n
k

}

Proof. 1. Multiplying (5.1) by u
k(n+1−k)

2 gives (5.2).

2. Note that

Kn+1(t, u) =
(
1 + tu

n
2

)
Kn(tu−

1
2 , u) (5.3)
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Assuming by induction that the coefficient of ts in Kn(tu−
1
2 , u) is u−

s
2

{
n

s

}
, the

coefficient of tk in Kn+1(t, u) is

u−
k
2

{
n

k

}
+ u

n−k+1
2

{
n

k − 1

}

which yields the result given part (1).

3. Replacing n in (5.2) with n+ k − 1 we have

{
n+ k

k

}
= u−

k
2

{
n+ k − 1

k

}
+ u

n
2

{
n+ k − 1

k − 1

}
(5.4)

Note that

k∑
s=0

u
sn+s−k

2

{
n+ k − s− 1

k − s

}
= u−

k
2

{
n+ k − 1

k

}
+

k∑
s=1

u
sn+s−k

2

{
n+ k − s− 1

k − s

}

= u−
k
2

{
n+ k − 1

k

}
+ u

n
2

(
k−1∑
s=0

u
sn+s−k+1

2

{
n+ k − s− 2

k − s− 1

})

By induction the term in parentheses is

{
n+ k − 1

k − 1

}
, and by (5.4) the result

follows.

4. Inverting (5.3), we have

K−n−1(t, u) =
1

1 + tu
n
2

K−n(tu−
1
2 , u) = K−n(tu−

1
2 , u)

∞∑
s=0

(−1)stsu
ns
2

Inductively assuming the coefficient of tk−s in K−n(tu−
1
2 , u) is

u−
k−s
2

{
−n
s

}
= (−1)k−su−

k−s
2

{
n+ k − s− 1

k − s

}
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the coefficient of tk in K−n−1(t, u) is

(−1)k
k∑
s=0

u
ns+s−k

2

{
n+ k − s− 1

k − s

}
= (−1)k

{
n+ k

k

}
=

{
−n− 1

k

}

by part (3).

5.3 q-Theta Functions

Given expressions a, b polynomial in q, the Pochhammer symbol (a, b)∞ is a formal

power series in q defined by

(a, b)∞ =
∞∏
n=0

(1− abn)

For example, (q, q)∞ =
∏

n≥1(1 − qn). The q-theta function Θ(x) is a formal power

series in x, q defined by

Θ(x) = (q, q)∞(x, q)∞(x−1q, q)∞ = (1− x)
∞∏
n=1

(1− qn)(1− xqn)(1− x−1qn)

So in particular Θ(x) has a simple root at x = 1. Our main use for Θ(x) is derived

from the fact that

Lemma 5.3.1. For n ∈ Z, define

sign(n) =


+1 n ≥ 0

−1 n < 0
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Then for expressions a, b polynomial in q

∑
sign(i)=sign(j)

sign(i)aibjqij =
(q, q)3

∞Θ(ab)

Θ(a)Θ(b)

Proof. See [Hic88].

Define

Ψ(x, y) =
∑
`≥0

∑
p≥1

(xp − x−`)yp−`qp`

Note that this can be rewritten1

Ψ(x, y) =

(∑
`≥0

∑
p≥1

(xy)py−` +
∑
`≥0

y−`

)
−

(∑
`≥0

∑
p≥1

(xy)−`yp −
∑
p≥1

yp

)

=
∑
p,`≥0

(xy)p(y−1)`qp` −
∑
p,`≥1

(xy)−`(y−1)−pqp`

Corollary 5.3.2.

Ψ(x, y) =
(q, q)3

∞Θ(x)

Θ(xy)Θ(y−1)

Explicitly,

Ψ(x, y) =
(q, q)2

∞(x, q)∞(x−1q, q)∞
(xyq, q)∞(x−1y−1q, q)∞(q, q)∞(q, q)∞

1One must be careful about the ring of formal power series in which the identities below hold.
We are using ∑

n≥0

y−n +
∑
n>0

yn =
1

1− y−1
+

y

1− y
= 0

which must be justified delicately. See [Hic88, Zag91].
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5.4 A Useful Matrix

In chapter 6 we will be interested in the matrix A(n) = (Anij)i,j≥0 defined by

Anij =


[ i+j

2
n

][ j
j−i
2

]
i− j ≡ 0 mod 2

0 i− j ≡ 1 mod 2

i.e., the only nonzero entries are Ank,k+2` =
[
k+`
n

][
k+2`
`

]
, k, ` ≥ 0. In particular,

A0
k,k+2` =

[
k+2`
`

]
. A(0) is upper triangular with ones along the diagonal, and is

therefore invertible:

Proposition 5.4.1. The inverse of A(0) is the matrix B = (Bij)i,j≥0 given by

Bk,k+2` = (−1)lu(`
2) [k + 2`]

[k + `]

[
k + `

`

]

and Bk,k+2`+1 = 0, for k, ` ≥ 0

Proof. We need only check that the (k, k + 2`) entry of A(0)B for ` > 0 is 0, since

the diagonal terms are clearly 1 and both matrices are upper triangular. The relevant

entries of B are

Bk+2s,k+2` = (−1)`−su(`−s
2 )
[
k + `+ s

`− s

]
[k + 2`]

[k + `+ s]

Also note that

[
k + 2s

s

][
k + `+ s

`− s

]
[k + 2`]

[k + `+ s]
=

(
[k + 2s]!

[s]![k + s]!

)(
[k + s+ `]!

[`− s]![k + 2s]!

)
[k + 2`]

[k + `+ s]

=

(
[`]!

[s]![`− s]!

)(
[k + s+ `− 1]!

[k + s]![`− 1]!

)
[k + 2`]

[`]

=

[
`

s

][
k + `− 1

`− 1

]
[k + 2`]

[`]
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Thus

∞∑
s=0

A0
k,k+2sBk+2s,k+2` =

∑̀
s=0

(−1)`−su(`−s
2 )
[
k + 2s

s

][
k + `+ s

`− s

]
[k + 2`]

[k + `+ s]

=

(
[k + 2`]

[`]

)∑̀
s=0

(−1)`−su(`−s
2 )
[
k + s+ `− 1

`− 1

][
`

s

]

=

(
[k + 2`]

[`]

)∑̀
s=0

(−1)`−su(`−s
2 )+

(`−1)(k+s)
2

+
s(`−s)

2

{
k + s+ `− 1

`− 1

}{
`

s

}

= u
`2−`+(`−1)k

2

(
[k + 2`]

[`]

)∑̀
s=0

(−1)`−s
{
k + s+ `− 1

`− 1

}{
`

s

}

= (−1)k+`u
`2−`+(`−1)k

2

(
[k + 2`]

[`]

)∑̀
s=0

{
−`
k + s

}{
`

s

}

By (4) of (5.2.3),

{
−`
k + s

}
is the coefficient of tk+s in K−`(t, q) and

{
`

s

}
is the coeffi-

cient of t−s inK`(t
−1, q). Therefore, the sum is the coefficient of tk inK−`(t, q)K`(t

−1, q) =

t−`K−`(t, q)K`(t, q) = t−` so it must be 0, unless ` = k = 0, but we assumed ` > 0.

5.5 A Useful Product

As we shall see in (6.2.2), an explicit computation of the product P(n) := A(n)A(0)−1

will enable us to perform the calculation in section 6.3. The product is a matrix

P(n) = (P n
ij)i,j≥0 given by

Lemma 5.5.1. For k, ` ≥ 0, n > 0,

P n
k,k+2` = u`

2+`(k−n) [k + 2`]

[n+ `]

[
n+ `

n

][
k + `− 1

n− 1

]

and P n
k,k+2`+1 = 0.

Proof. The proof is a calculation very similar to the proof of lemma (5.2.3). Note
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that for ` ≥ s

[
k + s

n

][
k + 2s

s

][
k + s+ `

`− s

]
=

=
[k + s] · · · [k + s− n+ 1]

[n]!

[k + 2s] · · · [k + s+ 1]

[s]!

[k + s+ `] · · · [k + 2s+ 1]

[`− s]!

=
[k + s+ `]!

[n]![s]![`− s]![k + s− n]!

=

(
[n+ `]!

[n]![`]!

)(
[`]!

[s]![`− s]!

)(
[k + s+ `− 1]!

[k + s− n]![n+ `− 1]!

)
[k + s+ `]

[n+ `]

so

P n
k,k+2` =

∑̀
s=0

Ank,k+2sBk+2s,k+2`

=
∑̀
s=0

(−1)`−su(`−s
2 )
[
k + s

n

][
k + 2s

s

][
k + s+ `

`− s

]
[k + 2`]

[k + s+ `]

=
[k + 2`]

[n+ `]

[
n+ `

n

]∑̀
s=0

(−1)`−su(`−s
2 )
[
k + s+ `− 1

n+ `− 1

][
`

s

]

=
[k + 2`]

[n+ `]

[
n+ `

n

]∑̀
s=0

(−1)`−su(`−s
2 )+

(n+`−1)(k−n+s)
2

+
s(`−s)

2

{
k + s+ `− 1

n+ `− 1

}{
`

s

}

=
[k + 2`]

[n+ `]

[
n+ `

n

]
u

`2−`+(n+`−1)(k−n)
2

∑̀
s=0

(−1)`−susn/2
{
k + s+ `− 1

n+ `− 1

}{
`

s

}

= (−1)k−n+` [k + 2`]

[n+ `]

[
n+ `

n

]
u

`2−`+(n+`−1)(k−n)
2

∑̀
s=0

usn/2
{
−(n+ `)

k − n+ s

}{
`

s

}

usn/2
{
−(n+ `)

k − n+ s

}
is the coefficient of tk−n+s in u(n2−kn)/2K−(n+`)(tu

n/2, u) and

{
`

s

}
is the coefficient of t−s in K`(t

−1, u). Therefore, the sum in (4.2.8) is the coefficient
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of tk−n in

u(n2−kn)/2K−(n+`)(tu
n/2, u)K`(t

−1, u) = u(n2−kn)/2t−`K−(n+`)(tu
n/2, u)K`(t, u)

= u(n2−kn)/2t−`K−n(tu(n+`)/2, u)

which is

u
`2+`k

2

{
−n

k − n+ `

}
= (−1)k−n+`u

`2+`k
2

{
k + `− 1

n− 1

}
= (−1)k−n+`u

`2+`k−(n−1)(k+`−n)
2

[
k + `− 1

n− 1

]

and we get

P n
k,k+2` = u`

2+`k−n` [k + 2`]

[n+ `]

[
n+ `

n

][
k + `− 1

n− 1

]

The n = 1 case is of particular interest:

Corollary 5.5.2. For k, ` ≥ 0

P 1
k,k+2` = u`

2+`k−`[k + 2`]
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Chapter 6

Computation of the Hodge

Polynomials

6.1 Packaging the Results of Section 4.5

For X a scheme over k, let χt,t(X) =
∑

p,q≥0 h
p,q(X)(−t)p(−t)q denote the virtual

Hodge polynomial of X. Throughout the following, we will set u = tt so that

χt,t(Pn) = [n+ 1] :=
un+1 − 1

u− 1

or more generally

χt,t(Gr(k, n)) =

[
n

k

]
where Gr(k, n) is the Grassmannian of k planes in n-space.

Recall that for a divisor class D ∈ H2(X,Z), D2 = 2g − 2 by the adjunction

formula, where g is the arithmetic genus of a divisor in the class D; g will be called

the genus of D. For each genus g ≥ 0 fix a polarized K3 surface X with a divisor

class D of minimal degree and genus g, cf. (4.2.4)

• g = 0, 1: X → P1 is an elliptic K3 with a section. Pic(X) = Zσ ⊕ Zf , where f
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is the fiber class and σ the section class. For g = 0 take H = σ+ f and D = σ;

for g = 1 take H = σ + f and D = f .

• g ≥ 2: X has Picard rank 1 with ample generator H of genus g (H2 = 2g − 2);

take D = H

Denote by M(r, g, k) is the moduli space of H-stable rank r sheaves E with c1(E) = D

and ch2(E).[X] = k—that is, v(E) = (r,D, k). Define infinite matrices M(g) =

(M(g)ij)i,j≥0 and Systn(g) = (Systn(g)ij)i,j≥0 of Hodge polynomials by

M(g)ij =


χt,t(M( i−j

2
, g, i+j

2
)) i− j ≡ 0 mod 2

0 i− j ≡ 1 mod 2

Systn(g)ij =


χt,t(Systn( i−j

2
, g, i+j

2
)) i− j ≡ 0 mod 2

0 i− j ≡ 1 mod 2

Of course M(g) = Syst0(g). Recall from Section 4.3 that M(r,D, a)i is the stratum

of M(r,D, a) of sheaves E with h0(E) = i. Note that highest dimensional stratum

is i = r + a = χ(E); define a matrix M0(g) = (M0(g)ij)i,j≥0 of the virtual Hodge

polynomials of these generic strata:

M0(g)ij =


χt,t(M( i−j

2
, g, i+j

2
)i i− j ≡ 0 mod 2

0 i− j ≡ 1 mod 2

6.2 Encoding the Geometry

For any locally closed stratification of a scheme X, the virtual Hodge polynomial of

X is the sum of the virtual Hodge polynomials of the strata. In particular,

χt,t(M(r,D, a)) =
∞∑
i=0

χt,t(M(r,D, a)i) (6.1)
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Of course the terms are zero until i = min(0, r + a). Similarly

χt,t(Systn(r,D, a)) =
∞∑
i=0

χt,t(Systn(r,D, a)i)

Recall from Section 4.5 that there is a diagram for 0 ≤ r, i ≤ n,

Systn(r,D, a)i
q

**TTTTTTTTTTTTTTT
p

vvmmmmmmmmmmmm

M(r,D, a)i M(r − n,D, a− n)i−n

which can be rewritten for i, r, n ≥ 0 as

Systn(r + n,D, a+ n)i+n
q

**TTTTTTTTTTTTTTT
p

sshhhhhhhhhhhhhhhhhh

M(r + n,D, a+ n)i+n M(r,D, a)i

Recall that the fiber of p above M(r+ n,D, a+ n)i+n is Gr(n, i+ n) and the fiber of

q over M(r,D, a)i is Gr(n, i− r − a) (i ≥ r + a since h0(E) ≥ χ(E) for any stable E

as h2(E) = 0). Taking n = i− r − a, we have

Systi−r−a(i− a,D, i− r)2i−r−a
q

**UUUUUUUUUUUUUUUUU
p

ssgggggggggggggggggggg

M(i− a,D, i− r)2i−r−a M(r,D, a)i

where q is an isomorphism and p is an étale-locally fibration with fiber Gr(i − r −

a, 2i− r − a).

For any Zariski-locally trivial fibration Y → S with fiber F—i.e. Zariski-locally

trivially on S, Y → S is isomorphic to the projection F × S → S—the Hodge

58



polynomials simply multiply

χt,t(Y ) = χt,t(F )χt,t(S)

The same is not in general true for étale-locally trivial fibrations, but it is in this case:

Lemma 6.2.1. Let Y, S be smooth k-schemes, S simply connected, and π : Y → S a

projective morphism that is an étale-locally trivial fibration with fiber Gr(k, n). Then

χt,t(Y ) =

[
n

k

]
χt,t(S)

Proof. Let Q
`

be the `-adic constant sheaf in the étale topology. The Leray spectral

sequence Hp
ét(S,R

qπ∗Q`
) ⇒ Hp+q

ét (Y,Q
`
) associated to π degenerates on the n = 2

page. S is simply connected, so the local systems Rqπ∗Q`
are trivial.

Thus,

χt,t(M(r,D, a)i) = χt,t(Gr(i− r − a, 2i− r − a))χt,t(M(i− a,D, i− r)2i−r−a)

=

[
2i− r − a
i− r − a

]
χt,t(M(i− a,D, i− r)2i−r−a)

After replacing ` = r, a = k + `, and i = k + 2`+ s, this becomes

χt,t(M(`,D, k + `)k+2`+s) =

[
k + 2`+ 2s

s

]
χt,t(M(`+ s,D, k + `+ s)k+2`+2s)

The Hodge polynomial on the right is M0(g)k+2`+2s,k. The strata M(`,D, k+`)k+2`+s
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are null below s = 0, so

M(g)k+2`,k = χt,t(M(`,D, k + `))

=
∞∑
s=0

[
k + 2`+ 2s

s

]
M0(g)k+2`+2s,k

=
∞∑
s=0

A0
k+2`,k+2`+2sM

0(g)k+2`+2s,k

and thus

M(g) = A(0)M0(g)

Moreover, since

χt,t(Systn(r,D, a)i) = χt,t(Gr(n, i))χt,t(M(r,D, a)i)

We have

χt,t(Systn(`,D, k + `)k+2`+s) =

[
k + 2`+ s

n

]
χt,t(M(`,D, k + `)k+2`+s)

so that

Systn(g)k+2`,k = χt,t(Systn(`,D, k + `))

=
∞∑
s=0

[
k + 2`+ s

n

][
k + 2`+ 2s

s

]
M0(g)k+2`+2s,k

=
∞∑
s=0

Ank+2`,k+2`+2sM
0(g)k+2`+2s,k

and

Systn(g) = A(n)M0(g)
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Thus,

Proposition 6.2.2.

Systn(g) = A(n)A(0)−1M(g) = P(n)M(g)

6.3 Explicit Computations

By (4.2.10), M(r,D, a) is deformation equivalent to the Hilbert scheme of points

X [g−ra], so

χt,t(M(r,D, a)) = χt,t(X
[g−ra])

The generating function for the Hodge polynomials of the X [n] is, by Göttsche’s

formula [Göt90]

∑
n≥0

χt,t(X
[n])qn =

∏
n≥1

2∏
i,j=0

(1− (−1)i+jti−1t
j−1

(uq)n)−(−1)i+jhi,j(X)

=
∏
n≥1

1

(1− u−1(uq)n)(1− tt−1
(uq)n)(1− (uq)n)20(1− tt−1(uq)n)(1− u(uq)n)

Or more simply put,

∑
n≥0

χt,t(X
[n])u−nqn =

∏
n≥1

1

(1− u−1qn)(1− t2u−1qn)(1− qn)20(1− t−2uqn)(1− uqn)

(6.2)
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Denote by c(n) = χt,t(X
[n]). We are interested in the generating function

F r
n(y, q) =

∑
g≥0

∑
k∈Z

χt,t(Systn(r,Dg, k + r))u−gykqg

=
∑
g≥0

∑
k≥0

χt,t(Systn(r,Dg, k + r))u−gykqg

+
∑
g≥0

∑
k<0

χt,t(Systn(r,Dg, k + r))u−gykqg (6.3)

For r ≤ n, we know by (4.5.4) that

Systn(r,D, r − k) ∼= Systn(n− r,D, n− r + k)

and therefore we can write (6.3) as

F r
n(y, q) =

∑
g≥0

∑
k≥0

Systn(g)k+2r,ku
−gykqg +

∑
g≥0

∑
k>0

Systn(g)k+2(n−r),ku
−gy−kqg

We have

Systn(g)k+2r,k =
∑
`≥r

P n
k+2r,k+2`M(g)k+2`,k

=
∑
`≥r

P n
k+2r,k+2`c

(
g − `2 − lk

)
Systn(g)k+2(n−r),k =

∑
`≥r+n

P n
k−2r+2n,k+2`M(g)k+2`,k

=
∑
`≥r+n

P n
k−2r+2n,k+2`c

(
g − `2 − lk

)
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Therefore

F r
n(q, y) =

∑
g≥0

∑
k∈Z

u−gqgyk Systn(g)k+2r,k

=
∑
g≥0

∑
k≥0

u−gqgyk
∑
`≥r

P n
k+2r,k+2`c(g − `2 − lk)

+
∑
g≥0

∑
k≥1

u−gqgy−k
∑
`≥n−r

P n
k−2r+2n,k+2`c(g − `2 − lk)

and thus

F r
n(q, y) = S

∑
k≥0

∑
`≥r

yku−`
2−lkqlk+`2P n

k+2r,k+2` (6.4)

+ S
∑
k≥1

∑
`≥n−r

y−ku−`
2−lkqlk+`2P n

k−2r+2n,k+2` (6.5)

where

S =
∑
g≥0

c(g)u−gqg

is the generating function of the Hodge polynomials of the Hilbert schemes of points.

We also know by (5.5.1) that

P n
k+2r,k+2` = ur(n−r)u`

2+lk−nl−kr [k + 2`]

[n]

[
n+ `− r − 1

n− 1

][
k + `+ r − 1

n− 1

]
P n
k−2r+2n,k+2` = ur(n−r)u`

2+lk−nl−k(n−r) [k + 2`]

[n]

[
`+ r − 1

n− 1

][
k + `− r + n− 1

n− 1

]

Note that the sums in (6.4), (6.5) make sense for all ` ≥ 0 since the terms are zero

whenever ` < r in the first and ` < n− r in the second sum.

63



Write p = `+ k to get

∑
k≥0

∑
`≥0

yku−`
2−lkqlk+`2P n

k+2r,k+2`

=
ur(n−r)

[n]

∑
`≥0

∑
p≥`

u−nl−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qpl

and

∑
k>0

∑
`≥0

y−ku−`
2−lkqlk+`2P n

k−2r+2n,k+2`

=
ur(n−r)

[n]

∑
p>`

∑
`≥0

u−np+(p−`)r[p+ `]

[
`+ r − 1

n− 1

][
n− r + p− 1

n− 1

]
y`−pqpl

`↔p
=

ur(n−r)

[n]

∑
p≥0

∑
`>p

u−nl−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qpl

Where the second line is obtained by setting k = p− `, and the third by switching p

and `. The result is

Theorem 6.3.1. For r ≤ n

S−1F r
n(q, y) =

ur(n−r)

[n]

∑
`≥0

∑
p≥0

u−nl−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qpl

Note that the only dependence on t, t that doesn’t factor through u = tt is from
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the term S. In particular for r = 0, n = 1

S−1F 0
1 (q, y) =

∑
`≥0

∑
p≥1

u−`[p+ `]yp−`qp`

=
1

u− 1

∑
`≥0

∑
p≥1

(up − u−`)yp−`qp`

=
1

u− 1
Ψ(u, y)

and

Corollary 6.3.2.

S−1F 0
1 (q, y) =

−1

(1− y)(1− u−1y−1)

∏
n≥1

(1− qn)2(1− uqn)(1− u−1qn)

(1− yqn)(1− y−1qn)(1− uyqn)(1− u−1y−1qn)

Note directly from the formula in (6.3.1) that the duality (4.5.4) manifests itself

in a kind of rank-level duality for the generating function F r
n(q, y):

Corollary 6.3.3.

F r
n(q, y) = F n−r

n (q, y−1)

6.4 Relation to r = 0, n = 1

The higher generating functions are actually determined by the r = 0, n = 1 function.

Define Laurent polynomials Br
n(i, j) in u for n ≥ 1, 1 ≤ i ≤ n and 0 ≤ j ≤ n− i by

Br
n(n, 0) = 1 and

Br
n+1(i, j) = Br

n(i− 1, j) +Br
n(i+ 1, j − 1)− ur−nBr

n(i, j − 1)− un−rBr
n(i, j)
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Lemma 6.4.1.

u−n`−(p−`)r[p+`]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
=

(u− 1)1−2n

[n− 1]!2

n∑
i=1

n−i∑
j=0

Br
n(i, j)(uip−u−i`)uj(p−`)

Proof. Clearly the claim is true for n = 1. Note that

u−`[n+ `− r][p+ r − n]

[n]2
=

(u− 1)2

[n]2
(un−r − u−`)(up+r−n−` − u`)

=
(u− 1)2

[n]2
(up − up+r−n−` − un−r + u−`)

Thus by induction

u−(n+1)`−(p−`)r[p+ `]

[
n+ `− r − 1

n

][
p+ r − 1

n

]
(6.6)

=
u−`[n+ `− r][p+ r − n]

[n]2

(
u−n`−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

])
=

(u− 1)2

[n]2
(up − up+r−n−` − un−r + u−`)

(
(u− 1)2−2n

[n− 1]!2

∑
i,j

Br
n(i, j)(uip − u−i`)uj(p−`)

)

Clearly the two fractions match up to give the coefficient we want. Note that

(up + u−`)(uip − u−i`)uj(p−`) = (u(i+1)p − up−i`)uj(p−`) + (uip−` − u−(i+1)`)uj(p−`)

= (u(i+1)p − u−(i+1)`)uj(p−`) + (u(i−1)p − u−(i−1)`)u(j+1)(p−`)

and

−(up+r−n−`+un−r)(uip−u−i`)uj(p−`) = −ur−n(uip−u−i`)u(j+1)(p−`)−un−r(uip−u−i`)uj(p−`)
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So that in (6.6) the coefficient of (uip − u−i`)up−` is

Br
n(i− 1, j) +Br

n(i+ 1, j − 1)− ur−nBr
n(i, j − 1)− un−rBr

n(i, j)

which by definition is Br
n+1(i, j).

By (6.3.1),

[n]ur(r−n)S−1F r
n(q, y) =

∑
`≥0

∑
p≥0

u−nl−(p−`)r[p+ `]

[
n+ `− r − 1

n− 1

][
p+ r − 1

n− 1

]
yp−`qpl

=
(u− 1)2−2n

[n− 1]!2

n∑
i=1

n−i∑
j=0

Br
n(i, j)

∑
p,`≥0

(uip − u−i`)uj(p−`)yp−`qp`

=
(u− 1)2−2n

[n− 1]!2

n∑
i=1

n−i∑
j=0

Br
n(i, j)Ψ(ui, ujy)

So finally

Theorem 6.4.2.

S−1F r
n(q, y) =

ur(n−r)(u− 1)2−2n

[n][n− 1]!2

n∑
i=1

n−i∑
j=0

Br
n(i, j)Ψ(ui, ujy)

For example for n = 2 the only nonzero Br
2(i, j) are

Br
2(2, 0) = 1 Br

2(1, 0) = −u1−r Br
2(1, 1) = −ur−1

and therefore

ur(r−2)(u− 1)2[2]

S
F r

2 (q, y) = Ψ(u2, y)− u1−rΨ(u, y)− ur−1Ψ(u, uy)
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6.5 Euler Characteristics and Modularity

Of particular interest is the generating function F r
n(q, y)|u=1 of the Euler characteris-

tics of the moduli spaces Systn(r,D, a). By definition,

F r
n(q, y)|u=1 =

∑
g≥0

∑
k∈Z

χt,t(Systn(r,Dg, k))ykqg

The generating function S|u=1 of the Euler characteristics of the Hilbert scheme of

points is well known. From (6.2):

S|u=1 =
∑
n≥0

χ(X [n])qn =
∏
n≥1

1

(1− qn)24
=

1

qη(q)24

where η(q) is the q-expansion of the Dedekind η function. Define

Gr
n(q, y) := qη(q)24F r

n(q, y)|u=1

From (6.3.1),

Theorem 6.5.1.

Gr
n(q, y) =

1

n

∑
`≥0

∑
p≥1

(p+ `)

(
n+ `− r − 1

n− 1

)(
p+ r − 1

n− 1

)
yp−`qpl

Note that the coefficient in (6.3.2) can be rewritten at u = 1 as

−1

(1− y)(1− y−1)
=

(
√
y − 1
√
y

)−2

Thus, for r = 0, n = 1 we recover the Kawai-Yoshioka formula [KY00]
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Corollary 6.5.2.

G0
1(q, y) =

(
√
y − 1
√
y

)−2∏
n≥1

(1− qn)4

(1− yqn)2(1− y−1qn)2

We can in fact express all of the higher generating functions Gr
n(q, y) in terms of

the Kawai-Yoshioka function G0
1(q, y) via differential operators. Define for r ≤ n

Dr
n =

1

n(n− 1)

(
q
d

dq
+ (n− r − 1)y

d

dy
− (n− r − 1)2

)

Note that

(
n+ `− r − 1

n− 1

)(
p+ r − 1

n− 1

)
=

=
(`+ (n− r − 1)) · · · (`− r + 1)

(n− 1)!

(p+ r − 1) · · · (p− (n− r − 1))

(n− 1)!

=
(`+ (n− r − 1))(p− (n− r − 1))

(n− 1)2

(
n+ `− r − 2

n− 2

)(
p+ r − 1

n− 2

)

and since (`+ (n− r − 1))(p− (n− r − 1)) = p`+ (p− `)(n− r − 1)− (n− r − 1)2,

we have

Theorem 6.5.3. For r ≤ n, n ≥ 2

Gr
n(q, y) = Dr

nG
r
n−1(q, y)

As noted by [KY00], the function G0
1(q, y) is itself modular. Recall (cf. [Fol09])

that the Igusa cusp form χ10 is the unique (up to normalization) weight 10 Siegel

modular form on the Siegel space

H2 = {Ω = ( τ
′ ν
ν τ ) ∈ Mat2×2(C)|Im Ω > 0}
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The nth coefficient of the Fourier expansion in the variable q′ = e2πiτ ′

χ10 =
∑
n≥0

(q′)nχ10,n(τ, ν)

is a Fourier-Jacobi form of weight 10 and index n. If we write χ10,n(q, y) for the

Fourier expansion of χ10,n(τ, ν) as a formal power series in q = e2πiτ and y = e2πiν ,

then

Theorem 6.5.4. [KY00]

χ10,1(q, y) = G0
1(q, y)

Using (6.3.3) and (6.5.3) we can express the higher generating functions in terms

of the derivatives of a Fourier-Jacobi modular form; this can be viewed as an analog

of the fact that the Gromov-Witten potentials of the K3 surface are all quasimodular

forms.
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Chapter 7

Concluding Remarks

7.1 Insertions

Though the equivalence between the full Gromov-Witten and Donaldson-Thomas

theories with insertions is conjectured to be true for all threefolds, it is only known

in two special cases: (i) Calabi-Yau toric threefolds in full generality [MNOP06a,

MNOP06b]; (ii) arbitrary toric threefolds for primary insertions [MOOP]. The

Gromov-Witten theory of surfaces already has a well defined notion of insertions,

and the full theory is calculated for the K3 surface in [MPT]. One can ask how to

construct invariants with insertions for stable pairs on surfaces.

Let X be a K3 surface, D a divisor class of genus g on X, and C[d] the hilbert

scheme of d points on the universal divisor C → P = |D| ∼= Pg. As discussed in the

introduction, Pn,g = C[n+g−1] ∼= Syst1(0, D, n) is the analog of the Pandharipande-

Thomas moduli space of stable pairs. There is an obvious map ρ : Pn,g → |D| ∼= Pg.

Letting H be the hyperplane class on Pg, invariants with insertions can be defined by

integrating the fundamental class of C[d] against the Chern classes of the cotangent
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bundle ΩP g
n

and powers of ρ∗H:

Ck
n,g =

∫
Pn,g

cn+2g−1−k(ΩP g
n
) ∪ ρ∗(Hk) (7.1)

The generating function of the Ck
n,g is computed in [MPT] and related to the Gromov-

Witten theory of X. The invariant (7.1) is naively the Euler characteristic of the

moduli space of divisors in the class D meeting k fixed general points on X.

In the higher rank case, there is no longer a map to Pg, but using ρ : Systn(r,D, a)→

M(r,D, a), one can define invariants with insertions

∫
Systn(r,D,a)

cN−k(ΩSystn(r,D,a))ρ
∗x (7.2)

where N = dim Systn(r,D, a) and x is a cohomology class of degree k on M(r,D, a).

Since M(r,D, a) is deformation equivalent to X [g−ra], the cohomology of M(r,D, a)

is well-understood. The precise relationship between the Gromov-Witten theory of

X and the invariants (7.2) has yet to be understood, but may shed some light on the

relationship between higher rank sheaf-theoretic virtual counts and Gromov-Witten

theory of threefolds.

7.2 Abelian Surfaces

The moduli of sheaves on abelian surfaces is quite similar to that of K3 surfaces. Let

A be an abelian surface over k.

• The stable locus M s in the moduli space M of semistable sheaves is smooth by

(4.2.1).

• For a divisor class D of minimal degree on A, it will still be true that µ-

semistability implies µ-stability for sheaves E with v(E) = (r,D, a), and there-

fore M(v) = M s(v) is smooth and projective.
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• Serre duality gives a canonical holomorphic symplectic form on M(v), making

M(v) an irreducible symplectic variety.

• LetA[n] be the hilbert scheme of n points onA; it will not be true that eachM(v)

is deformation equivalent to some A[n]. If, however, we define the generalized

Kummer variety1 Kn−1(A), the fiber of the addition map A[n] → A, then each

M(v) is deformation equivalent to some Kn−1(A).

It is expected that the computation in Chapter 6 can be adapted to the abelian surface

case, and that this will similarly agree with the reduced Gromov-Witten theory of A.

This will be pursued in an upcoming paper with Andrei Jorza.

7.3 Stability Conditions

One can also vary the notion of stability used to pick out the moduli spaces M(r,D, a),

and ask how the computation of Chapter 6 changes. In [Bri07], Bridgeland defines

a notion of stability condition on the bounded derived category Db(X) of coherent

sheaves on a smooth variety X. For X a threefold, it is hoped that one can view the

Donaldson-Thomas and Pandharipande-Thomas moduli spaces as moduli spaces of

stable objects in Db(X) with respect to two different stability conditions, and that the

equivalence between the two manifests itself as a wall-crossing formula. Much progress

has been made toward understanding this insight, but stability conditions and the

moduli of stable objects with respect to them have proved difficult to construct. On

the other hand, numerical invariants of weaker stability conditions on Db(X) have

been constructed directly by Joyce [Joy06, Joy07a, Joy07b, Joy08] and Kontesevich

and Soibelman [KS], and the equivalence has been proven from this viewpoint in

many contexts by many authors, for example Joyce, Kontsevich and Soibelman in

the aforementioned references, Toda in [Tod], and [Bri].

1So called because K1(A) is the Kummer surface associated to A.
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In contrast to threefolds, many Bridgeland stability conditions have been con-

structed on K3 surfaces in [Bri08], and the moduli spaces of stable objects have been

constructed for some of them [ABL]. Most of the properties of stable sheaves used

in Chapter 4 to construct the diagram that facilitated the computation in Chapter

6 carry over to Bridgeland stable objects, and it would be interesting to see whether

there is an explicit wall-crossing formula relating the resulting invariants.
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(1998), no. 5, 545–598.

[Hic88] D. Hickerson, A proof of the mock theta conjectures, Invent. Math. 94

(1988), no. 3, 639–660.

[HL] D. Huybrechts and M. Lehn, The geometry of moduli spaces of sheaves,

Aspects of Mathematics, E31.

[Huy97] D. Huybrechts, Birational symplectic manifolds and their deformations,

J. Differential Geom. 45 (1997), no. 3, 488–513.

[Joy06] D. Joyce, Configurations in abelian categories. I. Basic properties and

moduli stacks, Adv. Math. 203 (2006), no. 1, 194–255.

[Joy07a] , Configurations in abelian categories. II. Ringel-Hall algebras,

Adv. Math. 210 (2007), no. 2, 635–706.

[Joy07b] , Configurations in abelian categories. III. Stability conditions

and identities, Adv. Math. 215 (2007), no. 1, 153–219.

[Joy08] , Configurations in abelian categories. IV. Invariants and chang-

ing stability conditions, Adv. Math. 217 (2008), no. 1, 125–204.

[KM94] M. Kontsevich and Yu. Manin, Gromov-Witten classes, quantum coho-

mology, and enumerative geometry, Comm. Math. Phys. 164 (1994),

no. 3, 525–562.

[KS] M. Kontsevich and Y. Soibelman, Stability structures, mo-

tivic donaldson-thomas invariants and cluster transformations,

arXiv:0811.2435.

76



[KY00] T. Kawai and K. Yoshioka, String partition functions and infinite prod-

ucts, Adv. Theor. Math. Phys. 4 (2000), no. 2, 397–485.

[Li06] J. Li, Zero dimensional Donaldson-Thomas invariants of threefolds,

Geom. Topol. 10 (2006), 2117–2171.

[LP] M. Levine and R. Pandharipande, Algebraic cobordism revisited,

math.AG/0605196.
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